CN112254237A - 一种空调循环水***变压差控制*** - Google Patents

一种空调循环水***变压差控制*** Download PDF

Info

Publication number
CN112254237A
CN112254237A CN202010994175.4A CN202010994175A CN112254237A CN 112254237 A CN112254237 A CN 112254237A CN 202010994175 A CN202010994175 A CN 202010994175A CN 112254237 A CN112254237 A CN 112254237A
Authority
CN
China
Prior art keywords
water
pressure difference
return
pipe
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010994175.4A
Other languages
English (en)
Other versions
CN112254237B (zh
Inventor
陈明锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Chaotic Energy Technology Co ltd
Original Assignee
Wuxi Chaotic Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Chaotic Energy Technology Co ltd filed Critical Wuxi Chaotic Energy Technology Co ltd
Priority to CN202010994175.4A priority Critical patent/CN112254237B/zh
Publication of CN112254237A publication Critical patent/CN112254237A/zh
Application granted granted Critical
Publication of CN112254237B publication Critical patent/CN112254237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/24323Tree-organised classifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种空调循环水***变压差控制***,涉及空调智能控制领域,包括集水器、分水器、制冷主机、冷冻循环泵、变压差控制器以及与变压差控制器相连的水泵变频器、流量计和水管压差传感器;水泵变频器连接冷冻循环泵,水管压差传感器设置在集水器和分水器之间的管路上,流量计设置在集水器的回水管路上,变压差控制器中部署有总管供回水压差设定值算法模型,变压差控制器获取冷冻水实测流量并代入该算法模型得到总管供回水压差设定值,根据总管供回水压差设定值和总管供回水压差实测值,通过PID算法调节冷冻循环泵的频率,该***避免了远程通讯不稳定的问题,可降低空调水***的输配能耗。

Description

一种空调循环水***变压差控制***
技术领域
本发明涉及空调智能控制领域,尤其是一种空调循环水***变压差控制***。
背景技术
中央空调水***能耗约占据建筑总能耗的60%,中央空调***通过冷冻水循环泵将冷冻水输配到空调末端,末端根据负荷需求自动调节冷冻水流量。冷冻水流量过小,将无法保证末端的流量需求;冷冻水流量过大,将会增加管道阻力,导致输配能耗增加。
目前常用的冷冻水循环***变流量控制方法有干管温差控制和干管压差控制,均存在一定缺陷:
(1)干管温差控制法是指保持供回水干管温差不变,当末端负荷变化时,通过温差控制器与水泵变频器对水泵转速以及水流量进行调节,该调节方法只适用于末端负荷变化趋势较同步的小***,不适用于末端负荷差异性较大的***,会导致最不利末端压差过小或者压差过大;
(2)干管压差控制法是指在供回水总管之间设置压差控制器,在***运行过程中不考虑末端负荷变化,只保持总管之间压差不变,该方法不能及时应对末端负荷变化,会导致最不利末端压差过小或者压差过大。
发明内容
本发明人针对上述问题及技术需求,提出了一种空调循环水***变压差控制***,该***能有效避免远程通讯不稳定的问题,还能避免最不利末端压差过小或者压差过大,同时可降低空调水***的输配能耗,本发明的技术方案如下:
一种空调循环水***变压差控制***,包括集水器、分水器、制冷主机、冷冻循环泵、变压差控制器以及与变压差控制器相连的水泵变频器、流量计和水管压差传感器;制冷主机的出水口连接冷冻循环泵的一端,冷冻循环泵的另一端连接分水器,集水器连接制冷主机的入水口,水泵变频器连接冷冻循环泵并对其进行变频调节,水管压差传感器设置在集水器和分水器之间的管路上,流量计设置在集水器的回水管路上;
变压差控制器中部署有总管供回水压差设定值算法模型,变压差控制器通过流量计获取冷冻水实测流量并代入总管供回水压差设定值算法模型,得到总管供回水压差设定值,变压差控制器根据总管供回水压差设定值和水管压差传感器采集的总管供回水压差实测值,通过PID算法调节冷冻循环泵的频率。
其进一步的技术方案为,空调循环水***变压差控制***还包括空调末端组,空调末端组包括多个空调末端、串联在各个空调末端回水管支路上的空调末端调节阀以及与变压差控制器相连的最不利压差传感器,空调末端并联设置在集水器和分水器之间,最不利压差传感器设置在空调末端的最不利空调末端管路上;
通过水管压差传感器、流量计和最不利压差传感器采集并存储总管供回水压差实测值、冷冻水流量和最不利末端压差值,并作为数据样本,同时不断调整空调末端调节阀的开度和开启数量以改变末端管网阻力特性,在不同末端管网阻力特性下获取大量数据样本;
对数据样本进行预处理,筛选出满足预定条件的最不利末端压差值及其对应的总管供回水压差实测值、冷冻水流量;其中,预定条件为:
90%*末端额定水压降<最不利末端压差值<110%*末端额定水压降;
采用随机森林法对筛选后的数据样本进行模型训练,拟合总管供回水压差实测值与冷冻水流量之间的特征关系,确定总管供回水压差设定值算法模型为:
ΔPS=(ΔPmax-ΔPmin)·[ax2+(1-a)x]+ΔPmin
其中,ΔPS为总管供回水压差设定值,ΔPmax为末端全开最大压差设定值,ΔPmin为末端全开最小压差设定值,a为管道阻力特征系数,x为流量系数,且
Figure BDA0002691933640000021
Q为冷冻水实测流量,Qs为最大设计流量。
其进一步的技术方案为,当总管供回水压差实测值小于总管供回水压差设定值时,变压差控制器根据PID算法得到的频率设定值控制水泵变频器增大冷冻循环泵的频率;当总管供回水压差实测值大于总管供回水压差设定值时,变压差控制器根据PID算法得到的频率设定值控制水泵变频器降低冷冻循环泵的频率,使水管压差传感器采集的总管供回水压差实测值维持在总管供回水压差设定值。
其进一步的技术方案为,空调循环水***变压差控制***还包括与变压差控制器相连的旁通调节阀,旁通调节阀设置在集水器和分水器的总管上;
在控制过程中,当总管供回水压差实测值大于末端全开最大压差设定值时,变压差控制器根据PID算法得到的旁通调节阀开度值控制旁通调节阀的开度增大;当总管供回水压差实测值小于末端全开最大压差设定值时,变压差控制器根据PID算法得到的旁通调节阀开度值控制旁通调节阀的开度减小,使总管供回水压差实测值不高于末端全开最大压差设定值。
其进一步的技术方案为,空调循环水***变压差控制***还包括与变压差控制器相连的工作站,工作站实时记录冷冻水流量、总管供回水压差实测值和总管供回水压差设定值,用于分析空调循环水***变压差控制***的性能,起到监控作用;通过工作站修改优化总管供回水压差设定值算法模型。
本发明的有益技术效果是:
(1)通过变压差控制器本地化采集控制,保证变压差控制***直接采集所需反馈信号并下发相应的控制信号,有效避免远传通讯信号传输的不稳定性和信号接口对接的复杂性,提高空调循环水***流量控制的稳定性;
(2)在变压差控制器中预先设计好总管供回水压差设定值算法模型,在控制过程中,通过采集的冷冻水实测流量自动计算出总管供回水压差设定值,再与总管供回水压差实测值进行对比,变压差控制器通过PID算法调节冷冻循环泵的频率,保证冷冻循环泵以最佳频率运行,有效避免最不利末端压差过小或者压差过大,保证流量供应需求的同时降低空调循环水***的输配能耗和运行成本;
(3)通过控制旁通调节阀能够保证冷冻循环泵在最佳频率运行的工况下,空调循环水***变压差控制***不会超压,提高了***的安全性。
(4)该空调循环水***变压差控制***为一体集成化***,保证现场按设计图纸进行施工,有效避免最不利压差传感器安装位置难确定和不易施工现象,降低现场施工的操作难度。
附图说明
图1是本申请提供的空调循环水***变压差控制***的原理框图。
图2是本申请提供的设计总管供回水压差设定值算法模型的流程图。
图3是本申请提供的冷冻循环泵频率调节的逻辑图。
图4是本申请提供的旁通调节阀开度调节的逻辑图。
图5是本申请提供的PID算法的逻辑原理图。
图6是本申请提供的空调循环水***变压差控制***的实验结果验证图。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
本申请公开了一种空调循环水***变压差控制***,其***原理框图如图1所示,包括集水器1、分水器2、制冷主机3、冷冻循环泵4、空调末端组、变压差控制器5以及与变压差控制器5通过信号线相连的水泵变频器6、流量计7和水管压差传感器8。
制冷主机3的出水口连接冷冻循环泵4的一端,冷冻循环泵4的另一端连接分水器2,集水器1连接制冷主机3的入水口。可选的,本申请采用多个并联运行的冷冻循环泵4,每个水泵变频器6通过动力线连接一个冷冻循环泵4的电机并对其进行变频调节。水管压差传感器8设置在集水器1和分水器2之间的管路上,流量计7设置在集水器1的回水管路上。空调末端组包括多个空调末端9、串联在各个空调末端9回水管支路上的空调末端调节阀10以及与变压差控制器5相连的最不利压差传感器11,空调末端9并联设置在集水器1和分水器2之间,最不利压差传感器11设置在空调末端9的最不利空调末端管路上。该空调循环水***变压差控制***为一体集成化***,保证现场按设计图纸进行施工,有效避免最不利压差传感器安装位置难确定和不易施工现象,降低现场施工的操作难度。
变压差控制器5中部署有总管供回水压差设定值算法模型,变压差控制器5通过流量计7获取冷冻水实测流量并代入总管供回水压差设定值算法模型,得到总管供回水压差设定值,变压差控制器5根据总管供回水压差设定值和水管压差传感器8采集的总管供回水压差实测值,通过PID算法调节冷冻循环泵4的频率。
设计总管供回水压差设定值算法模型的流程图如图2所示,包括如下步骤:
步骤1:通过水管压差传感器8、流量计7和最不利压差传感器11采集并存储总管供回水压差实测值、冷冻水流量和最不利末端压差值,并作为数据样本,同时不断调整空调末端调节阀10的开度和开启数量以改变末端管网阻力特性,在不同末端管网阻力特性下获取大量数据样本。末端管网阻力特性是压差控制***的特征系数。
步骤2:对数据样本进行预处理,筛选出满足预定条件的最不利末端压差值及其对应的总管供回水压差实测值、冷冻水流量。
其中,预定条件为:
90%*末端额定水压降<最不利末端压差值<110%*末端额定水压降,末端额定水压降为已知常数。
步骤3:采用随机森林法对筛选后的数据样本进行模型训练,拟合总管供回水压差实测值与冷冻水流量之间的特征关系,确定总管供回水压差设定值算法模型为:
ΔPS=(ΔPmax-ΔPmin)·[ax2+(1-a)x]+ΔPmin
其中,ΔPS为总管供回水压差设定值,ΔPmax为末端全开最大压差设定值,ΔPmin为末端全开最小压差设定值,a为管道阻力特征系数,x为流量系数,且
Figure BDA0002691933640000051
Q为冷冻水实测流量,Qs为最大设计流量,上述的ΔPmax、ΔPmin、a和Qs均为已知常数。
一进步的,变压差控制器5根据总管供回水压差设定值和水管压差传感器8采集的总管供回水压差实测值的差值,通过PID算法调节冷冻循环泵4的频率,冷冻循环泵频率调节的逻辑图如图3所示,具体包括:
当总管供回水压差实测值小于总管供回水压差设定值时,变压差控制器5根据PID算法得到的频率设定值控制水泵变频器6增大冷冻循环泵4的频率;当总管供回水压差实测值大于总管供回水压差设定值时,变压差控制器5根据PID算法得到的频率设定值控制水泵变频器6降低冷冻循环泵4的频率,冷冻循环泵4的频率在最大频率设定值和最小频率设置值之间变化,使水管压差传感器8采集的总管供回水压差实测值维持在总管供回水压差设定值。比如:(1)总管供回水压差实测值ΔP=150kPa<总管供回水压差设定值ΔPS=180kPa,则增大冷冻循环泵4的频率;(2)总管供回水压差实测值ΔP=180kPa>总管供回水压差设定值ΔPS=150kPa,则降低冷冻循环泵4的频率。
可选的,空调循环水***变压差控制***还包括与变压差控制器5相连的旁通调节阀12,旁通调节阀12设置在集水器1和分水器2的总管上。
在控制过程中,变压差控制器5根据末端全开最大压差设定值和总管供回水压差实测值的差值,通过PID算法得到旁通调节阀12的开度值,旁通调节阀开度调节的逻辑图如图4所示,具体包括:
当总管供回水压差实测值大于末端全开最大压差设定值时,变压差控制器5根据PID算法得到的旁通调节阀开度值控制旁通调节阀12的开度增大;当总管供回水压差实测值小于末端全开最大压差设定值时,变压差控制器5根据PID算法得到的旁通调节阀开度值控制旁通调节阀12的开度减小,使总管供回水压差实测值不高于末端全开最大压差设定值。比如:(1)总管供回水压差实测值ΔP=230kPa>末端全开最大压差设定值ΔPmax=220kPa,增大旁通调节阀12的开度;(2)总管供回水压差实测值ΔP=180kPa<末端全开最大压差设定值ΔPmax=220kPa,在未到达冷冻循环泵4的最佳频率时可适度减小旁通调节阀12的开度。通过控制旁通调节阀12开度保证冷冻循环泵在最佳频率运行的工况下,空调循环水***变压差控制***不会超压,提高了***的安全性。
PID算法的逻辑原理图如图5所示,向PID算法输入总管供回水压差设定值ΔPS和总管供回水压差实测值ΔP,经过PID调节后通过执行机构(也即水泵变频器6)向冷冻循环泵4输入频率设定值。或者,向PID算法输入末端全开最大压差设定值ΔPmax和总管供回水压差实测值ΔP,经过PID调节后通过执行机构(也即变压差控制器5)向旁通调节阀12输入旁通调节阀开度值。图中的测量元件也即水管压差传感器8。
可选的,空调循环水***变压差控制***还包括与变压差控制器5相连的工作站13,工作站13实时记录冷冻水流量、总管供回水压差实测值和总管供回水压差设定值,用于分析空调循环水***变压差控制***的性能,起到监控作用;还可以通过工作站13修改优化总管供回水压差设定值算法模型。
本实施例中以实际空调循环水***对变压差控制***进行了验证,其结果如图6所示。从图6可以看出,总管供回水压差设定值随着实测流量变化在自动调整,最不利末端压差稳定在资用压头,控制精度高达±5%。
本申请的空调循环水***变压差控制***通过变压差控制器本地化采集控制,有效避免远程通讯信号传输的不稳定性和信号接口对接的复杂性,提高空调循环水***流量控制的稳定性,避免最不利末端压差过小或者压差过大,保证流量供应需求的同时降低空调循环水***的输配能耗和运行成本,对中央空调水***的自动控制具有非常重要的实现意义。
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (5)

1.一种空调循环水***变压差控制***,其特征在于,包括集水器、分水器、制冷主机、冷冻循环泵、变压差控制器以及与所述变压差控制器相连的水泵变频器、流量计和水管压差传感器;所述制冷主机的出水口连接所述冷冻循环泵的一端,所述冷冻循环泵的另一端连接所述分水器,所述集水器连接所述制冷主机的入水口,所述水泵变频器连接所述冷冻循环泵并对其进行变频调节,所述水管压差传感器设置在所述集水器和分水器之间的管路上,所述流量计设置在所述集水器的回水管路上;
所述变压差控制器中部署有总管供回水压差设定值算法模型,所述变压差控制器通过所述流量计获取冷冻水实测流量并代入所述总管供回水压差设定值算法模型,得到总管供回水压差设定值,所述变压差控制器根据所述总管供回水压差设定值和所述水管压差传感器采集的总管供回水压差实测值,通过PID算法调节所述冷冻循环泵的频率。
2.根据权利要求1所述的空调循环水***变压差控制***,其特征在于,所述空调循环水***变压差控制***还包括空调末端组,所述空调末端组包括多个空调末端、串联在各个空调末端回水管支路上的空调末端调节阀以及与所述变压差控制器相连的最不利压差传感器,所述空调末端并联设置在所述集水器和分水器之间,所述最不利压差传感器设置在所述空调末端的最不利空调末端管路上;
通过所述水管压差传感器、流量计和最不利压差传感器采集并存储总管供回水压差实测值、冷冻水流量和最不利末端压差值,并作为数据样本,同时不断调整所述空调末端调节阀的开度和开启数量以改变末端管网阻力特性,在不同所述末端管网阻力特性下获取大量数据样本;
对所述数据样本进行预处理,筛选出满足预定条件的最不利末端压差值及其对应的所述总管供回水压差实测值、冷冻水流量;其中,所述预定条件为:
90%*末端额定水压降<最不利末端压差值<110%*末端额定水压降;
采用随机森林法对筛选后的数据样本进行模型训练,拟合所述总管供回水压差实测值与所述冷冻水流量之间的特征关系,确定所述总管供回水压差设定值算法模型为:
ΔPS=(ΔPmax-ΔPmin)·[ax2+(1-a)x]+ΔPmin
其中,ΔPS为所述总管供回水压差设定值,ΔPmax为末端全开最大压差设定值,ΔPmin为末端全开最小压差设定值,a为管道阻力特征系数,x为流量系数,且
Figure FDA0002691933630000021
Q为所述冷冻水实测流量,Qs为最大设计流量。
3.根据权利要求1所述的空调循环水***变压差控制***,其特征在于,
当所述总管供回水压差实测值小于所述总管供回水压差设定值时,所述变压差控制器根据所述PID算法得到的频率设定值控制所述水泵变频器增大所述冷冻循环泵的频率;当所述总管供回水压差实测值大于所述总管供回水压差设定值时,所述变压差控制器根据所述PID算法得到的频率设定值控制所述水泵变频器降低所述冷冻循环泵的频率,使所述水管压差传感器采集的所述总管供回水压差实测值维持在所述总管供回水压差设定值。
4.根据权利要求1所述的空调循环水***变压差控制***,其特征在于,所述空调循环水***变压差控制***还包括与所述变压差控制器相连的旁通调节阀,所述旁通调节阀设置在所述集水器和分水器的总管上;
在控制过程中,当所述总管供回水压差实测值大于末端全开最大压差设定值时,所述变压差控制器根据所述PID算法得到的旁通调节阀开度值控制所述旁通调节阀的开度增大;当所述总管供回水压差实测值小于末端全开最大压差设定值时,所述变压差控制器根据所述PID算法得到的旁通调节阀开度值控制所述旁通调节阀的开度减小,使所述总管供回水压差实测值不高于所述末端全开最大压差设定值。
5.根据权利要求1-4任一所述的空调循环水***变压差控制***,其特征在于,所述空调循环水***变压差控制***还包括与所述变压差控制器相连的工作站,所述工作站实时记录所述冷冻水流量、总管供回水压差实测值和总管供回水压差设定值,用于分析所述空调循环水***变压差控制***的性能,起到监控作用;通过所述工作站修改优化所述总管供回水压差设定值算法模型。
CN202010994175.4A 2020-09-21 2020-09-21 一种空调循环水***变压差控制*** Active CN112254237B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010994175.4A CN112254237B (zh) 2020-09-21 2020-09-21 一种空调循环水***变压差控制***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010994175.4A CN112254237B (zh) 2020-09-21 2020-09-21 一种空调循环水***变压差控制***

Publications (2)

Publication Number Publication Date
CN112254237A true CN112254237A (zh) 2021-01-22
CN112254237B CN112254237B (zh) 2022-04-08

Family

ID=74231338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010994175.4A Active CN112254237B (zh) 2020-09-21 2020-09-21 一种空调循环水***变压差控制***

Country Status (1)

Country Link
CN (1) CN112254237B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048549A (zh) * 2021-03-17 2021-06-29 瑞纳智能设备股份有限公司 一种基于人工智能的供暖循环泵调节方法
CN113983675A (zh) * 2021-11-10 2022-01-28 上海观燃智能科技有限公司 一种旁通压差变频调节空调冷冻水***及其水力平衡方法
CN114413458A (zh) * 2022-01-25 2022-04-29 清华大学 空调水***的水泵并联运行控制方法、装置、设备及介质
CN114427741A (zh) * 2022-01-25 2022-05-03 清华大学 空调冷水***控制方法、装置、电子设备及存储介质
CN115597189A (zh) * 2022-11-04 2023-01-13 江苏橙智云信息技术有限公司(Cn) 一种基于云端的冷冻水泵节能策略的模拟方法、***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231922A (ja) * 2013-05-28 2014-12-11 東京瓦斯株式会社 床パネル除熱システム
CN105135636A (zh) * 2015-09-12 2015-12-09 褚如圣 中央空调变流量优化***
CN105737284A (zh) * 2016-03-02 2016-07-06 杭州源牌环境科技有限公司 一种空调水***管网平衡分配与变流量控制方法
CN105757851A (zh) * 2016-03-31 2016-07-13 深圳市新环能科技有限公司 一种冷冻水变流量节能控制方法及控制***
CN206972999U (zh) * 2017-06-07 2018-02-06 北京建筑大学 一种自力式恒温差控制阀及其***
CN208859782U (zh) * 2018-08-24 2019-05-14 四川省建筑科学研究院 一种公共建筑节能改造的空调冷冻水泵精准快速控制装置
CN110793173A (zh) * 2019-10-16 2020-02-14 天津大学 基于最不利空调末端动态变化的水泵变频控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231922A (ja) * 2013-05-28 2014-12-11 東京瓦斯株式会社 床パネル除熱システム
CN105135636A (zh) * 2015-09-12 2015-12-09 褚如圣 中央空调变流量优化***
CN105737284A (zh) * 2016-03-02 2016-07-06 杭州源牌环境科技有限公司 一种空调水***管网平衡分配与变流量控制方法
CN105757851A (zh) * 2016-03-31 2016-07-13 深圳市新环能科技有限公司 一种冷冻水变流量节能控制方法及控制***
CN206972999U (zh) * 2017-06-07 2018-02-06 北京建筑大学 一种自力式恒温差控制阀及其***
CN208859782U (zh) * 2018-08-24 2019-05-14 四川省建筑科学研究院 一种公共建筑节能改造的空调冷冻水泵精准快速控制装置
CN110793173A (zh) * 2019-10-16 2020-02-14 天津大学 基于最不利空调末端动态变化的水泵变频控制方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048549A (zh) * 2021-03-17 2021-06-29 瑞纳智能设备股份有限公司 一种基于人工智能的供暖循环泵调节方法
CN113983675A (zh) * 2021-11-10 2022-01-28 上海观燃智能科技有限公司 一种旁通压差变频调节空调冷冻水***及其水力平衡方法
CN113983675B (zh) * 2021-11-10 2023-10-10 上海观燃智能科技有限公司 一种旁通压差变频调节空调冷冻水***及其水力平衡方法
CN114413458A (zh) * 2022-01-25 2022-04-29 清华大学 空调水***的水泵并联运行控制方法、装置、设备及介质
CN114427741A (zh) * 2022-01-25 2022-05-03 清华大学 空调冷水***控制方法、装置、电子设备及存储介质
CN114427741B (zh) * 2022-01-25 2022-12-02 清华大学 空调冷水***控制方法、装置、电子设备及存储介质
CN114413458B (zh) * 2022-01-25 2022-12-09 清华大学 空调水***的水泵并联运行控制方法、装置、设备及介质
CN115597189A (zh) * 2022-11-04 2023-01-13 江苏橙智云信息技术有限公司(Cn) 一种基于云端的冷冻水泵节能策略的模拟方法、***
CN115597189B (zh) * 2022-11-04 2024-05-10 江苏橙智云信息技术有限公司 一种基于云端的冷冻水泵节能策略的模拟方法、***

Also Published As

Publication number Publication date
CN112254237B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN112254237B (zh) 一种空调循环水***变压差控制***
CN100578106C (zh) 中央空调冷冻站质量并调控制方法及***
CN100491852C (zh) 一种集中供冷***的自动化控制方法
CN101782260B (zh) 一种空调水***优化控制方法及装置
CN115823706B (zh) 一次泵自适应变压差节能控制***及方法
CN201526483U (zh) 冷凝风机变速控制***
CN104374036B (zh) 空调的控制方法和空调机组
CN113587414B (zh) 一种空调水***控制***
CN102094801A (zh) 基于输送能耗最低的泵组优选方法
CN111649459B (zh) 基于专家pid的纺织空调节能自控方法
CN107421029A (zh) 一种末端冷量均衡控制方法
CN106801972B (zh) 一种变频空调器保护控制方法和变频空调器
CN111047117B (zh) 一种基于末端负荷预测的压差旁通阀节能优化方法
CN107313968B (zh) 一种对旋式动叶可调轴流风机的控制方法
CN113701321B (zh) 一种中央空调水泵节能变频控制方法
CN201059715Y (zh) 一种中央空调冷冻站质量并调控制***
CN111397035B (zh) 一种用于纺织厂空调风***及其工作方法
CN203824002U (zh) 一种中央空调冷冻站综合电单耗最优控制***
CN111396298B (zh) 基于压差设定值变化的循环水泵主、被动变频联合控制法
CN111692681A (zh) 一种数字化空调水***及评价方法
CN105240993A (zh) 一种中央空调的精细化节能控制***及其实现方法
CN114234669B (zh) 干湿联合冷却塔控制***及工作方法
CN101922780A (zh) 一种风机盘管***及其控制方法
CN114484948A (zh) 一种节能的多级泵变频联动***
CN209510665U (zh) 一种透平真空***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant