CN112299489B - 一种超小氧化铁纳米颗粒及其制备方法及应用 - Google Patents

一种超小氧化铁纳米颗粒及其制备方法及应用 Download PDF

Info

Publication number
CN112299489B
CN112299489B CN202011071340.5A CN202011071340A CN112299489B CN 112299489 B CN112299489 B CN 112299489B CN 202011071340 A CN202011071340 A CN 202011071340A CN 112299489 B CN112299489 B CN 112299489B
Authority
CN
China
Prior art keywords
ultra
iron oxide
metal
carbonate
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011071340.5A
Other languages
English (en)
Other versions
CN112299489A (zh
Inventor
樊海明
苗玉清
张欢
彭明丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Supermag Nano Biotechnology Co ltd
Original Assignee
Xi'an Supermag Nano Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Supermag Nano Biotechnology Co ltd filed Critical Xi'an Supermag Nano Biotechnology Co ltd
Priority to CN202011071340.5A priority Critical patent/CN112299489B/zh
Publication of CN112299489A publication Critical patent/CN112299489A/zh
Application granted granted Critical
Publication of CN112299489B publication Critical patent/CN112299489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/183Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an inorganic material or being composed of an inorganic material entrapping the MRI-active nucleus, e.g. silica core doped with a MRI-active nucleus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0063Mixed oxides or hydroxides containing zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases

Abstract

本发明公开了一种超小氧化铁纳米颗粒,所述超小磁性氧化铁纳米颗粒为由内部自旋有序的铁磁核及表面自旋无序的顺磁壳层组成的MxFe3‑xO4@MxNyFe3‑x‑yO4核‑壳结构且组分可调。本发明还提供了上述超小氧化铁纳米颗粒的制备方法,将两种金属前驱体、表面活性剂按照比例溶于有机溶剂中形成均匀的反应体系,在惰性气体氛围内加热到200‑280℃后,冷却降温,离心洗涤分散于四氢呋喃溶液中,之后加入金属盐溶液,惰性气体氛围内加热到50‑70℃后,离心洗涤即可。本发明属于磁性氧化铁技术领域,本发明提供的超小氧化铁纳米颗粒可同时调控铁磁内核以及顺磁表面的组分,可实现弛豫率的协同增强,可更好的应用于磁共振成像领域。

Description

一种超小氧化铁纳米颗粒及其制备方法及应用
技术领域
本发明属于磁性氧化铁技术领域,具体是指一种超小氧化铁纳米颗粒及其制备方法及应用。
背景技术
近年来,超小磁性氧化铁纳米颗粒由于其优异的造影性能,良好的生物安全性,有望取代现有临床钆基造影剂成为新一代磁共振T1造影剂。为了制备高度单分散,造影性能优异的磁性氧化铁纳米颗粒,韩国首尔大学Taeghwan Hyeon课题组发表的J.Am.Chem.Soc.2011,133,12624,中国发明专利(CN103153348B);中国科学院化学所高明远课题组发表的Nanotechnology.2011,22,245604;Li,Z.Adv.Funct.Mater.2012,22,2387;Adv.Heathcare.Mater.2013,2,958.等文件都公开报道了制备尺寸形貌均匀的超小氧化铁、铁氧体纳米颗粒。
虽然通过以上方法制备的超小氧化铁纳米颗粒尺寸形貌均一,可以作为磁共振成像T1造影剂,但是这些超小氧化铁纳米颗粒作为磁共振成像T1造影剂依然存在着成像灵敏度不足的问题。为提高超小氧化铁纳米颗粒的T1造影性能,有报道将含钆的物质掺杂到超小氧化铁内部(ACS Nano.2013,7,3287)从而诱导内部产生自旋倾斜效应,提高其T1造影性能,但由于钆从纳米颗粒中的泄露容易造成患者肾源***纤维化甚至肾衰竭,并在体内长期滞留在中枢神经***,对人体构成潜在风险。因此,也有人采用其他金属离子掺杂的报道,如利用Zn2+的掺杂,提高氧化铁纳米颗粒的饱和磁化强度(Angew Chem Int Ed,2009,48,1234;Chem Commun,2008,19,2224),进而提高提高其造影性能,如其中15nm的Zn0.4Fe2.6O4纳米颗粒在4.5T下的r2值高达860mM-1s-1,是Fe3O4纳米颗粒的2.5倍。最近,厦门大学高锦豪课题组通过Mn2+掺杂增加可提高氧化铁纳米颗粒T1弛豫率,报道了不同形貌,不同大小纳米颗粒作为磁共振T1造影剂(J Mater Chem B,2018,6,401,Nanoscale,2014,6,10404)。锰铁氧体立方块的r1值在0.5T下为57.8mM-1s-1,是相同尺寸的氧化铁纳米颗粒3.5倍,以上研究表明均匀掺杂金属离子的方法能够提高超小氧化铁纳米颗粒的T1造影性能。
为了进一步提高超小氧化铁纳米颗粒的T1造影性能,本发明提供一种在超小氧化铁纳米颗粒均匀掺杂的基础上,调控超小氧化铁纳米颗粒的顺磁表面组分,进一步提高超小氧化铁纳米颗粒成像弛豫率,实现超小氧化铁纳米颗粒中核壳的组分协同增强效果的方法,并将其更好的应用于磁共振成像领域。本发明提供的可调控铁磁内核及顺磁表面组分的超小氧化铁纳米颗粒,调控铁磁内核的组分可调节超小氧化铁纳米颗粒的饱和磁化强度(Ms),从而调控弛豫率外球模型的贡献;调控顺磁表面的组分可调节超小氧化铁纳米颗粒与水分子的交换速率,从而调控弛豫率内球模型的贡献。这种同时调节内外球模型贡献的策略可以实现弛豫率的协同增强。
发明内容
为了解决上述难题,本发明提供了一种在超小氧化铁纳米颗粒均匀掺杂的基础上,调控超小氧化铁纳米颗粒的顺磁表面组分,来进一步提高超小氧化铁纳米颗粒成像弛豫率的方法,并将其应用于磁共振成像。
为了实现上述功能,本发明采取的技术方案如下:一种超小氧化铁纳米颗粒,所述超小磁性氧化铁纳米颗粒为由内部自旋有序的铁磁内核及表面自旋无序的顺磁壳层组成的MxFe3-xO4@MxNyFe3-x-yO4核-壳结构且铁磁内核及顺磁壳层的组分可调,所述M为Fe、Co、Ni、Mn、Cu、Zn、Mg、Ca中的一种,x值为0-1.5,所述N为稀土金属、第四周期过渡金属和后过渡金属中的一种,y值为0-0.5。
进一步地,所述超小磁性氧化铁纳米颗粒粒径为2-6nm。
为了实现上述目的,本发明还提供了超小氧化铁纳米颗粒的制备方法,包括以下步骤:
S1、在50ml三口烧瓶中加入铁的前驱体、另一种金属M前驱体、表面活性剂和有机溶剂,升温至200-280℃,保温0-1h,将所得产物采用离心-分散的方式进行3-5次清洗,收集产物分散于正己烷中。
S2、取一定量S1中所得产物,一定量的金属N盐溶液,加入一定体积的四氢呋喃溶液中,通入氩气,50-70℃保持10-60min。
S3、将S2中产物离心洗涤,保存。
进一步地,S1中所述铁的前驱体包括含铁有机配合物和含铁的碳酸盐,S1中所述另一种金属M前驱体包括金属有机配合物和金属碳酸盐;
其中,所述含铁有机配合物包括:芥酸铁、乙酰丙酮铁Fe(acac)3、油酸铁Fe(OA)3、羰基合铁Fe(CO)5、亚硝基羟基苯胺合铁FeCup3;所述铁的碳酸盐为FeCO3
其中,所述另一种金属M前驱体包括:乙酰丙酮铁Fe(acac)3、油酸铁Fe(OA)3、五羰基合铁Fe(CO)5、亚硝基羟基苯胺合铁FeCup3、Co2(CO)8、Co(acac)2、Ni(OOCCH3)2、Ni(acac)2、油酸稀土配合物、乙酰丙酮稀土配合物;所述金属碳酸盐包括碳酸锌、碳酸亚铁、碳酸锰、碳酸钴、碳酸镍、碳酸镁和碳酸铜。
进一步地,S1中所述表面活性剂包括碳链长度介于6-25之间的有机酸、碳链长度介于6-25之间的有机胺和碳链长度介于6-25之间的有机醇,S1中所述有机溶剂包括十八烯、苄醚、十六碳烯、辛醚和三辛胺。
进一步地,S2中所述金属盐溶液包括氯化锰、氯化钆、氯化铜、氯化镍、氯化钴、氯化镁、硝酸钆和硝酸镁的金属盐溶液。
本发明提供了通过上述方法合成的超小氧化铁纳米颗粒的应用,可以应用于磁共振成像、细胞长期跟踪以及磁纳米颗粒成像领域。
与现有技术相比,本发明还提供了核壳结构的超小氧化铁纳米颗粒制备方法,首先通过热分解法实现金属离子在超小磁性氧化铁铁磁内核的掺杂,然后通过温和的阳离子交换反应实现超小磁性氧化铁顺磁表面组分的调控;本发明提供的可同时调控铁磁内核以及顺磁表面的组分的超小氧化铁纳米颗粒,可实现弛豫率的协同增强,因而能够更好的应用于磁共振成像领域。
附图说明
图1为本发明实施例1的超小磁性氧化铁纳米颗粒透射电镜(TEM)图;
图2为本发明实施例1的超小磁性氧化铁纳米颗粒金属元素分布图;
图3为本发明实施例1和实施例3的超小磁性氧化铁纳米颗粒T1弛豫率图;
图4为本发明实施例1和实施例3的超小磁性氧化铁纳米颗粒弛豫速率r1结果柱状图。
具体实施方式
下面结合具体实施对本发明的技术方案进行进一步详细地说明,本发明所述的技术特征没有进行详细描述的部分均为采用的现有技术。
结合以下实施例,对本发明做进一步详细说明。
实施例1
超小氧化铁纳米颗粒(Zn0.4Fe2.6O4@Zn0.4Mn0.2Fe2.4O4)的制备
(1)称量2.14g芥酸铁,0.09g碳酸锌,3.22g油醇,加入10mL苄醚中,置于50ml三口烧瓶内,270℃保温30min,至溶液呈澄清透亮黑褐色,反应结束;
(2)降温至50℃以下,采用氯仿分散-离心的方式对产物进行三次清洗,最终产物分散于10mL正己烷中;
(3)取1ml(2)中所得产物,5mg MnCl2,加入5ml THF,在氩气保护下升温至50℃,保温30min;
(4)采用氯仿分散-离心的方式对产物进行三次清洗,最终产物分散于10mL正己烷中。
对所制备的超小氧化铁纳米颗粒(Zn0.4Fe2.6O4@Zn0.4Mn0.2Fe2.4O4)进行一系列表征,具体是将所制备的超小氧化铁纳米颗粒分散在正己烷中,取2μL分散有纳米颗粒的正己烷溶液滴在镀有碳膜的Cu网上,自然干燥后做表征。图1为透射电镜图,从图1中可以看出,超小氧化铁纳米颗粒大小形貌均一,具有单分散性,尺寸在3.8nm左右;图2为金属元素分布图,从图2中可以看出超小氧化铁纳米颗粒含有Mn、Fe和Zn元素。
实施例2
超小氧化铁纳米颗粒(Zn0.9Fe2.1O4@Zn0.9Gd0.2Fe1.9O4)的制备
(1)称量2.14g芥酸铁,0.3g碳酸锌,3.22g油醇,加入10mL苄醚中,置于50ml三口烧瓶内,270℃保温30min,至溶液呈澄清透亮黑褐色,反应结束;
(2)降温至50℃以下,采用氯仿分散-离心的方式对产物进行三次清洗,最终产物分散于10mL正己烷中;
(3)取1ml(2)中所得产物,8mg Gd(NO)3,加入5ml THF,在氩气保护下升温至60℃,保温30min;
(4)采用氯仿分散-离心的方式对产物进行三次清洗,最终产物分散于10mL正己烷中。
实施例3
超小氧化铁纳米颗粒(MnFe2O4@MnCu0.1Fe1.9O4)的制备
(1)称量1.07g芥酸铁,1.1g油酸锰,3.22g油醇,加入10mL苄醚中,置于50ml三口烧瓶内,250℃保温30min,至溶液呈澄清透亮黑褐色,反应结束;
(2)降温至50℃以下,采用氯仿分散-离心的方式对产物进行三次清洗,最终产物分散于10mL正己烷中;
(3)取1ml(2)中所得产物,5mg CuCl2,加入5ml THF,在氩气保护下升温至50℃,保温30min;
(4)采用氯仿分散-离心的方式对产物进行三次清洗,最终产物分散于10mL正己烷中。
实施例4
将实施例1制备的调控铁磁内核及顺磁表面组分的超小氧化铁纳米颗粒(Zn0.4Fe2.6O4@Zn0.4Mn0.2Fe2.4O4)和常规超小氧化铁纳米颗粒(γ-Fe2O3)分散在水中,使其Fe浓度分别为0.0625、0.125、0.25、0.5和1mM。分别取10mL颗粒溶液,使用3T磁共振成像仪(Siemens,Germany)进行扫描。MRI扫描参数为:TR=4000ms,TE=19ms。得到样品磁共振扫描图像后,计算出不同浓度梯度样品的弛豫时间T1值如图3所示,进而求出弛豫速率r1如图4所示。经计算调控铁磁内核及顺磁表面组分的超小氧化铁纳米颗粒(Zn0.4Fe2.6O4@Zn0.4Mn0.2Fe2.4O4)和常规超小氧化铁纳米颗粒(γ-Fe2O3)的r1分别为20.22mM-1s-1和3.92mM-1s-1,Zn0.4Fe2.6O4@Zn0.4Mn0.2Fe2.4O4的r1是γ-Fe2O3的5倍以上,说明Zn0.4Fe2.6O4@Zn0.4Mn0.2Fe2.4O4 MRI的T1造影性能远远高于γ-Fe2O3
以上对本发明及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本发明的实施方式之一,并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (6)

1.一种超小氧化铁纳米颗粒,其特征在于,所述超小氧化铁纳米颗粒为由内部自旋有序的铁磁内核及表面自旋无序的顺磁壳层组成的MxFe3-xO4@MxNyFe3-x-yO4核-壳结构且铁磁内核及顺磁壳层的组分可调,所述M为Fe、Co、Ni、Mn、Cu、Zn、Mg、Ca中的一种,x值为0-1.5,所述N为稀土金属、第四周期过渡金属和后过渡金属中的一种,y值为0-0.5,所述超小氧化铁纳米颗粒粒径为2-6 nm。
2.一种根据权利要求1所述的超小氧化铁纳米颗粒的制备方法,其特征在于,包括以下步骤:
S1、在50 ml三口烧瓶中加入铁的前驱体、另一种金属M前驱体、表面活性剂和有机溶剂,升温至200-280℃,保温0-1h,将所得产物采用离心-分散的方式进行3-5次清洗,收集产物分散于正己烷中;
S2、取一定量S1中所得产物,一定量的金属N盐溶液,加入一定体积的四氢呋喃溶液中,通入氩气,50-70℃保持10-60 min;
S3、将S2中产物离心,保存。
3.根据权利要求2所述的一种超小氧化铁纳米颗粒的制备方法,其特征在于,S1中所述铁的前驱体包括含铁有机配合物和含铁的碳酸盐,S1中所述另一种金属M前驱体包括金属有机配合物和金属碳酸盐;
所述含铁有机配合物包括:芥酸铁、乙酰丙酮铁Fe(acac)3、油酸铁Fe(OA)3、羰基合铁Fe(CO)5、亚硝基羟基苯胺合铁FeCup3;所述铁的碳酸盐为FeCO3
所述另一种金属M前驱体包括:乙酰丙酮铁Fe(acac)3、油酸铁Fe(OA)3、五羰基合铁Fe(CO)5、亚硝基羟基苯胺合铁FeCup3、Co2(CO)8、Co(acac)2、Ni(OOCCH3)2、Ni(acac)2、油酸稀土配合物、乙酰丙酮稀土配合物;所述金属碳酸盐包括碳酸锌、碳酸亚铁、碳酸锰、碳酸钴、碳酸镍、碳酸镁和碳酸铜。
4.根据权利要求2所述的一种超小氧化铁纳米颗粒的制备方法,其特征在于,S1中所述表面活性剂包括碳链长度介于6-25之间的有机酸、碳链长度介于6-25之间的有机胺和碳链长度介于6-25之间的有机醇,S1中所述有机溶剂包括十八烯、苄醚、十六碳烯、辛醚和三辛胺。
5.根据权利要求2所述的一种超小氧化铁纳米颗粒的制备方法,其特征在于,S2中所述金属N盐溶液包括氯化锰、氯化钆、氯化铜、氯化镍、氯化钴、氯化镁、硝酸钆和硝酸镁的金属盐溶液。
6.一种根据权利要求1所述的超小氧化铁纳米颗粒的应用,其特征在于,将权利要求1所述的超小氧化铁纳米颗粒应用于磁共振成像、细胞长期跟踪以及磁纳米颗粒成像领域。
CN202011071340.5A 2020-10-09 2020-10-09 一种超小氧化铁纳米颗粒及其制备方法及应用 Active CN112299489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011071340.5A CN112299489B (zh) 2020-10-09 2020-10-09 一种超小氧化铁纳米颗粒及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011071340.5A CN112299489B (zh) 2020-10-09 2020-10-09 一种超小氧化铁纳米颗粒及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN112299489A CN112299489A (zh) 2021-02-02
CN112299489B true CN112299489B (zh) 2022-10-28

Family

ID=74489478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011071340.5A Active CN112299489B (zh) 2020-10-09 2020-10-09 一种超小氧化铁纳米颗粒及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN112299489B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113230418A (zh) * 2021-05-12 2021-08-10 中国药科大学 一种超小核壳结构铁纳米颗粒的制备方法及应用
CN115520907A (zh) * 2022-04-14 2022-12-27 西安超磁纳米生物科技有限公司 一种具有活性基团的超小铁氧体纳米颗粒及其制备与应用
CN115838187A (zh) * 2022-12-14 2023-03-24 西安超磁纳米生物科技有限公司 一种微波辅助有机相超小铁氧体纳米颗粒及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018240A2 (en) * 2010-08-05 2012-02-09 Hanwha Chemical Corporation Preparation of extremely small and uniform sized, iron oxide-based paramagnetic or pseudo-paramagnetic nanoparticles and mri t1 contrast agents using the same
CN103083688A (zh) * 2013-01-30 2013-05-08 上海师范大学 一种核壳结构铁酸盐类磁性纳米复合材料及其制备方法和应用
CN104147984A (zh) * 2013-05-15 2014-11-19 安徽出入境检验检疫局检验检疫技术中心 一种单分散厚度可控的磁性核壳聚合物的制备方法
CN104623658A (zh) * 2014-12-29 2015-05-20 上海师范大学 一种水溶性铁酸盐复合纳米粒子及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140234226A1 (en) * 2014-05-06 2014-08-21 Morteza Mahmoudi Plasmonic stable fluorescence superparamagnetic iron oxide nanoparticles and a method of synthesizing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018240A2 (en) * 2010-08-05 2012-02-09 Hanwha Chemical Corporation Preparation of extremely small and uniform sized, iron oxide-based paramagnetic or pseudo-paramagnetic nanoparticles and mri t1 contrast agents using the same
CN103083688A (zh) * 2013-01-30 2013-05-08 上海师范大学 一种核壳结构铁酸盐类磁性纳米复合材料及其制备方法和应用
CN104147984A (zh) * 2013-05-15 2014-11-19 安徽出入境检验检疫局检验检疫技术中心 一种单分散厚度可控的磁性核壳聚合物的制备方法
CN104623658A (zh) * 2014-12-29 2015-05-20 上海师范大学 一种水溶性铁酸盐复合纳米粒子及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Origin and Shell-Driven Optimization of the Heating Power in Core/Shell Bimagnetic Nanoparticles";Gabriel C. Lavorato et al.;《ACS Appl. Nano Mater.》;20200129;第3卷;第1755-1765页 *

Also Published As

Publication number Publication date
CN112299489A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN112299489B (zh) 一种超小氧化铁纳米颗粒及其制备方法及应用
Hufschmid et al. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition
Frey et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage
Cai et al. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles
Carpenter et al. Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques
Gupta et al. One pot synthesis of water-dispersible dehydroascorbic acid coated Fe3O4 nanoparticles under atmospheric air: blood cell compatibility and enhanced magnetic resonance imaging
Marchegiani et al. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles
US9352058B2 (en) Method of preparing iron oxide nanoparticles coated with hydrophilic material, and magnetic resonance imaging contrast agent using the same
Sharma et al. Synthesis and self-assembly of monodisperse CoxNi100− x (x= 50, 80) colloidal nanoparticles by homogenous nucleation
CN111072070B (zh) 一种高饱和磁化超顺磁多孔铁氧体微球的制备方法
Ahmadi et al. Kinetics of magnetite nanoparticles formation in a one step low temperature hydrothermal process
Liu et al. Synthesis and magnetic properties of shuriken-like nickel nanoparticles
Masoudi et al. Long-term investigation on the phase stability, magnetic behavior, toxicity, and MRI characteristics of superparamagnetic Fe/Fe-oxide core/shell nanoparticles
Wu et al. Preparation and magnetic properties of cobalt nanoparticles with dendrimers as templates
Wang et al. Study on synthesis and magnetic properties of Nd2Fe14B nanoparticles prepared by hydrothermal method
CN106395914B (zh) 油酸包裹的超顺磁性纳米Fe3O4及其制备方法
CN109399727B (zh) 含金属原子簇的磁性氧化铁纳米颗粒及其制备和应用
Zuo et al. Carbothermal treated iron oxide nanoparticles with improving magnetic heating efficiency for hyperthermia
Yang et al. Synthesis and characterization of superparamagnetic iron nanocomposites by hydrazine reduction
Jeon et al. Cleaved iron oxide nanoparticles as T2 contrast agents for magnetic resonance imaging
Tzitzios et al. Synthesis and characterization of L10 FePt nanoparticles from Pt–Fe3O4 core-shell nanoparticles
Ali et al. Size and shape control synthesis of iron oxide–based nanoparticles: current status and future possibility
CN102225866B (zh) 一种铁氧体纳米颗粒的制备方法
CN107213474A (zh) 一种铁基磁性纳米晶磁共振t1造影剂的制备方法及其应用
Hou et al. Size-controlled synthesis and magnetic studies of monodisperse FePd nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant