CN112375957B - 一种镍铁基耐蚀合金及其制备方法 - Google Patents

一种镍铁基耐蚀合金及其制备方法 Download PDF

Info

Publication number
CN112375957B
CN112375957B CN202011262775.8A CN202011262775A CN112375957B CN 112375957 B CN112375957 B CN 112375957B CN 202011262775 A CN202011262775 A CN 202011262775A CN 112375957 B CN112375957 B CN 112375957B
Authority
CN
China
Prior art keywords
alloy
nickel
corrosion
iron
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011262775.8A
Other languages
English (en)
Other versions
CN112375957A (zh
Inventor
谢君
王道红
侯桂臣
周亦胄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jinyan New Material Technology Co ltd
Original Assignee
Jiangsu Jinyan New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jinyan New Material Technology Co ltd filed Critical Jiangsu Jinyan New Material Technology Co ltd
Priority to CN202011262775.8A priority Critical patent/CN112375957B/zh
Publication of CN112375957A publication Critical patent/CN112375957A/zh
Application granted granted Critical
Publication of CN112375957B publication Critical patent/CN112375957B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Glass Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

本发明属于合金材料及其制备技术领域,具体涉及一种镍铁基耐蚀合金及其制备方法。按重量百分比计,该合金化学成分为:Ni 35~38%;Cr 26~30%;Mo 5~7%;Si 2~6%;Cu 0.5~3%;Nb 0.3~1.5%;Ce 0.005~0.03%;余量为铁。称量各合金元素原料,将除了硅和铈以外的合金元素原料加入真空感应炉坩埚中,待合金元素原料化清后加入硅,提温精炼;停电降温至合金液表面结膜后,停止抽真空并充入高纯氩气;送电冲膜并向其中加入镍铈合金,低温精炼,将合金浇铸到模管中,冷却后进行切割打磨。本发明通过合理设计合金化元素的种类以及含量,镍铁基耐蚀合金具有良好的铸造性能、力学性能以及耐蚀性能,可作为硫酸、磷酸等酸性介质环境下使用的泵用材料和其他化工机械设备的结构材料。

Description

一种镍铁基耐蚀合金及其制备方法
技术领域
本发明属于合金材料及其制备技术领域,具体涉及一种镍铁基耐蚀合金及其制备方法。
背景技术
硫酸和磷酸是国民经济中最重要的两种化工产品,几乎所有的工业都直接或者间接地使用硫酸和磷酸,比如:化肥、染料、医药、石油炼制以及金属提纯等工业,在酸性介质下使用的机械设备不可避免地会发生腐蚀,某些特殊工艺条件下使用的部件,比如:钛白废酸浓缩泵以及磷酸料浆泵,不仅会遭受严重的腐蚀,同时还存在固体颗粒的磨损,腐蚀和磨损的交互作用加速了设备的失效速度。
目前能够满足以上苛刻工况的金属屈指可数,高硅铸铁能耐一切浓度和温度的硫酸和磷酸,但存在抗热振动性能差、机械性能不好的缺点。普通的不锈钢对硫酸的耐蚀性不好,在磷酸中也随材料和环境的差异呈现不同的结果,有的应用很成功,而有的则腐蚀严重。高合金化的镍基耐蚀合金在酸性介质中具有优异的耐蚀性能,但因为价格昂贵,限制了该类合金的应用推广。因此,开发能够在硫酸、磷酸等酸性环境下使用的新型镍铁基耐蚀合金,可以保证化工机械设备的正常运转,减少设备停工停产而造成的经济损失,具有重要的经济效益和社会效益。
发明内容
本发明的目的是提供一种镍铁基耐蚀合金及其制备方法,所制备的合金具有良好的铸造性,铸态合金的硬度小,适于机械加工,通过热处理可以提高合金的硬度,在硫酸、磷酸等酸性介质中具有优异的耐蚀性能,可广泛应用于石油、化工、冶金等领域,尤其适合用作酸性介质环境下存在固体颗粒磨蚀的泵用材料和其他化工机械设备的结构材料。
为了实现以上目的,本发明采用以下技术方案:
一种镍铁基耐蚀合金,按照重量百分比计,该合金化学成分为:
Ni 35~38%;Cr 26~30%;Mo 5~7%;Si 2~6%;Cu 0.5~3%;Nb 0.3~1.5%;Ce 0.005~0.03%;余量为铁。
所述的镍铁基耐蚀合金,按照重量百分比计,该合金优选化学成分为:
Ni 35~38%;Cr 26~30%;Mo 5.5~6.5%;Si 3.5~5.5%;Cu 2~3%;Nb 0.3~0.6%;Ce 0.01~0.02%;余量为铁。
所述的镍铁基耐蚀合金的制备方法,包括以下步骤:
(1)按照重量百分比称量各合金元素原料;
(2)将除了硅和铈以外的合金元素原料加入真空感应炉坩埚中,合上炉盖抽真空,待炉内真空度达到10Pa以下开始送电化料;
(3)待合金元素原料化清后加入硅,提温精炼;
(4)停电降温至合金液表面结膜后,停止抽真空并充入高纯氩气;
(5)送电冲膜并向其中加入镍铈合金;
(6)低温精炼;
(7)将合金浇铸到模管中,冷却后进行切割打磨。
所述的镍铁基耐蚀合金的制备方法,步骤(2)中的铈为镍铈合金,镍铈合金用于提供合金中全部的铈元素和部分镍元素。
所述的镍铁基耐蚀合金的制备方法,步骤(3)中,精炼温度为1500~1550℃,精炼时间为5~10min。
所述的镍铁基耐蚀合金的制备方法,步骤(4)中,充入氩气后炉内真空度为0.08~0.10MPa。
所述的镍铁基耐蚀合金的制备方法,步骤(6)中,低温精炼温度为1420~1450℃,精炼时间为5~10min。
所述的镍铁基耐蚀合金的制备方法,合金的铸态硬度为80~100HRB,拉伸屈服强度为320~350MPa,抗拉强度为420~450MPa,在质量分数为10%的硫酸溶液中自腐蚀电位为-0.28V~-0.14V,腐蚀电流密度为7.5×10-7A/cm2~7.9×10-6A/cm2,在质量分数为10%的磷酸溶液中自腐蚀电位为-0.34V~-0.24V,腐蚀电流密度为0.1×10-6A/cm2~5.2×10- 6A/cm2
所述的镍铁基耐蚀合金的制备方法,镍铁基耐蚀合金的热处理方法为:固溶温度为1050~1100℃,固溶时间为0.5h~2h,水淬;热处理后合金的硬度为20~30HRC,拉伸屈服强度为340~450MPa,抗拉强度为450~580MPa,在质量分数为10%的硫酸溶液中自腐蚀电位为-0.23V~-0.18V,腐蚀电流密度为3.1×10-7A/cm2~2.1×10-6A/cm2,在质量分数为10%的磷酸溶液中自腐蚀电位为-0.36V~-0.32V,腐蚀电流密度为0.6×10-6A/cm2~2.2×10-6A/cm2
本合金成分的设计理念如下:
Ni:镍是镍基耐蚀合金中的基体元素,能够强烈形成并稳定奥氏体,同时镍可以固溶大量合金元素而不生成有害相,有效提高合金的强度。镍属于热力学不稳定元素,钝化能力界于铬和铁之间,在铁镍基合金中提高镍元素的含量可以提高合金在氧化性介质以及还原性介质中的腐蚀电位,改善了合金的耐蚀性能。考虑到经济性及性能要求,合金中的镍元素含量设计为35~38%。
Cr:铬是不锈钢及耐蚀合金中的基本元素,可以促进合金在腐蚀介质中生成钝化膜并保持稳定钝化状态,提高合金在氯化物溶液中的耐应力腐蚀、点蚀和缝隙腐蚀等局部腐蚀能力,同时固溶于基体组织中起固溶强化作用。铬在合金中存在临界值,超过该值后继续提高铬的含量不会改善合金的耐蚀能力,反而降低合金的塑性,对成型和焊接性不利,因此合金中的铬元素含量设计为26~30%。
Mo:不锈钢和耐蚀合金中的钼元素与铬元素存在交互作用,两者共同添加可以促进合金在腐蚀介质中生成富钼的氧化膜,改善合金在还原性酸中的耐蚀性。钼在强氧化性介质中存在过钝化行为,恶化合金的耐蚀能力,因此合金中的钼元素含量设计为5~7%。
Si:在合金中添加硅元素,可以促进合金在氧化性酸介质中生成氧化硅保护膜,从而改善合金的耐蚀性能,但随着硅含量的增加,耐蚀合金中脆性相的析出倾向增大,导致合金的韧性和塑性降低,合金的机械加工难度增大,因此合金中的硅元素含量设计为2~6%。
Cu:铜元素能够与镍形成固溶体,提高合金在还原性酸中的耐蚀性能。适量的铜可以改善合金的冷加工塑性,但过高含量的铜则容易降低合金的热加工塑性,使热加工变形困难,因此合金中的铜元素含量设计为0.5~3%。
Nb:铌元素可以同合金中的碳形成NbC,避免合金在晶界析出大量的Cr23C6,降低合金的晶间腐蚀敏感性。铌还可以提高不锈钢及耐蚀合金的室温和高温强度,减少合金焊接热裂纹的产生,但会影响合金的韧脆转变温度,因此合金中的铌元素含量设计为0.3~1.5%。
Ce:稀土元素Ce能够强烈与氧、氮、硫等杂质结合,改变合金中夹杂物的形态,减小合金在腐蚀介质中发生点蚀的倾向性。稀土氧化物、氮化物、硫化物可以作为晶粒形核的质点,有效地减小合金的晶粒尺寸,提高不锈钢及耐蚀合金的强度,但添加过量的稀土铈容易形成低熔点共晶,恶化合金性能,因此合金中的稀土铈元素含量设计为0.005~0.03%。
本发明的优点及有益效果是:
1、本发明在Ni-Cr-Fe合金的基础上添加Mo、Si、Cu,通过合金化技术提高了合金在硫酸和磷酸介质中的耐均匀腐蚀能力以及耐应力腐蚀、点蚀和缝隙腐蚀等局部腐蚀能力。通过微合金化技术在合金中添加Nb和稀土Ce,避免合金析出大量的Cr23C6和大尺度的夹杂物,降低合金的晶间腐蚀敏感性和点蚀倾向性。
2、本发明镍铁基耐蚀合金具有良好的铸造性能和力学性能,铸态合金的硬度较小,有利于机械加工,通过热处理可以提高合金的硬度,提高了合金的耐磨性能,可作为硫酸、磷酸等酸性介质环境下使用的泵用材料和其他化工机械设备的结构材料。
附图说明
图1为实施例1中制备的镍铁基耐蚀合金的组织形貌。其中,a、b分别为不同放大倍数的形貌。
图2为实施例1中制备的镍铁基耐蚀合金的XRD衍射图谱。图中,横坐标2θ代表衍射角(°),纵坐标Intensity代表相对强度(a.u.)。
具体实施方式
下面,根据具体实例对本发明作进一步说明。
实施例1:
本实施例合金的成分(wt%)为:Ni 36.4%,Cr 27.9%,Mo 5.7%,Si 3.6%,Cu0.5%,Nb 0.3%,Ce 0.012%,余量为铁。其制备过程如下:
采用电子天平按各元素的质量分数称量合金元素原料,合计4.3kg。稀土铈以镍铈合金的形式加入,其中铈的质量分数为20%。清理坩埚后,将除了硅和镍铈合金以外的合金元素原料加入到10kg真空感应炉坩埚中,合上炉盖进行抽真空,待炉内真空度达到5Pa后开始送电化料,送电功率为18.9kw,待合金元素原料化清后加入硅,提温至1500℃精炼5min,停电降温至金属液表面结膜,停止抽真空并充入高纯氩气(体积纯度≥99.999%)至真空度为0.08MPa,送电冲膜并向其中加入镍铈合金,提温至1420℃精炼5min后将合金浇铸到模管中,冷却后打磨备用。
本实施例制备的镍铁基耐蚀合金的组织形貌见图1,XRD衍射图谱见图2,由图1和图2可以看出,本实施例制备的镍铁基耐蚀合金属于双相合金,主要由γ基体相和(Fe,Cr,Mo)13Ni5Si2硅化物复合构成。
该合金的铸态硬度为85.3HRB,拉伸屈服强度为330MPa,抗拉强度为449MPa,在质量分数为10%的硫酸溶液中自腐蚀电位为-0.25V,腐蚀电流密度为7.9×10-6A/cm2,在质量分数为10%的磷酸溶液中自腐蚀电位为-0.32V,腐蚀电流密度为1.7×10-6A/cm2
该合金在1080℃固溶处理2h后水淬,热处理后合金的硬度为23.3HRC,拉伸屈服强度为376MPa,抗拉强度为576MPa,在质量分数为10%的硫酸溶液中自腐蚀电位为-0.22V,腐蚀电流密度为2.1×10-6A/cm2,在质量分数为10%的磷酸溶液中自腐蚀电位为-0.36V,腐蚀电流密度为0.6×10-6A/cm2
实施例2:
本实施例合金的成分(wt%)为:Ni 37.1%,Cr 27.7%,Mo 5.7%,Si 3.3%,Cu2.4%,Nb 1.3%,Ce 0.01%,余量为铁。其制备过程如下:
采用电子天平按各元素的质量分数称量合金元素原料,合计4.3kg。稀土铈以镍铈合金的形式加入,其中铈的质量分数为20%。清理坩埚后,将除了硅和镍铈合金以外的合金元素原料加入到10kg真空感应炉坩埚中,合上炉盖进行抽真空,待炉内真空度达到5Pa后开始送电化料,送电功率为19.2kw,待合金元素原料化清后加入硅,提温至1503℃精炼5min,停电降温至金属液表面结膜,停止抽真空并充入高纯氩气(体积纯度≥99.999%)至真空度为0.09MPa,送电冲膜并向其中加入镍铈合金,提温至1420℃精炼5min后将合金浇铸到模管中,冷却后打磨备用。
该合金的铸态硬度为85.2HRB,拉伸屈服强度为326MPa,抗拉强度为424MPa,在质量分数为10%的硫酸溶液中自腐蚀电位为-0.14V,腐蚀电流密度为7.5×10-7A/cm2,在质量分数为10%的磷酸溶液中自腐蚀电位为-0.34V,腐蚀电流密度为5.2×10-6A/cm2
该合金在1080℃固溶处理2h后水淬,热处理后合金的硬度为22HRC,拉伸屈服强度为348MPa,抗拉强度为544MPa,在质量分数为10%的硫酸溶液中自腐蚀电位为-0.18V,腐蚀电流密度为3.1×10-7A/cm2,在质量分数为10%的磷酸溶液中自腐蚀电位为-0.32V,腐蚀电流密度为2.2×10-6A/cm2
实施例3:
本实施例合金的成分(wt%)为:Ni 36.5%,Cr 27.9%,Mo 5.7%,Si 5.11%,Cu1.0%,Nb 0.5%,Ce 0.013%,余量为铁。其制备过程如下:
采用电子天平按各元素的质量分数称量合金元素原料,合计4.3kg。稀土铈以镍铈合金的形式加入,其中铈的质量分数为20%。清理坩埚后,将除了硅和镍铈合金以外的合金元素原料加入到10kg真空感应炉坩埚中,合上炉盖进行抽真空,待炉内真空度达到8Pa后开始送电化料,送电功率为24.2kw,待合金元素原料化清后加入硅,提温至1501℃精炼5min,停电降温至金属液表面结膜,停止抽真空并充入高纯氩气(体积纯度≥99.999%)至真空度为0.1MPa,送电冲膜并向其中加入镍铈合金,提温至1420℃精炼5min后将合金浇铸到模管中,冷却后打磨备用。
该合金的铸态硬度为98.3HRB,拉伸屈服强度为400MPa,抗拉强度为437MPa,在质量分数为10%的硫酸溶液中自腐蚀电位为-0.28V,腐蚀电流密度为5.2×10-6A/cm2,在质量分数为10%的磷酸溶液中自腐蚀电位为-0.24V,腐蚀电流密度为0.1×10-6A/cm2
该合金在1080℃固溶处理2h后水淬,热处理后合金的硬度为32HRC,拉伸屈服强度为441MPa,抗拉强度为455MPa,在质量分数为10%的硫酸溶液中自腐蚀电位为-0.23V,腐蚀电流密度为4.8×10-7A/cm2,在质量分数为10%的磷酸溶液中自腐蚀电位为-0.32V,腐蚀电流密度为1.5×10-6A/cm2
实施例结果表明,本发明镍铁基耐蚀合金具有铸造性能好、硬度高、耐蚀性能优异等特点,可作为硫酸、磷酸等酸性介质环境下使用的泵用材料和其他化工机械设备的结构材料。

Claims (9)

1.一种镍铁基耐蚀合金,其特征在于,按照重量百分比计,该合金化学成分为:
Ni 36.5~38%;Cr 26~30%;Mo 5~7%;Si 2~6%;Cu 1~3%;Nb 0.3~1.5%;Ce0.005~0.03%;余量为铁。
2.根据权利要求1所述的镍铁基耐蚀合金,其特征在于,按照重量百分比计,该合金优选化学成分为:
Ni 36.5~38%;Cr 26~30%;Mo 5.5~6.5%;Si 3.5~5.5%;Cu 2~3%;Nb 0.3~0.6%;Ce 0.01~0.02%;余量为铁。
3.一种权利要求1或2所述的镍铁基耐蚀合金的制备方法,其特征在于,包括以下步骤:
(1)按照重量百分比称量各合金元素原料;
(2)将除了硅和铈以外的合金元素原料加入真空感应炉坩埚中,合上炉盖抽真空,待炉内真空度达到10Pa以下开始送电化料;
(3)待合金元素原料化清后加入硅,提温精炼;
(4)停电降温至合金液表面结膜后,停止抽真空并充入高纯氩气;
(5)送电冲膜并向其中加入镍铈合金;
(6)低温精炼;
(7)将合金浇铸到模管中,冷却后进行切割打磨。
4.根据权利要求3所述的镍铁基耐蚀合金的制备方法,其特征在于,步骤(2)中的铈为镍铈合金,镍铈合金用于提供合金中全部的铈元素和部分镍元素。
5.根据权利要求3所述的镍铁基耐蚀合金的制备方法,其特征在于,步骤(3)中,精炼温度为1500~1550℃,精炼时间为5~10min。
6.根据权利要求3所述的镍铁基耐蚀合金的制备方法,其特征在于,步骤(4)中,充入氩气后炉内真空度为0.08~0.10MPa。
7.根据权利要求3所述的镍铁基耐蚀合金的制备方法,其特征在于,步骤(6)中,低温精炼温度为1420~1450℃,精炼时间为5~10min。
8.根据权利要求3所述的镍铁基耐蚀合金的制备方法,其特征在于,合金的铸态硬度为80~100HRB,拉伸屈服强度为320~350MPa,抗拉强度为420~450MPa,在质量分数为10%的硫酸溶液中自腐蚀电位为-0.28V~-0.14V,腐蚀电流密度为7.5×10-7A/cm2~7.9×10-6A/cm2,在质量分数为10%的磷酸溶液中自腐蚀电位为-0.34V~-0.24V,腐蚀电流密度为0.1×10-6A/cm2~5.2×10-6A/cm2
9.根据权利要求3所述的镍铁基耐蚀合金的制备方法,其特征在于,镍铁基耐蚀合金的热处理方法为:固溶温度为1050~1100℃,固溶时间为0.5h~2h,水淬;热处理后合金的硬度为20~30HRC,拉伸屈服强度为340~450MPa,抗拉强度为450~580MPa,在质量分数为10%的硫酸溶液中自腐蚀电位为-0.23V~-0.18V,腐蚀电流密度为3.1×10-7A/cm2~2.1×10-6A/cm2,在质量分数为10%的磷酸溶液中自腐蚀电位为-0.36V~-0.32V,腐蚀电流密度为0.6×10-6A/cm2~2.2×10-6A/cm2
CN202011262775.8A 2020-11-12 2020-11-12 一种镍铁基耐蚀合金及其制备方法 Active CN112375957B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011262775.8A CN112375957B (zh) 2020-11-12 2020-11-12 一种镍铁基耐蚀合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011262775.8A CN112375957B (zh) 2020-11-12 2020-11-12 一种镍铁基耐蚀合金及其制备方法

Publications (2)

Publication Number Publication Date
CN112375957A CN112375957A (zh) 2021-02-19
CN112375957B true CN112375957B (zh) 2021-10-22

Family

ID=74583394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011262775.8A Active CN112375957B (zh) 2020-11-12 2020-11-12 一种镍铁基耐蚀合金及其制备方法

Country Status (1)

Country Link
CN (1) CN112375957B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130849A (zh) * 2006-08-24 2008-02-27 宝山钢铁股份有限公司 抗精蒽菲残油腐蚀的奥氏体不锈钢
CN109182897A (zh) * 2018-08-24 2019-01-11 东北大学 一种改善超级铁素体不锈钢耐硫酸腐蚀性能的方法
CN109778048A (zh) * 2019-01-30 2019-05-21 江苏飞跃机泵集团有限公司 一种高硬度、耐蚀的Ni-Cr-Fe合金及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130849A (zh) * 2006-08-24 2008-02-27 宝山钢铁股份有限公司 抗精蒽菲残油腐蚀的奥氏体不锈钢
CN109182897A (zh) * 2018-08-24 2019-01-11 东北大学 一种改善超级铁素体不锈钢耐硫酸腐蚀性能的方法
CN109778048A (zh) * 2019-01-30 2019-05-21 江苏飞跃机泵集团有限公司 一种高硬度、耐蚀的Ni-Cr-Fe合金及其制备方法

Also Published As

Publication number Publication date
CN112375957A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
EP3414353B1 (en) Hypereutectic white iron alloys comprising chromium, boron and nitrogen and articles made therefrom
CN109778048B (zh) 一种高硬度、耐蚀的Ni-Cr-Fe合金及其制备方法
CN110894582B (zh) 一种高强度和高导热蠕墨铸铁及其制备方法
CN102041450A (zh) 一种铁素体耐热钢及其制造方法
CN102691002A (zh) 一种核电用可焊碳钢无缝管及其生产方法
CN112877611A (zh) 一种奥氏体不锈钢、细晶大规格棒材、其制备方法及应用
CN115637393A (zh) 一种链篦机链节用奥氏体耐热钢及其制备方法
WO2016184008A1 (zh) 粉末冶金耐磨损耐腐蚀合金
CN113897541B (zh) 一种高铬耐磨钢球及其铸造工艺
CN112375957B (zh) 一种镍铁基耐蚀合金及其制备方法
CN112605557A (zh) Hgh1131焊丝及其制备方法
CN106001514A (zh) 一种高硅奥氏体不锈钢铸件的铸造工艺
CN101130849A (zh) 抗精蒽菲残油腐蚀的奥氏体不锈钢
CN111304555B (zh) 原位内生析出陶瓷颗粒增强Cr-Mn-Ni-C-N奥氏体耐热钢及其制备方法与应用
CN107287496A (zh) 基于奥氏体基体的高强韧球墨铸铁及其制造工艺
CN112410675A (zh) 稀土双相耐蚀铸造不锈钢及其制造方法
CN116219270A (zh) 一种传感器弹性体用的高强度沉淀硬化不锈钢及制备方法
CN111763893A (zh) 一种耐腐蚀复合金属材料及其制备方法
CN115961216B (zh) 海底输油输气管道及其制备方法
JP3779043B2 (ja) 二相ステンレス鋼
CN112941422B (zh) 一种耐co2腐蚀用钢板及制备方法
CN116288064B (zh) 一种超高强耐腐蚀低温海工钢板及其制造方法
JP2020509225A (ja) 極低温用高強度オーステナイト系耐食性溶接構造用鋼材および製造方法
CN108456807A (zh) 一种耐高温熔融烧碱腐蚀的镍材
CN1307141A (zh) 耐浓、稀硝酸腐蚀的高硅奥氏体不锈钢

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant