CN112342394B - 一种不全萃的电池回收方法 - Google Patents

一种不全萃的电池回收方法 Download PDF

Info

Publication number
CN112342394B
CN112342394B CN202011179859.5A CN202011179859A CN112342394B CN 112342394 B CN112342394 B CN 112342394B CN 202011179859 A CN202011179859 A CN 202011179859A CN 112342394 B CN112342394 B CN 112342394B
Authority
CN
China
Prior art keywords
introducing
heating
gas
absorption liquid
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011179859.5A
Other languages
English (en)
Other versions
CN112342394A (zh
Inventor
余海军
彭挺
谢英豪
张学梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Brunp Recycling Technology Co Ltd
Guangdong Brunp Recycling Technology Co Ltd
Hunan Bangpu Automobile Circulation Co Ltd
Original Assignee
Hunan Brunp Recycling Technology Co Ltd
Guangdong Brunp Recycling Technology Co Ltd
Hunan Bangpu Automobile Circulation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Brunp Recycling Technology Co Ltd, Guangdong Brunp Recycling Technology Co Ltd, Hunan Bangpu Automobile Circulation Co Ltd filed Critical Hunan Brunp Recycling Technology Co Ltd
Priority to CN202011179859.5A priority Critical patent/CN112342394B/zh
Publication of CN112342394A publication Critical patent/CN112342394A/zh
Priority to US18/246,671 priority patent/US11920213B2/en
Priority to EP21884384.5A priority patent/EP4206340A4/en
Priority to PCT/CN2021/091611 priority patent/WO2022088641A1/zh
Application granted granted Critical
Publication of CN112342394B publication Critical patent/CN112342394B/zh
Priority to CL2023000861A priority patent/CL2023000861A1/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/08Chloridising roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/383Tervalent phosphorus oxyacids, esters thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3842Phosphinic acid, e.g. H2P(O)(OH)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于资源回收技术领域,公开了一种不全萃的电池回收方法,包括如下步骤:将预处理气通入装有废旧电池粉料的设备中,出气口依次通入吸收液A和吸收液B;升温,通入预处理气,降温,通入反应气,升温,通入反应气,再通入预处理气,降温,关闭;将萃取剂加入吸收液A中混合,取有机相A,加入反萃剂,取水相A;调pH至酸性,再加入萃取剂,取有机相B,加入反萃剂,即得富集LiMnNiCo的原液;预处理气为氮气、氦气、氩气或氖气中的至少一种;反应气为氯气、氟气或溴气;吸收液A为酸液;吸收液B为碱液。本发明区别于废旧电池全萃回收工艺,采用不全萃的回收方法,先进行氯化挥发反应,再采取萃取的方式,萃取所需金属元素LiMnNiCo,萃取率为99.86‑99.98%。

Description

一种不全萃的电池回收方法
技术领域
本发明属于资源回收技术领域,特别是涉及一种不全萃的电池回收方法。
背景技术
在新能源汽车政策的大力推动下,新能源汽车产量逐年递增,已经形成了非常大的规模。与此同时,报废新能源汽车的报废量也逐年递增,而报废新能源汽车上搭载的动力电池是一项非常可观的资源是目前回收的重点,尤其以镍钴锰三元材料电池的回收价值最大。镍、钴、锰、锂四个元素为三元电池材料的主要回收对象,通过开发回收工艺处理锂离子电池中的镍、钴、锰、锂元素,提高元素回收率,有利于资源的定向循环和节能减排。
传统回收废旧动力电池正极材料的镍钴锰元素是通过萃取的方法,然而,传统的萃取法分离后的溶液产物杂质种类多、含量高,并且回收过程操作复杂,能耗、成本较高,不利于实现废旧电池的经济可持续回收处理,技术较落后,局限性明显。
发明内容
本发明的目的在于提供一种不全萃的电池回收方法,区别于废旧电池全萃回收工艺,采用不全萃的回收方法,先进行氯化挥发反应,然后再采取萃取的方式,萃取所需金属元素Li、Mn、Ni、Co,萃取率为99.86-99.98%。
为实现上述目的,本发明采用以下技术方案:
一种不全萃的电池回收方法,包括如下步骤:
(1)将废旧电池依次经过放电、破碎、热解,得到废旧电池粉料;
(2)将预处理气通入装有废旧电池粉料的设备中,设备的出气口依次通入吸收液A和吸收液B;
(3)升温,继续通入预处理气,降温,通入反应气,升温,通入反应气,再通入预处理气,降温,关闭预处理气;
(4)将萃取剂加入吸收液A中混合,分液,取有机相A,加入反萃剂,分液,取水相A;
(5)将水相A调pH至酸性,再加入萃取剂,分液,取有机相B,加入反萃剂,分液,即得富集Li、Mn、Ni、Co的原液;所述预处理气为氮气、氦气、氩气或氖气中的至少一种;所述反应气为氯气、氟气或溴气中的一种;所述吸收液A为酸液;所述吸收液B为碱液。
优选地,步骤(2)中,所述设备为管式炉。
优选地,步骤(2)中,所述通入预处理气的流速为10-30mL/min,温度为20℃-40℃。
优选地,步骤(2)中,所述酸液为HCl。(使用其他酸会产生杂质,比如硫酸,会引入硫酸根)
更优选地,所述吸收液A的浓度为0.1-0.3mol/L。
优选地,步骤(2)中,所述碱液为NaOH或KOH溶液。
更优选地,所述吸收液B的浓度为0.5-1mol/L。
优选地,所述步骤(3)的具体操作为:以3-5℃/min的升温速度升温至300℃-400℃,保持流速继续通入预处理气20-60min,保持气流量,降温至20℃-40℃后,以流速10-50mL/min通入反应气,以3-5℃/min的升温速度升温至200℃-240℃,保持温度及反应气通入1-3h,以3-5℃/min的升温速度升温至280℃-320℃,保持温度及反应气通入2-3h,再以3-5℃/min的升温速度升温至360℃-380℃,保持温度及反应气通入1-3h,最后以3-5℃/min的升温速度升温至450℃-470℃,保持温度及反应气通入2-4h,关闭反应气,通入预处理气,温度降至20℃-35℃。
优选地,步骤(4)中,所述萃取剂为[(CH3)3C(CH2)5CH(CH3)CH2]HPO2(P507)、[CH3(CH2)4CH(CH3)CH2]2HPO2(P204)中的至少一种。
优选地,步骤(4)中,步骤(4)中,所述反萃剂为二乙三胺五乙酸(DTPA)、三乙四胺六乙酸(TTHA)中的至少一种。
优选地,步骤(4)中,所述吸收液A和萃取剂的体积比为1:(1-5)。
优选地,步骤(4)中,所述有机相A和反萃剂的体积比为1:(1-5)。
优选地,步骤(5)中,所述有机相B和反萃剂的体积比为1:(1-5)。
优选地,步骤(5)中,所述将水相A调pH至酸性所使用的溶液为HCl,所述将水相A调pH至酸性是调pH至2.8-6.2。
更优选地,所述HCl的浓度为0.1-1mol/L。
优选地,步骤(5)中,还包括对原液进行调pH至酸性,所使用的溶液为HCl,所述将水相A调pH至酸性是调pH至4.2-6.8。
优选地,步骤(5)中,还包括对原液进行浓缩,结晶,得到前驱体材料,再烧结成三元正极材料。
本发明还提供上述的方法在回收废旧电池中锂镍钴锰金属的作用。
本发明的优点:
1、本发明区别于废旧电池全萃回收工艺,采用不全萃的回收方法,先进行氯化挥发反应,然后再采取萃取的方式,萃取所需金属元素Li、Mn、Ni、Co,萃取率为99.86-99.98%。
2、本发明针对废旧电池进行废料的预处理,能达到非常高的被回收元素与非被回收元素的分离,分离效率为99.95%。
3、本发明能高效回收电池废料中的Li、Mn、Ni、Co元素,杂质含量控制得较低,杂质含量仅为0.06%,可再次利用其制备成三元正极材料。
具体实施方式
为了对本发明进行深入的理解,下面结合实例对本发明优选实验方案进行描述,以进一步的说明本发明的特点和优点,任何不偏离本发明主旨的变化或者改变能够为本领域的技术人员理解,本发明的保护范围由所属权利要求范围确定。
实施例1
一种不全萃的电池回收方法,包括以下具体步骤:
(1)将废旧电池依次经过放电、粗破碎、热解、细破碎,得到废旧电池粉料;
(2)将废旧电池粉料置于密闭的管式炉中,20℃下以流速10mL/min通入规格为99.999%的氮气10min,出气口连接尾气吸收装置A,尾气吸收装置A内置有吸收液为0.1mol/L的HCl溶液,尾气吸收装置A连接有尾气吸收装置B,尾气吸收装置B内置有吸收液为0.5mol/L的NaOH溶液;
(3)以5℃/min的升温速度升温至300℃,保持流速继续通入预处理气20min,保持气流量,待温度将至20℃,以流速10mL/min通入规格为99.999%的氯气,以5℃/min的升温速度升温至200℃,保持温度及氯气通入1h,以5℃/min的升温速度升温至280℃,保持温度及氯气通入2h,以5℃/min的升温速度升温至360℃,保持温度及氯气通入1h,最后,以5℃/min的升温速度升温至450℃,保持温度及氯气通入2h,反应完毕,关闭氯气,通入预处理气,温度降至环境温度;
(4)温度降至环境温度后,关闭预处理气,将富集Li、Mn、Ni、Co的吸收液A置于萃取装置中,按体积比1:1加入([(CH3)3C(CH2)5CH(CH3)CH2]HPO2),震荡15min,分液,有机相A按体积比1:1加入二乙三胺五乙酸(DTPA),震荡15min,分液,得水相A,
(5)水相A用0.1mol/L的HCl调pH值至2.8按体积比1:1加入([CH3(CH2)4CH(CH3)CH2]2HPO2),震荡15min,分液,有机相B按体积比1:1加入三乙四胺六乙酸(TTHA),震荡15min,分液,水相B用0.1mol/L的HCl调pH值至4.2,水相B为富集Li、Mn、Ni、Co的原液,浓缩,结晶,得到前驱体材料,再烧结成三元正极材料。
实施例2
一种不全萃的电池回收方法,包括以下具体步骤:
(1)将废旧电池依次经过放电、粗破碎、热解、细破碎,得到废旧电池粉料。
(2)将废旧电池粉料置于密闭的管式炉中,30℃下以流速20mL/min通入规格为99.999%的氦气20min,出气口连接尾气吸收装置A,尾气吸收装置A内置有吸收液为0.2mol/L的HCl溶液,尾气吸收装置A连接有尾气吸收装置B,尾气吸收装置B内置有吸收液为0.7mol/L的KOH溶液;
(3)以5℃/min的升温速度升温至350℃,保持流速继续通入预处理气40min,保持气流量,降温至30℃后,以流速30mL/min通入规格为99.999%的氯气,以5℃/min的升温速度升温至220℃,保持温度及氯气通入2h,再以5℃/min的升温速度升温至300℃,保持温度及氯气通入2.5h,以5℃/min的升温速度升温至370℃,保持温度及氯气通入2h,最后,以5℃/min的升温速度升温至460℃,保持温度及氯气通入3h,关闭氯气,通入预处理气,温度降至环境温度;
(4)温度降至环境温度后,关闭预处理气,将富集Li、Mn、Ni、Co的吸收液A置于萃取装置中,按体积比1:1加入([(CH3)3C(CH2)5CH(CH3)CH2]HPO2),震荡15min,分液,有机相A按体积比1:1加入二乙三胺五乙酸(DTPA),震荡15min,分液,得水相A;
(5)水相A用0.1mol/L的HCl调pH值至2.8按体积比1:1加入([CH3(CH2)4CH(CH3)CH2]2HPO2),震荡15min,分液,有机相B按体积比1:1加入三乙四胺六乙酸(TTHA),震荡15min,分液,水相B用0.1mol/L的HCl调pH值至4.2,水相B为富集Li、Mn、Ni、Co的原液,浓缩,结晶,得到前驱体材料,再烧结成三元正极材料。
实施例3
一种不全萃的电池回收方法,包括以下具体步骤:
(1)将废旧电池依次经过放电、粗破碎、热解、细破碎,得到废旧电池粉料;
(2)将废旧电池粉料置于管式炉中,密闭,40℃下以流速30mL/min通入规格为99.999%的氩气30min,出气口连接尾气吸收装置A,尾气吸收装置A内置有吸收液为0.3mol/L的HCl溶液,尾气吸收装置A连接有尾气吸收装置B,尾气吸收装置B内置有吸收液为1mol/L的KOH溶液;
(3)以5℃/min的升温速度升温至400℃,保持流速继续通入预处理气60min,保持气流量,待温度将至40℃,以流速50mL/min通入规格为99.999%的氯气,以5℃/min的升温速度升温至240℃,保持温度及氯气通3h,然后,以5℃/min的升温速度升温至320℃,保持温度及氯气通入3h,接着,以5℃/min的升温速度升温至380℃,保持温度及氯气通入3h,最后,以5℃/min的升温速度升温至470℃,保持温度及氯气通入4h,关闭氯气,通入预处理气,温度降至环境温度;
(4)温度降至环境温度后,关闭预处理气,将富集Li、Mn、Ni、Co的吸收液A置于萃取装置中,按体积比1:5加入(CH3)3C(CH2)5CH(CH3)CH2]HPO2,震荡25min,分液,有机相A按体积比1:5加入二乙三胺五乙酸(DTPA),震荡25min,分液,得水相A;
(5)水相A用0.1mol/L的HCl调pH值至6.2按体积比1:3加入[CH3(CH2)4CH(CH3)CH2]2HPO2,震荡15min,分液,有机相B按体积比1:5加入三乙四胺六乙酸(TTHA),震荡25min,分液,水相B用0.1mol/L的HCl调pH值至6.8,水相B为富集Li、Mn、Ni、Co的原液,浓缩,结晶,得到前驱体材料,再烧结成三元正极材料。
对比例
一种电池回收方法,包括以下步骤:
(1)通过将废旧锂离子电池放电、破碎、热解、粉碎成电池废料;
(2)通过硫酸浸出,加铜除铁、加碳酸钠除铁铝;
(3)过滤,滤液用P204萃取,有机相用硫酸反萃,加入碳酸钠沉锂;
(4)萃余液用P507萃取剂萃取镍,水相得Ni溶液,有机相用盐酸反萃,得Co溶液。
结果对比:
表1为实施例1、2、3与对比例1得到的原液锂、镍、钴、锰四元素的回收率的结果。
表1 原液的锂、镍、钴、锰四元素的回收率(%)
主元素 实施例1 实施例2 实施例3 对比例
Li量 99.87 99.93 99.89 89.83
Ni量 99.91 99.95 99.92 89.74
Co量 99.85 99.98 99.94 89.64
Mn量 99.90 99.91 99.88 89.34
由表1可知,实施例1-3中的锂、镍、钴、锰四元素的回收率均高于对比例,并且实施例2的回收效果最好。
表2为实施例1、2、3与对比例1得到的原液由ICP-OES测得的杂质元素浓度的结果。
表2 原液的杂质含量(%)
杂质元素 实施例1 实施例2 实施例3 对比例
Fe 0.0008 0.0005 0.0006 0.05
Al 0.006 0.001 0.007 0.01
Cu 0.001 0.0008 0.001 0.004
Zn 0.0009 0.0007 0.0008 0.008
Pb 0.0009 0.0007 0.0008 0.0008
Cd 0.0003 0.0002 0.0003 0.006
K 0.009 0.008 0.008 0.008
Na 0.004 0.003 0.003 0.09
Ca 0.008 0.005 0.006 0.03
Mg 0.005 0.003 0.004 0.03
不溶物 0.007 0.003 0.005 0.01
由表2可知,实施例1-3的原液的杂质含量明显较对比例1的萃取法得到的原液的杂质含量低,说明利用本发明不全萃的电池回收方法回收金属效果更好。
表3为实施例1、2、3与对比例1得到的1吨同浓度原液的能耗、用水量及萃取剂的用量。
表3 产生1吨原液消耗资源量
Figure BDA0002749806540000071
由表3可知,实施例1、2、3的能耗量和萃取剂用量明显较对比例1的萃取法低,因此使用本发明的不全萃的电池回收方法回收金属,成本低,利润高。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、简化均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种不全萃的电池回收方法,其特征在于,包括如下步骤:
(1)将废旧电池依次经过放电、破碎、热解,得到废旧电池粉料;
(2)将预处理气通入装有废旧电池粉料的设备中,设备的出气口依次通入吸收液A和吸收液B;
(3)升温,继续通入预处理气,降温,通入反应气,升温,通入反应气,再通入预处理气,降温,关闭预处理气;
(4)将萃取剂加入吸收液A中混合,分液,取有机相A,加入反萃剂,分液,取水相A;
(5)将水相A调pH至酸性,再加入萃取剂,分液,取有机相B,加入反萃剂,分液,即得富集Li、Mn、Ni、Co的原液;所述预处理气为氮气、氦气、氩气或氖气中的至少一种;所述反应气为氯气、氟气或溴气中的一种;所述吸收液A为酸液,所述酸液为HCl;所述吸收液B为碱液,所述碱液为NaOH或KOH溶液;所述萃取剂为[(CH3)3C(CH2)5CH(CH3)CH2]HPO2、[CH3(CH2)4CH(CH3)CH2]2HPO2中的至少一种;所述反萃剂为二乙三胺五乙酸、三乙四胺六乙酸中的至少一种。
2.根据权利要求1所述的电池回收方法,其特征在于,步骤(2)中,所述通入预处理气的流速为10-30mL/min,温度为20℃-40℃。
3.根据权利要求1所述的电池回收方法,其特征在于,所述步骤(3)的具体操作为:以3-5℃/min的升温速度升温至300℃-400℃,保持流速继续通入预处理气20-60min,保持气流量,降温至20℃-40℃后,以流速10-50mL/min通入反应气,以3-5℃/min的升温速度升温至200℃-240℃,保持温度及反应气通入1-3h,以3-5℃/min的升温速度升温至280℃-320℃,保持温度及反应气通入2-3h,再以3-5℃/min的升温速度升温至360℃-380℃,保持温度及反应气通入1-3h,最后以3-5℃/min的升温速度升温至450℃-470℃,保持温度及反应气通入2-4h,关闭反应气,通入预处理气,温度降至20℃-35℃。
4.根据权利要求1所述的电池回收方法,其特征在于,步骤(4)中,所述吸收液A和萃取剂的体积比为1:(1-5);步骤(4)中,所述有机相A和反萃剂的体积比为1:(1-5)。
5.根据权利要求1所述的电池回收方法,其特征在于,步骤(5)中,所述有机相B和反萃剂的体积比为1:(1-5)。
6.权利要求1-5任一项所述的电池回收方法在金属回收中的应用。
CN202011179859.5A 2020-10-29 2020-10-29 一种不全萃的电池回收方法 Active CN112342394B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202011179859.5A CN112342394B (zh) 2020-10-29 2020-10-29 一种不全萃的电池回收方法
US18/246,671 US11920213B2 (en) 2020-10-29 2021-04-30 Method for recycling battery by incomplete extraction
EP21884384.5A EP4206340A4 (en) 2020-10-29 2021-04-30 NON-TOTAL EXTRACTION BATTERY RECOVERY METHOD
PCT/CN2021/091611 WO2022088641A1 (zh) 2020-10-29 2021-04-30 一种不全萃的电池回收方法
CL2023000861A CL2023000861A1 (es) 2020-10-29 2023-03-23 Método de recuperación de baterías sin extracción completa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011179859.5A CN112342394B (zh) 2020-10-29 2020-10-29 一种不全萃的电池回收方法

Publications (2)

Publication Number Publication Date
CN112342394A CN112342394A (zh) 2021-02-09
CN112342394B true CN112342394B (zh) 2023-01-13

Family

ID=74356510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011179859.5A Active CN112342394B (zh) 2020-10-29 2020-10-29 一种不全萃的电池回收方法

Country Status (5)

Country Link
US (1) US11920213B2 (zh)
EP (1) EP4206340A4 (zh)
CN (1) CN112342394B (zh)
CL (1) CL2023000861A1 (zh)
WO (1) WO2022088641A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342394B (zh) * 2020-10-29 2023-01-13 广东邦普循环科技有限公司 一种不全萃的电池回收方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042189A (ja) 2003-07-25 2005-02-17 Ise Chemicals Corp コバルトの回収方法
CN103060567B (zh) * 2012-12-21 2014-04-16 中南大学 一种处理废旧锂离子电池正极片提取有价金属的方法
CN106848470B (zh) * 2017-03-08 2019-07-02 中南大学 一种从废旧镍钴锰三元锂离子电池中回收、制备三元正极材料的方法
CN107959080A (zh) 2018-01-05 2018-04-24 广东省稀有金属研究所 一种废旧锂离子电池材料回收有价元素的预处理方法
CN110616331B (zh) * 2019-10-16 2021-11-30 衢州华友资源再生科技有限公司 一种动力锂离子电池全金属回收循环利用的方法
AU2020100054A4 (en) 2020-01-10 2020-02-20 Zhao, Tianyi Mr A combined process for the recovery of valuable metals from waste ternary cathode materials based on chlorination roasting at medium temperature and water leaching
CN111187911A (zh) 2020-01-15 2020-05-22 中国科学院过程工程研究所 一种利用功能化离子液体选择性萃取废旧三元电池中锂的方法
CN111799524B (zh) 2020-07-13 2023-12-26 中钢集团南京新材料研究院有限公司 一种退役锂电池正极片制备五元高熵锂电材料前驱体的方法
CN112342394B (zh) 2020-10-29 2023-01-13 广东邦普循环科技有限公司 一种不全萃的电池回收方法

Also Published As

Publication number Publication date
EP4206340A1 (en) 2023-07-05
CN112342394A (zh) 2021-02-09
CL2023000861A1 (es) 2023-09-08
US20230272503A1 (en) 2023-08-31
WO2022088641A1 (zh) 2022-05-05
EP4206340A4 (en) 2023-09-13
US11920213B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
CN111206148B (zh) 一种利用废旧三元锂电池回收制备三元正极材料的方法
CN108878866B (zh) 利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法
CN111825110A (zh) 废旧锂离子电池正极材料的回收利用方法
CN108832215A (zh) 一种选择性回收锂离子电池正极材料的方法
CN108963371B (zh) 一种从废旧锂离子电池中回收有价金属的方法
CN106505225A (zh) 一种从锂废旧电池中回收锂制备电池级碳酸锂的方法
CN113772649A (zh) 一种废旧磷酸铁锂正极粉回收再生制备电池级磷酸铁的方法
CN109666799A (zh) 从废旧锂电池材料中分离回收有价金属的方法及其应用
WO2023035636A1 (zh) 一种由低冰镍制备硫酸镍的方法
CN102244309A (zh) 一种从电动汽车锂系动力电池中回收锂的方法
CN111573662A (zh) 一种利用回收石墨制备高容量负极材料的方法
CN107046154B (zh) 一种废三元锂电池强化还原浸出的方法
CN103555954A (zh) 从废旧镍氢电池中回收稀土元素的方法
CN109439914A (zh) 一种从废旧锂离子电池正极材料浸出液中选择性分离锂的方法
CN111987381A (zh) 从废旧锂离子电池中浸出有价金属同步脱氟的方法
CN106229577A (zh) 一种废旧镍氢电池正负极物料混合浸出的方法
CN113122725A (zh) 一种提升废旧锂电池金属回收率及纯度的方法
CN110468281A (zh) 一种废旧钴酸锂电池中有价金属分离回收方法
CN111180819B (zh) 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法
CN112342394B (zh) 一种不全萃的电池回收方法
CN113846219B (zh) 一种从废旧锂电池中提取锂的方法
CN111187911A (zh) 一种利用功能化离子液体选择性萃取废旧三元电池中锂的方法
CN111041218A (zh) 一种废旧锂离子电池中金属综合提取方法
WO2023077788A1 (zh) 一种锂离子电池正极材料中锂的回收方法
CN115571925B (zh) 一种废旧锂电池回收制备碳酸锂和三元前驱体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant