CN113587414B - 一种空调水***控制*** - Google Patents

一种空调水***控制*** Download PDF

Info

Publication number
CN113587414B
CN113587414B CN202110933986.8A CN202110933986A CN113587414B CN 113587414 B CN113587414 B CN 113587414B CN 202110933986 A CN202110933986 A CN 202110933986A CN 113587414 B CN113587414 B CN 113587414B
Authority
CN
China
Prior art keywords
water
terminal
air
pressure difference
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110933986.8A
Other languages
English (en)
Other versions
CN113587414A (zh
Inventor
李楠
冯松松
周俊
谢李杰
蒋梦奇
李昕桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202110933986.8A priority Critical patent/CN113587414B/zh
Publication of CN113587414A publication Critical patent/CN113587414A/zh
Application granted granted Critical
Publication of CN113587414B publication Critical patent/CN113587414B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2465Query processing support for facilitating data mining operations in structured databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • F24F2110/32Velocity of the outside air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Fuzzy Systems (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种空调水***控制***,其特征在于,包括:和各空调末端所在房间外部的室外数据检测仪器相连的末端负荷预测器;用于获取各空调末端设备安全稳定运行的最大供回水温差的末端设备瞬时所需流量计算模块;一端和末端设备瞬时所需流量计算模块相连,另一端和水泵控制器相连的控制压差产生器;和空调水***动力单元中的二次泵相连的水泵控制器,水泵控制器能够根据实时采集的实际供回水压差和控制压差设定值的偏差,对二次泵的水泵台数和频率进行PID控制。本发明能够更准确地满足末端需求,具有控制简单准确安全稳定的优点。

Description

一种空调水***控制***
本申请为申请号202011137597.6,申请日2020-10-22的《基于AI的空调变流量水***自适应变压差控制方法》专利的分案申请。
技术领域
本发明涉及暖通空调自动控制领域,具体涉及一种空调水***控制***。
背景技术
在建筑物中央暖通空调中,通常采用空调水***进行冷热量的输送,为室内供冷供暖。随着社会经济的发展和人民生活水平的提高,建筑能耗越来越高。而在我国建筑能耗中,暖通空调能耗占有较大的比例,约占30%-50%。空调运行能耗的35%~45%又被空调水***中的风机水泵消耗,在这部分能耗中,40%以上又被各种调节阀门所消耗,因此研究空调水***节能控制技术意义重大。
目前空调水***主要控制技术为控制稳定的定压差控制技术,定压差控制技术是设定一个固定的水***供回水压差设定值,根据实际的供回水压差与设定值的偏差,来控制水泵台数和频率,从而实现流量调节的作用。但在运行效果和节能方面仍存在诸多问题:
a.定压差控制压差设定值是按照最大负荷要求设计的,而空调绝大部分时间都处于部分负荷工况,因此设定值往往过大,空调末端不得不调小阀门开度来抵消多余压头,造成了不必要的能耗浪费。
b.如果末端设备缺乏有效的流量调节装置,控制变频水泵用压差设定值过大,易造成“大流量,小温差”现象。不仅增加了输配能耗,而且小温差的工作状态将导致冷源蒸发温度偏低,降低冷源能效。
c.对于冷冻水***为二次泵***,二次侧的“大流量”造成回水经过旁通管直接流向供水,与供水混合,影响供水温度,使其达不到末端要求,降低了末端的换热效率。
因为空调水***为闭式***,其压力和流量满足式(1);瞬时供冷供热负荷满足式(2)。式(3)为水体积流量和质量流量的换算公式。
ΔP=SL2 (1)
Q=cmΔt (2)
m=ρL (3).
式中:ΔP为供回水压差,单位Pa;S为管网阻抗,单位kg/m7;L为水的体积流量,单位m3/s;Q为冷热负荷,单位kW;c为水的比热,一般取4.2kJ/(℃·kg);m为水的质量流量,单位kg/s;Δt为供回水温差,单位℃;ρ为水的密度,一般取1000kg/m3
根据式(1)(2)(3),可得出干管供回水压差和瞬时负荷的关系,见式(4)。由于负荷是不断变化的,因此供回水设置压差也应该不断变化,才能更好地和负荷匹配。
Figure BDA0003209625470000021
公式(4)字母参数含义和单位和公式(1)(2)(3)中相同。
据此,研究变压差控制技术,根据各时刻的情况,设定合适的压差值,可以有效改善末端设备缺乏有效流量调节装置的水***“大流量,小温差”和“旁通逆流”现象,不仅优化供水温度,提高末端换热效率,而且有效地降低输配能耗,节约能源。是空调水***控制的技术发展方向。现有技术中也存在部分变压差控制技术,但仍然存在各自缺陷。
2015年6月24日授权的专利CN102748802B《循环泵变压差节能装置》通过温度传感器测试室外温度,供回水压差设定值随室外温度变化。从公式(4)可以看出压差设定值受管网阻抗和冷热负荷影响,管网阻抗主要与不同末端的运行情况有关,而冷热负荷受室外温度,湿度,太阳辐射强度,人员密度等多因素影响,因此只用室外温度判断压差设定值不太准确,容易造成末端欠流。
2005年1月26日授权的专利CN1186572C《空调水***变压差变流量控制方法及***》根据实时测得的过程流量Qi及公式△Pi=A(Qi/Qs)2+B得出实时压差设定值,对冷冻水***进行实时控制。其实公式△Pi=A(Qi/Qs)2+B就是根据公式(1)且假设管网阻抗恒定得出的。由于实际运行过程中,各末端运行情况不同,因此阻抗S并不是定值。此方法会造成压差设定值不准确,不能满足用户冷热需求。
2018年1月6日公开的专利CN107588500A《一种供热***自适应变压差变流量调控方法》根据测试的室外温度,计算出供回水温差,根据供回水平均温度值,用温度传感器采集供热管网实际供回水平均温度值,计算平均温度与实际平均温度比较,以比较误差的积分输出供热网需要的计算压差值。压差值应该有负荷和管网水力和热力运行情况决定,此方法只考虑了简单的室外温度,存在控制不准确现象。而且温度信号存在延迟,因此采集的供热管网实际供回水平均温度值也有待商榷。
2014年10月8日授权的实用新型专利CN203869259U《一种基于末端空调设备冷冻水阀门开度的变压差控制装置》根据末端最大阀门开度进行变压差调节,但其必须要求所有末端安装流量特性相同的电动阀门,且所有阀门开度信号可被采集。由于阀门开度信号有一定的延迟且容易波动,易造成控制不准确,且压差设定值震荡。
故目前已有研究的变压差控制由于控制不精准,会造成末端欠流,控制复杂等问题还未实现推广。故如何在更好地保证所有末端用能需求的基础上尽量实现节能,且使其控制方式更加简单精确稳定可靠,成为本领域技术人员有待解决的问题。
发明内容
针对上述现有技术的不足,本发明所要解决的技术问题是:怎样提供一种能够更准确地满足末端需求,控制简单准确安全稳定的空调水***控制***。
为了解决上述技术问题,本发明采用了如下的技术方案:
本发明采用以下空调水***控制***实现,所述空调水***控制***包括:
末端负荷预测器,所述末端负荷预测器信号采集端和各空调末端所在房间外部的室外数据检测仪器相连,所述室外数据检测仪器包括但不限于室外空气温度检测器、室外空气湿度检测器、太阳辐射强度检测器和风速检测器,所述末端负荷预测器内设置有末端负荷预测模型,末端负荷预测模型能够采集各空调末端所在房间外部的室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速并实现对各末端负荷的预测;
末端设备瞬时所需流量计算模块,末端设备瞬时所需流量计算模块能够获取各空调末端设备安全稳定运行的最大供回水温差;末端设备瞬时所需流量计算模块用于根据各空调末端负荷的预测值和各空调末端安全稳定运行的最大供回水温差计算出各空调末端设备瞬时所需流量;
控制压差产生器,控制压差产生器一端和末端设备瞬时所需流量计算模块相连,另一端和水泵控制器相连,控制压差产生器内预设有控制压差值-各末端流量的对应数据库,并能够根据各空调末端设备瞬时所需流量匹配出对应的多个控制压差值,选取最大数值的控制压差值作为实时控制用的控制压差设定值对水泵控制器进行控制;
水泵控制器,水泵控制器和空调水***动力单元中的二次泵相连,水泵控制器同时和空调水***动力单元进水端和出水端分别安装的供水压力传感器以及回水压力传感器相连并用于获得实际供回水压差,水泵控制器能够根据实时采集的实际供回水压差和控制压差设定值的偏差,对二次泵的水泵台数和频率进行PID控制。
这样,本***使用时,能够先靠末端负荷预测模型根据实时检测的空调末端所在房间外部的室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速等参数并实现对各末端负荷的预测,再由末端设备瞬时所需流量计算模块根据各空调末端负荷的预测值和各空调末端安全稳定运行的最大供回水温差计算出各空调末端设备瞬时所需流量;再由控制压差产生器匹配出最大数值的控制压差值作为控制压差设定值实现实时控制。由水泵控制器控制二次泵台数和频率,调整实际供回水压差和控制压差设定值靠近,即可实现空调水***的变压差控制。具有结构简单,控制准确,利于集成和实施等特点。
作为优化,末端负荷预测模型采用人工智能算法,人工智能算法经过以空调末端所在房间外部的室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速为输入端参数,以各组输入端参数对应的各空调末端实际运行负荷为输出端参数的历史数据训练,得到末端负荷预测模型。人工智能算法可采用人工神经网络、贝叶斯、决策树等,其具体算法和训练过程为现有技术,故不在此详细介绍。
这样,采用人工智能算法,能够极大地提高末端负荷的预测精度,实现对末端负荷的准确预测。
更好的选择是,末端负荷预测器同时和各空调末端设备所在支路中的流量传感器以及各空调末端设备的进水端温度传感器和出水端温度传感器相连,人工智能算法训练过程中室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速的历史数据为室外空气温度检测器、室外空气湿度检测器、太阳辐射强度检测器和风速检测器事先按时间间隔采集得到,对应的各空调末端实际运行负荷为所在支路中的流量传感器以及各空调末端设备的进水端温度传感器和出水端温度传感器采集数据计算得到。
这样,可以更好地保证获得预测模型的准确性。
作为优化,末端负荷预测器还设置有负荷日类型判别单元,负荷日类型判别单元能够对日期类别进行分辨,将日期按照不同的工作日和节假日进行分类并作为末端负荷预测模型人工智能算法的输入端参数之一。
这样,是因为不同的工作日和节假日,人员密度不同,照明和设备使用率不同,会导致在相同的室外环境参数情况下对应的各空调末端实际运行负荷出现较大变动。故在末端负荷预测模型中引入负荷日类型作为判断用参数因子,以区别不同工作日和节假日对末端负荷的影响。这样就极大地提高了末端负荷预测的精确度。具体实施时,可以根据历史日负荷曲线,进行聚类分析,得出不同工作日和节假日的分类规则。并根据每一类型负荷日负荷的相对大小,可在(0,1)的区间范围内赋予每一类负荷日一个定值,作为输入端参数。
作为一种选择,末端设备瞬时所需流量计算模块和各空调末端设备的进水端温度传感器及出水端温度传感器相连,并检测获取各空调末端设备安全稳定运行下的实际供回水温差历史最大值,作为各空调末端设备安全稳定运行的最大供回水温差。
这样可以使得计算更加准确可靠。
作为另一种选择,末端设备瞬时所需流量计算模块根据各末端设备设计参数获得供回水温差设计值作为各空调末端设备安全稳定运行的最大供回水温差。
这样更加简单方便快捷。
其中,末端设备瞬时所需流量计算模块用于根据各空调末端负荷的预测值和各空调末端安全稳定运行的最大供回水温差计算出各空调末端设备瞬时所需流量;具体为根据公式(5)进行计算。
Li=Qi/cρΔtmaxi (5)
公式中,Li为末端i瞬时所需流量,单位m3/h;Qi为末端i的负荷预测值,单位W;Δtmaxi为根据设计资料或者运行情况,得出的末端i安全稳定运行的最大供回水温差。i为自然数,表示第i个末端。其余字符含义和公式1-4中含义相同。
作为优化,控制压差产生器内预设的控制压差值-各末端流量的对应数据库,是将所有末端阀门全开情况下,改变控制水泵的控制压差设定值,记录不同控制压差设定值下各末端设备的冷冻水流量,形成的控制压差值-各末端流量对应数据库。
这样,可以最大程度地保证得到的控制压差能够满足所有末端设备需求,不会产生末端欠流现象。这样是因为,当所有末端阀门全开时,各末端流量为此控制压差下的该末端阀门全开状态下的最小流量,也就是说在某一控制压差值下,各末端设备自身能取得的最大流量一定大于数据库中此控制压差值对应的末端流量,即完全可以满足所有末端用能要求,不会产生末端欠流现象。其原理如下:空调末端为并联管路,可用公式(6)表示流量与水泵扬程的关系。在某一压差设定值下,即H为定值,实际运行中,所有末端的阀门开度不可能全开,因此相较数据库末端阀门全开的情况,管网总阻抗增大,总流量LZ降低。又因为干管阻抗Sg为定值,末端i可以获得的最大流量Lmaxi,即末端i阀门全开时(Si不变)的流量,一定大于数据库中此压差设定值下末端i的流量。再根据计算出的各末端所需流量Li和所有末端阀门全开时控制压差值—各末端流量数据库,得出保证各末端正常运行的控制压差值ΔPi,选取最大的ΔPi作为变频水泵的控制压差。故由上述步骤可知,最大的ΔPi可保证所有末端的用能需求,不会产生末端欠流现象。
Figure BDA0003209625470000061
式中,H为水泵扬程,Sg为干管阻抗;Lz为管网总流量;Si为末端i所在支路管网阻抗;Li为末端i的流量。其余字符含义和公式1-5中含义相同。
作为优化,所述末端负荷预测器、末端设备瞬时所需流量计算模块和控制压差产生器集成在同一个计算机内。这样所需硬件设备更加简单,利于实施。
故本发明具有以下优点:(1)本发明采用人工智能算法对各末端设备的负荷进行预测,使得预测结果更加精确可靠,更好地提高了控制的精确度。(2)本发明相比较定压差控制技术,可以有效改善末端缺乏流量控制设备的冷冻水***“大流量,小温差”和“旁通逆流”现象,不仅优化供水温度,提高末端换热效率,而且有效地降低输配能耗,节约能源。(3)本发明相比定压差控制技术,增大了末端阀门开度,降低了阀门对输配能耗的浪费。(4)本发明是在满足所有末端流量要求的基础上,尽可能地节能。因此本专利方法不会造成末端欠流现象。相比于其他变压差方法,此方法保证供能的安全稳定,控制简单准确,易于实现。
附图说明
图1为具体实施方式中空调水***控制***的示意图。
图2为末端负荷预测器原理示意图。
图3为控制压差产生器原理示意图。
图4为水泵控制器控制原理示意图。
具体实施方式
下面结合具体实施方式对本发明作进一步的详细说明。
具体实施时:参见图1-图4,一种基于AI的空调变流量水***自适应变压差控制方法,包括以下步骤:a利用AI技术,实时对各末端设备的负荷进行预测,获得实时的各末端负荷预测值;b根据各末端设备运行历史数据和设计参数,得出各末端设备安全稳定运行的最大供回水温差,再根据各末端负荷预测值,计算获得各末端设备瞬时所需流量;c将各末端设备瞬时所需流量代入到预先测定的控制压差值-各末端流量的对应数据库,获得不同末端设备流量对应的多个控制压差值,选取最大数值的控制压差值作为实时控制用的控制压差值;d根据该实时控制用的控制压差值和实时采集的供回水压差值,对(变频)水泵控制器进行控制,使得实时采集的供回水压差值向控制压差值靠近。
这样,本方法具有控制简单,安全可靠的特点。
其中,c步骤中,预先测定的控制压差值-各末端流量的对应数据库,是将所有末端阀门全开情况下,改变控制用变频水泵的控制压差设定值,记录不同控制压差设定值下各末端设备的冷冻水流量,形成的控制压差值-各末端流量对应数据库。
这样,可以最大程度地保证得到的控制压差能够满足所有末端设备需求,不会产生末端欠流现象。具体原理在后介绍设备时阐述。
其中,a步骤中根据历史数据训练人工智能算法获得的预测模型,实现对各末端设备实时负荷的预测。
这样,可以更好地保证预测精度准确可靠。具体过程在后介绍设备时阐述。
本实施方式中,本发明采用以下空调水***控制***实现,参见图1,所述空调水***控制***包括:
末端负荷预测器1,所述末端负荷预测器1信号采集端和各空调末端所在房间外部的室外数据检测仪器相连,所述室外数据检测仪器包括但不限于室外空气温度检测器2、室外空气湿度检测器3、太阳辐射强度检测器4和风速检测器5,所述末端负荷预测器1内设置有末端负荷预测模型,末端负荷预测模型能够采集各空调末端所在房间外部的室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速并实现对各末端负荷的预测;
末端设备瞬时所需流量计算模块6,末端设备瞬时所需流量计算模块6能够获取各空调末端设备11安全稳定运行的最大供回水温差;末端设备瞬时所需流量计算模块6用于根据各空调末端负荷的预测值和各空调末端安全稳定运行的最大供回水温差计算出各空调末端设备瞬时所需流量;
控制压差产生器7,控制压差产生器一端和末端设备瞬时所需流量计算模块6相连,另一端和水泵控制器8相连,控制压差产生器7内预设有控制压差值-各末端流量的对应数据库,并能够根据各空调末端设备瞬时所需流量匹配出对应的多个控制压差值,选取最大数值的控制压差值作为实时控制用的控制压差设定值对水泵控制器进行控制;
水泵控制器8,水泵控制器8和空调水***动力单元中的二次泵P2相连,水泵控制器同时和空调水***动力单元进水端和出水端分别安装的供水压力传感器9以及回水压力传感器10相连并用于获得实际供回水压差,水泵控制器能够根据实时采集的实际供回水压差和控制压差设定值的偏差,对二次泵的水泵台数和频率进行PID控制。图1中标号P1表示空调水***动力单元中的一次泵,标号12表示空调水***动力单元中的主机。
这样,本***使用时,能够先靠末端负荷预测模型根据实时检测的空调末端所在房间外部的室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速等参数并实现对各末端负荷的预测,再由末端设备瞬时所需流量计算模块根据各空调末端负荷的预测值和各空调末端负荷安全稳定运行的最大供回水温差计算出各空调末端设备瞬时所需流量;再由控制压差产生器匹配出最大数值的控制压差值作为控制压差设定值实现实时控制。由水泵控制器控制二次泵台数和频率,调整实际供回水压差和控制压差设定值靠近,即可实现空调水***的变压差控制。具有结构简单,控制准确,利于集成和实施等特点。
其中,参见图2,末端负荷预测模型采用人工智能算法,人工智能算法经过以空调末端所在房间外部的室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速为输入端参数,以各组输入端参数对应的各空调末端实际运行负荷为输出端参数的历史数据训练,得到末端负荷预测模型。人工智能算法可采用人工神经网络、贝叶斯、决策树等,其具体算法和训练过程为现有技术,故不在此详细介绍。
这样,采用人工智能算法,能够极大地提高末端负荷的预测精度,实现对末端负荷的准确预测。
具体实施时,末端负荷预测器1同时和各空调末端设备11所在支路中的流量传感器以及各空调末端设备的进水端温度传感器和出水端温度传感器相连,人工智能算法训练过程中室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速的历史数据为室外空气温度检测器、室外空气湿度检测器、太阳辐射强度检测器和风速检测器事先按时间间隔采集得到,对应的各空调末端实际运行负荷为所在支路中的流量传感器以及各空调末端设备的进水端温度传感器和出水端温度传感器采集数据计算得到。
这样,可以更好地保证获得预测模型的准确性。
其中,末端负荷预测器1还设置有负荷日类型判别单元13,负荷日类型判别单元13能够对日期类别进行分辨,将日期按照不同的工作日和节假日进行分类并作为末端负荷预测模型人工智能算法的输入端参数之一。
这样,是因为不同的工作日和节假日,人员密度不同,照明和设备使用率不同,会导致在相同的室外环境参数情况下对应的各空调末端实际运行负荷出现较大变动。故在末端负荷预测模型中引入负荷日类型作为判断用参数因子,以区别不同工作日和节假日对末端负荷的影响。这样就极大地提高了末端负荷预测的精确度。具体实施时,可以根据历史日负荷曲线,进行聚类分析,得出不同工作日和节假日的分类规则。并根据每一类型负荷日负荷的相对大小,可在(0,1)的区间范围内赋予每一类负荷日一个定值,作为输入端参数。
本实施方式中,末端设备瞬时所需流量计算模块6和各空调末端设备11的进水端温度传感器和出水端温度传感器相连,并检测获取各空调末端设备安全稳定运行下的实际供回水温差历史最大值,作为各空调末端设备安全稳定运行的最大供回水温差。
这样可以使得计算更加准确可靠。
作为另一种可实施方式,末端设备瞬时所需流量计算模块根据各末端设备设计参数获得供回水温差设计值作为各空调末端设备安全稳定运行的最大供回水温差。
这样更加简单方便快捷。
本具体实施方式中,末端设备瞬时所需流量计算模块用于根据各空调末端负荷的预测值和各空调末端安全稳定运行的最大供回水温差计算出各空调末端设备瞬时所需流量;具体为根据公式(5)进行计算。
Li=Qi/cρΔtmaxi (5)
公式中,Li为末端i瞬时所需流量,单位m3/h;Qi为末端i的负荷预测值,单位W;Δtmaxi为根据设计资料或者运行情况,得出的末端i安全稳定运行的最大供回水温差。i为自然数,表示第i个末端。其余字符含义和公式1-4中含义相同。
本实施方式中,控制压差产生器7内预设的控制压差值-各末端流量的对应数据库,是将所有末端阀门全开情况下,改变控制水泵的控制压差设定值,记录不同控制压差设定值下各末端设备的冷冻水流量,形成的控制压差值-各末端流量对应数据库。控制压差产生器原理参见图3。
这样,可以最大程度地保证得到的控制压差能够满足所有末端设备需求,不会产生末端欠流现象。这样是因为,当所有末端阀门全开时,各末端流量为此控制压差下的该末端阀门全开状态下的最小流量,也就是说在某一控制压差值下,各末端设备自身能取得的最大流量一定大于数据库中此控制压差值对应的末端流量,即完全可以满足所有末端用能要求,不会产生末端欠流现象。其原理如下:空调末端为并联管路,可用公式(6)表示流量与水泵扬程的关系。在某一压差设定值下,即H为定值,实际运行中,所有末端的阀门开度不可能全开,因此相较数据库末端阀门全开的情况,管网总阻抗增大,总流量LZ降低。又因为干管阻抗Sg为定值,末端i可以获得的最大流量Lmaxi,即末端i阀门全开时(Si不变)的流量,一定大于数据库中此压差设定值下末端i的流量。再根据计算出的各末端所需流量Li和所有末端阀门全开时控制压差值—各末端流量数据库,得出保证各末端正常运行的控制压差值ΔPi,选取最大的ΔPi作为变频水泵的控制压差(具体参见图4)。故由上述步骤可知,最大的ΔPi可保证所有末端的用能需求,不会产生末端欠流现象。
Figure BDA0003209625470000101
式中,H为水泵扬程,Sg为干管阻抗;Lz为管网总流量;Si为末端i所在支路管网阻抗;Li为末端i的流量。其余字符含义和公式1-5中含义相同。
本实施方式中,所述末端负荷预测器1、末端设备瞬时所需流量计算模块6和控制压差产生器7集成在同一个计算机14内。这样所需硬件设备更加简单,利于实施。

Claims (7)

1.一种空调水***控制***,其特征在于,包括:末端负荷预测器,所述末端负荷预测器信号采集端和各空调末端所在房间外部的室外数据检测仪器相连,所述室外数据检测仪器包括室外空气温度检测器、室外空气湿度检测器、太阳辐射强度检测器和风速检测器,所述末端负荷预测器内设置有末端负荷预测模型,末端负荷预测模型能够采集各空调末端所在房间外部的室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速并实现对各末端负荷的预测;
末端设备瞬时所需流量计算模块,末端设备瞬时所需流量计算模块能够获取各空调末端设备安全稳定运行的最大供回水温差;末端设备瞬时所需流量计算模块用于根据各空调末端负荷的预测值和各空调末端安全稳定运行的最大供回水温差计算出各空调末端设备瞬时所需流量;
控制压差产生器,控制压差产生器一端和末端设备瞬时所需流量计算模块相连,另一端和水泵控制器相连,控制压差产生器内预设有控制压差值-各末端流量的对应数据库,并能够根据各空调末端设备瞬时所需流量匹配出对应的多个控制压差值,选取最大数值的控制压差值作为实时控制用的控制压差设定值对水泵控制器进行控制;
水泵控制器,水泵控制器和空调水***动力单元中的二次泵相连,水泵控制器同时和空调水***动力单元进水端和出水端分别安装的供水压力传感器以及回水压力传感器相连并用于获得实际供回水压差,水泵控制器能够根据实时采集的实际供回水压差和控制压差设定值的偏差,对二次泵的水泵台数和频率进行PID控制。
2.如权利要求1所述的空调水***控制***,其特征在于,末端负荷预测模型采用人工智能算法,人工智能算法经过以空调末端所在房间外部的室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速为输入端参数,以各组输入端参数对应的各空调末端实际运行负荷为输出端参数的历史数据训练,得到末端负荷预测模型。
3.如权利要求2所述的空调水***控制***,其特征在于,末端负荷预测器同时和各空调末端设备所在支路中的流量传感器以及各空调末端设备的进水端温度传感器和出水端温度传感器相连,人工智能算法训练过程中室外空气温度、室外空气湿度、室外太阳辐射强度和室外风速的历史数据为室外空气温度检测器、室外空气湿度检测器、太阳辐射强度检测器和风速检测器事先按时间间隔采集得到,对应的各空调末端实际运行负荷为所在支路中的流量传感器以及各空调末端设备的进水端温度传感器和出水端温度传感器采集数据计算得到。
4.如权利要求2所述的空调水***控制***,其特征在于,末端负荷预测器还设置有负荷日类型判别单元,负荷日类型判别单元能够对日期类别进行分辨,将日期按照不同的工作日和节假日进行分类并作为末端负荷预测模型人工智能算法的输入端参数之一。
5.如权利要求1所述的空调水***控制***,其特征在于,末端设备瞬时所需流量计算模块和各空调末端设备的进水端温度传感器和出水端温度传感器相连,并检测获取各空调末端设备安全稳定运行下的实际供回水温差历史最大值,作为各空调末端设备安全稳定运行的最大供回水温差。
6.如权利要求1所述的空调水***控制***,其特征在于,末端设备瞬时所需流量计算模块根据各末端设备设计参数获得供回水温差设计值作为各空调末端设备安全稳定运行的最大供回水温差。
7.如权利要求1所述的空调水***控制***,其特征在于,控制压差产生器内预设的控制压差值-各末端流量的对应数据库,是将所有末端阀门全开情况下,改变控制水泵的控制压差设定值,记录不同控制压差设定值下各末端设备的冷冻水流量,形成的控制压差值-各末端流量对应数据库。
CN202110933986.8A 2020-10-22 2020-10-22 一种空调水***控制*** Active CN113587414B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110933986.8A CN113587414B (zh) 2020-10-22 2020-10-22 一种空调水***控制***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011137597.6A CN112254320B (zh) 2020-10-22 2020-10-22 基于ai的空调变流量水***自适应变压差控制方法
CN202110933986.8A CN113587414B (zh) 2020-10-22 2020-10-22 一种空调水***控制***

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202011137597.6A Division CN112254320B (zh) 2020-10-22 2020-10-22 基于ai的空调变流量水***自适应变压差控制方法

Publications (2)

Publication Number Publication Date
CN113587414A CN113587414A (zh) 2021-11-02
CN113587414B true CN113587414B (zh) 2022-04-12

Family

ID=74264746

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202011137597.6A Active CN112254320B (zh) 2020-10-22 2020-10-22 基于ai的空调变流量水***自适应变压差控制方法
CN202110933986.8A Active CN113587414B (zh) 2020-10-22 2020-10-22 一种空调水***控制***

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202011137597.6A Active CN112254320B (zh) 2020-10-22 2020-10-22 基于ai的空调变流量水***自适应变压差控制方法

Country Status (1)

Country Link
CN (2) CN112254320B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432370A (zh) * 2021-07-05 2021-09-24 蔚海建 不同负荷和供水温度下供需平衡的循环水***及控制方法
CN114001438A (zh) * 2021-09-15 2022-02-01 上海建工集团股份有限公司 一种空调***供回水温差辨识方法
CN114383174B (zh) * 2022-01-13 2023-05-26 珠海格力电器股份有限公司 一种机组控制方法、装置及机组
CN114294804B (zh) * 2022-01-25 2022-12-27 海润新风(重庆)智能技术有限公司 基于房间气流阻抗的动力分布式通风***调试方法
CN114427741B (zh) * 2022-01-25 2022-12-02 清华大学 空调冷水***控制方法、装置、电子设备及存储介质
BE1030936B1 (nl) * 2022-10-03 2024-04-29 Renson Ventilation Nv Een verwarmings- en/of koelingssysteem voor collectieve residentiële wooneenheden, een sturingsinrichting daarvoor en een werkwijze voor het aansturen daarvan
CN116699998B (zh) * 2023-06-21 2024-02-13 广州和达水务科技股份有限公司 基于ai算法的无人值守加压站控制***

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284250A (ja) * 1985-10-07 1987-04-17 Mitsubishi Electric Corp 空気調和機
JP3160693B2 (ja) * 1994-06-28 2001-04-25 日本電気エンジニアリング株式会社 熱負荷予測装置
JP2001317792A (ja) * 2000-05-01 2001-11-16 Toshiba Corp 残業空調運用システム
CN200975766Y (zh) * 2006-08-01 2007-11-14 华南理工大学 区域集中供冷冷量调节***
JP4691582B2 (ja) * 2008-06-16 2011-06-01 株式会社トーエネック 空調二次ポンプの制御装置
US9519297B1 (en) * 2010-08-17 2016-12-13 Vytautas K. Virskus Dynamic differential energy control of hydronic heating or cooling systems
CN102012077B (zh) * 2010-12-06 2012-12-26 北京卫星制造厂 一种中央空调冷冻站节能控制***及控制方法
CN102052739B (zh) * 2010-12-27 2012-10-17 重庆大学 基于无线传感器网络的中央空调智能控制***及方法
CN102734890B (zh) * 2011-04-13 2015-07-08 上海信业智能科技股份有限公司 中央空调冷冻水的模糊控制方法、装置及中央空调***
JP5793359B2 (ja) * 2011-07-11 2015-10-14 アズビル株式会社 空調制御システムおよび空調制御方法
CN203258800U (zh) * 2013-03-27 2013-10-30 上海中际能源科技有限公司 一种中央空调动态跟踪节能管理控制***
CN103335379B (zh) * 2013-07-15 2016-06-01 厦门立思科技股份有限公司 基于中央空调的智慧节能控制装置及其控制方法
CN103486693B (zh) * 2013-09-25 2015-09-09 广州大学 一种中央空调冷冻水***的节能控制方法
CN104633829A (zh) * 2013-11-06 2015-05-20 上海思控电气设备有限公司 楼宇冷冻站节能控制装置及方法
CN104879898B (zh) * 2015-06-04 2017-11-17 北京百度网讯科技有限公司 数据中心冷水***的控制方法和装置
US10317261B2 (en) * 2015-06-30 2019-06-11 Johnson Controls Technology Company Systems and methods for controlling flow rate using differential pressure measurements
CN105135636B (zh) * 2015-09-12 2018-03-09 杭州裕达自动化科技有限公司 中央空调变流量优化***
CN105571844A (zh) * 2015-12-15 2016-05-11 北京建筑大学 一种测量暖通空调***水泵或阀门流量的方法
CN105571063B (zh) * 2015-12-31 2018-08-24 深圳市同鑫热力技术有限公司 一种浅层地温能能源管理***及其实现方法
CN205561103U (zh) * 2016-03-02 2016-09-07 杭州源牌环境科技有限公司 一种空调水***管网平衡分配与变流量控制装置
CN106338127B (zh) * 2016-09-20 2018-06-22 珠海格力电器股份有限公司 用于地铁暖通空调***的负荷预测和控制***及其方法
CN106545968A (zh) * 2016-11-23 2017-03-29 浙江盾安自控科技有限公司 一种中央空调开式二级冷冻水节能控制***
CN108662735B (zh) * 2018-05-29 2020-09-11 广州大学 一种中央空调***末端设备节能优化控制***及方法
CN109708258B (zh) * 2018-12-20 2021-01-12 南京达实能源技术有限公司 一种基于负荷动态变化的冷库温度前馈-模糊控制***及控制方法
CN110392515B (zh) * 2019-07-23 2021-06-01 上海朗绿建筑科技股份有限公司 一种基于历史数据的冷热源机房节能控制方法及***
CN110529980B (zh) * 2019-08-14 2021-07-02 雄安达实智慧科技有限公司 中央空调实际需求供冷负荷的确定方法、***和电子设备
CN111623491A (zh) * 2020-06-11 2020-09-04 西安建筑科技大学 一种基于协同优化策略的变速水泵运行调节方法

Also Published As

Publication number Publication date
CN112254320B (zh) 2021-08-24
CN113587414A (zh) 2021-11-02
CN112254320A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
CN113587414B (zh) 一种空调水***控制***
CN111256294B (zh) 一种基于模型预测的冷水机组组合运行优化控制方法
CN105020845B (zh) 一种空调***联动节能控制***及方法
CN105571073B (zh) 一种地铁站空调水***变频控制节能方法
CN105444356A (zh) 一种中央空调***的能效优化智能控制***及其控制方法
CN106168404A (zh) 温差修正的二次泵空调水***变流量控制方法和装置
CN205372921U (zh) 一种自适应的变风量空调送风风机速度控制器
CN110186156A (zh) 制冷站模糊控制***
CN115823706B (zh) 一次泵自适应变压差节能控制***及方法
CN110220288A (zh) 基于大数据云平台的集中空调***智能优化控制方法及装置
CN202310410U (zh) 机房设备的送风控制***
CN115325682A (zh) 一种高效智能制冷机房性能监测的优化控制方法及装置
CN109751911A (zh) 冷却塔风机频率自适应调节方法及空调***
CN110440385A (zh) 一种舒适仿自然风的机械营造装置及方法
CN101922779A (zh) 一种风机盘管***及其控制方法和装置
CN116878114B (zh) 一种中央空调阀门控制装置
CN113218040A (zh) 一种中央空调***能效提升控制方法
CN105240993A (zh) 一种中央空调的精细化节能控制***及其实现方法
CN115573926A (zh) 结合bp神经网络拟合特性曲线的机房水泵节能运行方法
CN114234669B (zh) 干湿联合冷却塔控制***及工作方法
CN212869939U (zh) 一种智能型热网调节***
CN114484948A (zh) 一种节能的多级泵变频联动***
CN113531703A (zh) 一种用于地铁中央空调冷水机房的高效节能冷却水***
CN112797017A (zh) 一种冷却循环水节能改造的节能空间估算方法
CN117190432A (zh) 一种空调变压差控制调节方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant