CN112225550A - 一种压电陶瓷材料、其制备方法及压电陶瓷传感器 - Google Patents

一种压电陶瓷材料、其制备方法及压电陶瓷传感器 Download PDF

Info

Publication number
CN112225550A
CN112225550A CN202010955959.6A CN202010955959A CN112225550A CN 112225550 A CN112225550 A CN 112225550A CN 202010955959 A CN202010955959 A CN 202010955959A CN 112225550 A CN112225550 A CN 112225550A
Authority
CN
China
Prior art keywords
piezoelectric ceramic
powder
sintering
mixed powder
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010955959.6A
Other languages
English (en)
Other versions
CN112225550B (zh
Inventor
李春
李立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Tiantong Technology Co ltd
Original Assignee
Guangdong Tiantong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Tiantong Technology Co ltd filed Critical Guangdong Tiantong Technology Co ltd
Priority to CN202010955959.6A priority Critical patent/CN112225550B/zh
Publication of CN112225550A publication Critical patent/CN112225550A/zh
Application granted granted Critical
Publication of CN112225550B publication Critical patent/CN112225550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Abstract

本发明涉及一种压电陶瓷材料、其制备方法及压电陶瓷传感器。所述压电陶瓷材料为钐、钪共掺杂铁酸铋‑钛酸钡‑钛酸锶压电陶瓷材料,其是由铁电材料BiFeO3、BaTiO3和SrTiO3通过掺杂稀土元素Sm、Sc并固相烧结制成,具有以下化学通式:0.4Bi0.85Sm0.15Fe0.95Sc0.05O3‑0.27BaTiO3‑0.33SrTiO3。所述压电陶瓷材料利用Sm和Sc掺杂改性纯铁酸铋‑钛酸钡‑钛酸锶材料,通过Sm取代铁酸铋晶格中的Bi,进而避免了烧结过程中温度过高导致较多的Bi的挥发,使得化学计量比失衡,从而产生较多的杂相,同时电阻率急剧下降的技术问题;此外利用Sc的掺杂能够提高Fe3+的稳定性,有效抑制Fe3+向Fe2+的转变,进而避免两种价态铁离子之间的电荷流动,有效提高电容器电介质的压电性能。

Description

一种压电陶瓷材料、其制备方法及压电陶瓷传感器
技术领域
本发明涉及压电陶瓷传感器技术领域,具体涉及一种压电陶瓷材料、其制备方法以及压电陶瓷传感器。
背景技术
压电材料是一类能够实现机械能与电信号之间相互转换的功能材料,在国民生活、机械制造、航空航天、探测、军事国防等领域广泛应用。压电材料包含压电单晶、压电陶瓷、压电高分子以及压电复合材料等几大类。其中,压电陶瓷由于其合成工艺简单、合成成本低、压电性能优异以及组分可调等特点,占据着压电材料市场主导地位。
目前,Pb(Zr,Ti)O3(PZT)陶瓷材料拥有优异的介电和压电性能,居里温度Tc=360℃是高温压电陶瓷的热门材料。然而,PZT陶瓷材料在200℃以上的温度无法安全工作,同时Pb易挥发,对环境和人体的污染不可忽略。因此研究具有高的居里温度和优异压电性能的无Pb陶瓷体系是日益增长的汽车制造、航空、石油化工等领域的迫切需要。目前无Pb压电陶瓷体系主要有钛酸钡基(BaTiO3),钛酸秘钠基(Bi0.5Na0.5TiO3),酸钾钠基(KNaNbO3),秘层状基、钨青铜基、铝酸秘基(BiAlO3)以及铁酸秘基(BiFeO3)等陶瓷体系。其中BiFeO3基陶瓷由于其高的居里温度(Tc=830℃)和尼尔温度(TN=370℃)使得其在电子器件等领域有广阔的应用前景。然而,由于该体系的压电陶瓷在烧结过程中,Bi3+易挥发,以及Fe3+被还原为Fe2+,产生了大量的氧空位缺陷,导致室温下电阻率低、漏电流大,造成绝缘性能差以及介电损耗高等缺陷,不利于BiFeO3陶瓷的制备和高电场极化,限制了其实际应用。
为了提高BiFeO3基压电陶瓷的性能,目前主要通过优化制备工艺,如采用水淬法、快速液相烧结法、A、B位元素掺杂,如A位掺入Sm3+、La3+,Nd3+等离子,B位掺入Al3+,Sc3+,Ti4+等离子,与其他稳定ABO3结构形成固溶体等方式,如:BaTiO3,SrTiO3,NaNbO3等,其中,BiFeO3-BaTiO3基材料相比于纯的BiFeO3基材料结构更加稳定,绝缘性能和压电性能更好,但是其在高温和高电场下的应用受到限制。
发明内容
基于此,本发明的目的在于克服现有技术中存在的缺点,提供一种压电陶瓷材料,其具有良好的压电性能,较高的居里温度,优异的疲劳特性等优点。
本发明的具体技术方案为:
一种压电陶瓷材料,其为钐、钪共掺杂铁酸铋-钛酸钡-钛酸锶压电陶瓷材料,其是由铁电材料BiFeO3、BaTiO3和SrTiO3通过掺杂稀土元素Sm、Sc并固相烧结制成,具有以下化学通式:0.4Bi0.85Sm0.15Fe0.95Sc0.05O3-0.27BaTiO3-0.33SrTiO3
相对于现有技术,本发明所述压电陶瓷材料,其利用Sm和Sc掺杂改性纯铁酸铋-钛酸钡-钛酸锶材料,通过Sm取代铁酸铋晶格中的Bi,进而避免了烧结过程中温度过高导致较多的Bi的挥发,使得化学计量比失衡,从而产生较多的杂相,同时电阻率急剧下降的技术问题;此外利用Sc的掺杂能够提高Fe3+的稳定性,有效抑制Fe3+向Fe2+的转变,进而避免两种价态铁离子之间的电荷流动,有效提高电容器电介质的压电性能。稀土元素Sm、Sc的掺杂,改善了纯BiFeO3电阻率低,漏电流大的缺点,大大提升了压电材料的压电性能和疲劳特性,其压电常数d33为120pC/N,老化时间大于900h,疲劳循环次大于105,且具有较高的居里温度Tc=400℃。
另外,本发明还提供了上述压电陶瓷材料的制备方法,其包括以下操作步骤:
步骤S1、配料
选取分析纯Bi2O3、BaCO3、TiO2、Sm2O3、Sc3O2、SrCO3和Fe2O3为原料,按制备化学通式为[0.4Bi0.85Sm0.15Fe0.95Sc0.05O3-0.27BaTiO3-0.33SrTiO3]体系所需化学计量比称取上述原料粉料;
步骤S2、球磨
对步骤S1所得原料粉料进行球磨处理,得到混合粉料;对所述混合粉料进行密封预烧2小时,再对预烧后的混合粉料进行二次球磨处理;
步骤S3、研磨造粒
向步骤S2所得混合粉料加入胶黏剂充分研磨造粒,然后压成压电陶瓷胚体;
步骤S4、排胶烧结
对步骤S3所得压电陶瓷胚体进行排胶处理,随后将排胶处理后的压电陶瓷胚体密封烧结3小时,待冷却后即得所述压电陶瓷材料。
本发明实施例所述压电陶瓷材料的制备方法中,步骤S2中通过球磨对称量的粉体进行初步混合,工艺简单,易于实现;利用密封预烧可以除去原料粉料中的挥发物,以防烧结过程中收缩过大而产生裂纹,同时也可以形成所需的晶向;对预烧后的粉料二次球磨能得到组分更均匀、颗粒更细的目标粉体,有利于提升后续压电陶瓷材料的耐压性能以及优化微观结构;所述步骤S4的固相烧结过程进一步促进所需晶向的形成,并使其更加致密化,使得材料结构非常致密,基本没有空洞存在,同时晶粒清晰大小均一,从而得到性质优异的压电陶瓷。
相对于热压烧结和快速液相烧结,本发明通过固相烧结方法烧结形成压电陶瓷材料,基本无杂相生成,结构更致密、组分更均一,压电性能更优异,并具有较高的居里温度,优异的疲劳特性,且该制备方法工艺简单、生产效率高、更易于控制陶瓷结构的生成。
进一步地,所述步骤S2中的球磨处理为在粉料中加入氧化锆磨球和乙醇后,以300~500转/分钟的转速球磨12~36小时。
进一步地,所述步骤S2中所述球磨处理中所述粉料与所述氧化锆磨球的质量比为1:1,所述氧化锆磨球的直径为3~6mm。
进一步地,所述步骤S2中氧化锆磨球中直径为6mm的磨球、直径为4~5mm的磨球以及直径为3mm的磨球的数量比为1:2:3。
氧化锆磨球的致密度高,质地细腻,经研磨加工后,表面光洁度高,摩擦系数小,不同直径大小的磨球配合使用比单种尺寸的磨球研磨效果更好,且研磨效率高。
进一步地,所述步骤S2中在球磨处理、密封预烧以及二次球磨处理后还包括对所得混合粉料进行烘干,并对烘干后不含乙醇的混合粉料进行研磨。通过多次球磨和每次烘干后的研磨,能进一步使得混合粉体更均匀、颗粒更精细,有利于煅烧后得到陶瓷结构更加致密、钙钛矿结构更加稳定。
进一步地,所述步骤S2中所述密封预烧的具体操作步骤为先将干燥后的混合粉料放置于一个氧化铝坩埚中,并将该氧化铝坩埚正放置于氧化铝烧结板上,并在该氧化铝坩埚周围沿周向添加一层与所述混合粉料成分及配比相同的原料粉料;再在盛放有所述混合粉料的氧化铝坩埚上方倒扣放置一个氧化铝坩埚,并在倒扣放置的氧化铝坩埚开口处沿周向覆盖一层氧化铝粉末进行密封。
进一步地,步骤S3所述排胶处理为将压电陶瓷胚体先在300℃保温1小时后升温至500℃保温2小时;所述密封预烧的处理温度为800℃,所述密封烧结的处理温度为1100℃。
进一步地,所述步骤S4中所述密封烧结的具体操作步骤为先将所述陶瓷胚体正放置于氧化铝烧结板上,并在所述陶瓷胚体上添加一层与所述混合粉料成分及配比相同的原料粉料;再在所述陶瓷胚体的上方倒扣放置氧化铝坩埚,并在所述氧化铝坩埚开口处沿周向覆盖一层氧化铝粉末进行密封。
使用氧化铝坩埚配合氧化铝烧结板进行密封高温煅烧,可配合马弗炉或其他用于实验室热处理以及其他高温实验的加热设备,稳定性强、保温耐用性强、自动化程度高、安全性高。
另外,本发明还提供了一种压电陶瓷传感器,其包括压电陶瓷电容器,所述压电陶瓷电容器包括底电极、顶电极以及电介质;所述电介质位于所述底电极与所述顶电极之间,所述电介质为以上所述的压电陶瓷材料,所述压电陶瓷传感器压电性能高,压电输出灵敏度高,且工作温度高,使用寿命长。
附图说明
图1是本发明所述BSFS-BT-ST陶瓷样品的XRD衍射对比图;
图2是本发明所述BSFS-BT-ST陶瓷样品的SEM截面表征图;
图3是本发明所述BSFS-BT-ST陶瓷在不同电压下的电滞回线图;
图4是本发明所述BSFS-BT-ST陶瓷在不同温度下的电滞回线图;
图5是本发明所述BSFS-BT-ST陶瓷在不同频率下的的介电常数-介电损耗图;
图6是本发明所述BSFS-BT-ST陶瓷在不同温度下压电系数d33和d31的数值变化图;
图7是本发明所述BSFS-BT-ST陶瓷的压电系数d33在室温下随时间的变化图;
图8是本发明所述BSFS-BT-ST陶瓷的压电系数d33在室温下随疲劳循环次数的变化图。
具体实施方式
实施例1
本发明实施例提供一种压电陶瓷材料,其为钐、钪共掺杂铁酸铋-钛酸钡-钛酸锶压电陶瓷材料,其是由铁电材料BiFeO3、BaTiO3和SrTiO3通过掺杂稀土元素Sm、Sc并固相烧结制成,具有以下化学通式:0.4Bi0.85Sm0.15Fe0.95Sc0.05O3-0.27BaTiO3-0.33SrTiO3,其简称为BSFS-BT-ST。
相对于现有技术,本发明所述压电陶瓷材料,其利用Sm和Sc掺杂改性纯铁酸铋-钛酸钡-钛酸锶材料,通过Sm取代铁酸铋晶格中的Bi,进而避免了烧结过程中温度过高导致较多的Bi的挥发,使得化学计量比失衡,从而产生较多的杂相,同时电阻率急剧下降的技术问题;此外利用Sc的掺杂能够提高Fe3+的稳定性,有效抑制Fe3+向Fe2+的转变,进而避免两种价态铁离子之间的电荷流动,有效提高电容器电介质的压电性能。稀土元素Sm、Sc的掺杂,改善了纯BiFeO3电阻率低,漏电流大的缺点,大大提升了压电材料的压电性能和疲劳特性,其压电常数d33为120pC/N,老化时间大于900h,疲劳循环次大于105,且具有较高的居里温度Tc=400℃。
实施例2
本发明实施例2提供一种压电陶瓷材料的制备方法,其制备方法步骤如下:
步骤S1:配料
以分析纯Bi2O3、BaCO3、TiO2、Sm2O3、Sc3O2、SrCO3和Fe2O3为原料,按制备化学式为[0.4Bi0.85Sm0.15Fe0.95Sc0.05O3-0.27BaTiO3-0.33SrTiO3]体系所需化学计量比称取上述原料粉料。
需要说明的是,在本发明实施例的说明中,所述钐、钪共掺杂铁酸铋-钛酸钡-钛酸锶压电陶瓷材料简称为BSFS-BT-ST陶瓷。
本实施例中,所需制得的BSFS-BT-ST陶瓷粉体总量为0.1mol,则BSFS-BT-ST陶瓷粉体的制备原料如表1所示:
表1 BSFS-BT-ST粉体的制备原料
Figure BDA0002678600100000051
请参阅表1,其为BSFS-BT-ST陶瓷粉体的制备原料,使用精度为0.0001的电子电平按照表1的称量质量称取各原料,以制备化学式为[0.4Bi0.85Sm0.15Fe0.95Sc0.05O3-0.27BaTiO3-0.33SrTiO3]的粉料。
步骤S2:合成BSFS-BT-ST陶瓷粉体
目前制备压电陶瓷粉料的方法主要有传统固相法,微波水热法,溶胶凝胶法,共沉淀法和熔盐法等,其中微波水热法,溶胶凝胶法制备的粉料样品纯度高,颗粒尺寸小,但是这一方法仅仅适用于实验室的基础研究,其产量很小,不适合大规模的工业化生产。共沉淀法和熔盐法制备的样品纯度高,分散性好,尺寸分布均匀,但是其工艺流程复杂,不利于工业化生产,而适用于工业化生产的当属于传统固相法,传统固相法的优点在于其产量大,能满足工业大批量生产的需求,成本低。
在本发明实施例中,所述BSFS-BT-ST陶瓷粉料的合成为采用传统固相烧结法,具体包括以下工序:
S201:一次球磨,将步骤S1中称量好的原料粉料放入尼龙球磨罐中,然后加入乙醇作为分散剂和直径不同的氧化锆磨球作为研磨介质,作为一种可选实施方式,在本实施例中,所述氧化锆磨球总质量与原料粉料总质量之比为1:1,所述氧化锆磨球的直径为3~6mm,其中直径为6mm的磨球、直径为4~5mm的磨球以及直径为3mm的磨球的数量比为1:2:3;磨球、原料粉料和酒精的总体积占球磨罐总容积的60%。将所述尼龙球磨罐放入球磨机中进行研磨,控制球磨机的转速为418转/分钟,设置一次球磨时间为24小时,球磨结束后将所得混合粉料在80℃的烘箱内烘干。
S202:研磨,将步骤S201中干燥后的混合粉料倒入玛瑙研钵中,用玛瑙杆研磨20-30分钟;
S203:高温预烧,将步骤S202中研磨后的混合粉料倒入氧化铝坩埚中,在马弗炉里800℃密封煅烧2小时,升温速率控制为8℃/min,煅烧结束后随炉自然降温到室温。
在本实施例中,所述密封预烧的具体操作步骤为先将干燥后的混合粉料放置于一个氧化铝坩埚中,并将该氧化铝坩埚正放置于氧化铝烧结板上,并在该氧化铝坩埚周围沿周向添加一层与所述混合粉料成分及配比相同的原料粉料;再在盛放有所述混合粉料的氧化铝坩埚上方倒扣放置一个氧化铝坩埚,并在倒扣放置的氧化铝坩埚开口处沿周向覆盖一层氧化铝粉末进行密封。
S202:研磨,将步骤S203中干燥后的混合粉料倒入玛瑙研钵中,用玛瑙杆研磨20-30分钟;
S205:二次球磨,将步骤S204所得混合粉料放入尼龙球磨罐中,然后加入乙醇作为分散剂和直径不同的氧化锆磨球作为研磨介质,作为一种可选实施方式,在本实施例中,所述氧化锆磨球总质量与所述混合粉料总质量之比为1:1,所述氧化锆磨球的直径为3~6mm,其中直径为6mm的磨球、直径为4~5mm的磨球以及直径为3mm的磨球的数量比为1:2:3;磨球、原料粉料和酒精的总体积占球磨罐总容积的60%。将所述尼龙球磨罐放入球磨机中进行研磨,控制球磨机的转速为418转/分钟,设置一次球磨时间为24小时,球磨结束后将所得混合粉料在80℃的烘箱内烘干;
S202:研磨,将步骤S205中干燥后的混合粉料倒入玛瑙研钵中,用玛瑙杆研磨20-30分钟。
步骤S3:成型压片
目前陶瓷的成型方法主要包括冷等静压成型、超高压成型、干压成型等。冷静压成型是在高压容器中以液体为压力传递介质,从而得到的密度高,均匀性好的陶瓷胚体。超高压成型是发展很快的成型方法,由于高压导致受力不均,得到的样品较小。干压成型操作简单、成本低,适用于形状简单尺寸小的坯体。本实施例采用干压成型。
具体地,本实施例的操作为称取5g步骤S2中制得的混合粉料,加入一定量胶黏剂后充分研磨造粒,在本实施例中,所述胶黏剂为浓度为2wt%的聚乙烯醇(PVA);随后称取0.5g造粒的混合粉料装于压片的模具中,用粉末压片机单轴加压成型,压力控制为9MPa,保压60秒,制得直径为12mm,,厚度为1mm的BSFS-BT-ST陶瓷胚体。
步骤S4:排胶烧结。
对步骤S3所得压电陶瓷胚体进行排胶处理,随后将排胶处理后的压电陶瓷胚体密封烧结3小时,待冷却后即得所述压电陶瓷材料。
由于陶瓷材料成形过程中加入了较多的有机黏合剂和塑化剂等,如热压铸成形的石蜡及轧膜,本实施例中所添加的聚乙烯醇(PVA)等。在高温烧结时,坯体中大量的有机物熔融、分解、挥发,会导致坯体变形、开裂,同时有机物含碳量多,当氧气不足形成还原气氛时,会影响烧结质量。因此,需要在坯体烧成前将其中的有机物排除干净,以保证产品的形状、尺寸和质量的要求,这个过程即为排胶处理。
在本实施例中,所述排胶烧结的具体操作为将步骤S3中制得的BSFS-BT-ST胚体放在氧化铝烧结板上,表面铺一层与所述混合粉料成分及配比相同的原料粉料,在所述BSFS-BT-ST胚体上方倒扣放置一氧化铝坩埚,并在该氧化铝密封放入马弗炉中,升温速率控制在5℃/分钟,缓慢升温至300度保温1小时,再缓慢升温至550度保温2小时,完成排胶过程,接着升温速率控制在8℃/分钟,升温至1100℃,保温3小时,然后随炉自然降温到室温,即制得厚度为1mm的BSFS-BT-ST陶瓷。
本发明实施例所述压电陶瓷材料的制备方法中,步骤S2中通过球磨对称量的粉体进行初步混合,工艺简单,易于实现;利用密封预烧可以除去原料粉料中的挥发物,以防烧结过程中收缩过大而产生裂纹,同时也可以形成所需的晶向;对预烧后的粉料二次球磨能得到组分更均匀、颗粒更细的目标粉体,有利于提升后续压电陶瓷材料的耐压性能以及优化微观结构;此外限定为使用氧化锆磨球进行研磨,并限定不同直径大小氧化锆磨球的重量配比,氧化锆磨球的致密度高,质地细腻,经研磨加工后,表面光洁度高,摩擦系数小,不同直径大小的磨球配合使用比单种尺寸的磨球研磨效果更好,且研磨效率高。此外,通过多次球磨和每次烘干后的研磨,能进一步使得混合粉体更均匀、颗粒更精细,有利于煅烧后得到陶瓷结构更加致密、钙钛矿结构更加稳定。
所述步骤S4的固相烧结过程进一步促进所需晶向的形成,并使其更加致密化,使得材料结构非常致密,基本没有空洞存在,同时晶粒清晰大小均一,从而得到性质优异的压电陶瓷。且使用氧化铝坩埚配合氧化铝烧结板进行密封高温煅烧,可配合马弗炉或其他用于实验室热处理以及其他高温实验的加热设备,稳定性强、保温耐用性强、自动化程度高、安全性高。
相对于热压烧结和快速液相烧结,本发明通过固相烧结方法烧结形成压电陶瓷材料,基本无杂相生成,结构更致密、组分更均一,压电性能更优异,并具有较高的居里温度,优异的疲劳特性,且该制备方法工艺简单、生产效率高、更易于控制陶瓷结构的生成。
实施例3
本实施例是对实施例2中所制得的压电陶瓷材料进行相关性能测试。
(一)前处理
为了便于对实施例2所述制备方法制得的BSFS-BT-ST陶瓷进行性能测试,还需要将该BSFS-BT-ST陶瓷进行前处理。
所述前处理为在上述BSFS-BT-ST陶瓷的制备工序后增加以下步骤:
步骤S5:打磨抛光,先将步骤S4中制得的BSFS-BT-ST陶瓷用砂纸打磨至0.1-0.2mm的薄片,再用金相砂纸对薄片打磨抛光至0.17mm厚的BSFS-BT-ST陶瓷薄片。
本实施例中的打磨抛光具体操作为先在200目的砂纸上进行抛磨,直至BSFS-BT-ST陶瓷抛磨表面没有明显变化,更换至400目、800目、1000目、进行相同操作;在1000目砂纸上操作完成后,再使用金相砂纸进行抛光。
步骤S6:镀电极。
陶瓷的电极制作目的是为了使样品导电,一般是在陶瓷片的两个面均匀的涂上一层金属层,其中,金(Au)、银(Ag)、铜(Cu)、镍(Ni)等都能做金属电极,本实施例中优选为Au电极。
可用离子溅射法、磁控溅射法、电子束蒸镀法、脉冲激光沉积法、离子束沉积法、化学气相沉积法等镀上下两层Au电极。本实施例采用离子溅射法镀电极,在真空容器内,高压1500V的作用下,残留的气体分子被电离,形成等离子体,阳离子在电场加速下轰击金属靶,使金属原子溅射到样品的表面,形成导电膜。离子溅射法的优点是得到的镀膜与基板间有极强的附着力,有较高的沉积速率,膜的密度高。
S601:镀底电极
将BSFS-BT-ST陶瓷薄片放入小型离子溅射仪中,Au作为靶材在2×10-3Pa的真空下生长Au电极薄膜,控制溅射电流为8~10mA,在氩气(Ar)氛围下对靶材进行溅射,溅射时间为40秒,重复上述溅射操作4次,每次间隔20秒。溅射结束后取出样品,将其在加热台上90℃烘烤6分钟,让溅射上的Au电极更好地粘附在陶瓷片底面。
S602:镀顶电极
将一块带有直径为1.5mm孔的掩膜版放在BSFS-BT-ST陶瓷薄片未镀电极的一面,重复S601中镀底电极的操作,即可得到顶电极。本实施例中,掩膜版上孔的直径为1.5mm。
(二)相关性能测试
1)XRD衍射测试
请参阅图1,其为本发明BSFS-BT-ST陶瓷样品的XRD衍射对比图。该测试结果通过射线衍射仪(X’Pert PRO,PANalytical X)测试得到,从图中可以看出,随着Sm、Sc离子的共掺杂,在2θ为31-32°处的衍射峰出现最大值,并且在2θ为38°的衍射峰逐渐变弱,且无其他杂相产生,这些现象表明本发明BSFS-BT-ST陶瓷是纯的赝立方钙钛矿结构,且BSFS与BT-ST形成完美的固溶体。
2)SEM表征图
请参阅图2,其为是本发明BSFS-BT-ST陶瓷样品的SEM截面表征图。该测试结果通过扫描电子显微镜(ZEISS Gemini500)对实施例2中步骤S4制得的BSFS-BT-ST陶瓷测试得到。从图中可以看出,BSFS-BT-ST陶瓷样品的表面微观组织呈现出整齐的颗粒,同时具有明显的晶界,没有孔洞,缺陷及杂质产生,表明陶瓷样品生长致密并且结晶度良好。
3)电滞回线图
请同时参阅图3、图4,图3为本发明BSFS-BT-ST陶瓷在不同电压下的电滞回线图,图4为本发明BSFS-BT-ST陶瓷在不同温度下的电滞回线图。该测试结果通过铁电测试仪(Radiant Technology Ferroelectric Tester)对本实施例中步骤S6所得BSFS-BT-ST陶瓷进行电学测试得到。由图3可以看出,BSFS-BT-ST陶瓷具有一些典型的铁电滞后特征,随着施加电压的增大,饱和极化值和剩余计划值逐渐增加,分别达到45.5μC/cm2和19.5μC/cm2,耐电场强度可达到162kV/cm。由图4可以看出BSFS-BT-ST陶瓷在25-200℃范围内具有优异的的温度稳定性。
4)介电性能测试
请参阅图5,图5是BSFS-BT-ST陶瓷在不同频率下的介电常数-介电损耗图,该测试结果通过铁电测试仪(Radiant Technology Ferroelectric Tester)对实施例2制得的BSFS-BT-ST陶瓷测试得到。图5中的频率范围为可以看出,BSFS-BT-ST陶瓷介电图谱中出现两个峰,在高温位置的峰是频率相关峰,随着频率增加向高温的方向移动,说明BSFS-BT-ST陶瓷同时存在铁电相和弛豫相,而且峰值对应的介电常数随频率增加而减小,对应的温度最大值可达到400℃。同时从图5中可以看到,其介电损耗非常小,数值均在0.5以下,说明样品的绝缘性非常好。
5)压电性能测试
请同时参阅图6、图7、图8,图6是BSFS-BT-ST陶瓷在不同温度下压电常数d33和d31的数值变化图,图7是BSFS-BT-ST陶瓷的压电常数d33在室温下随时间的变化,图8是BSFS-BT-ST陶瓷的压电常数d33在室温下随单极循环次数的变化图。图7和图8中d33的值以BSFS-BT-ST陶瓷的初始值得百分比表示。由图6可以看出BSFS-BT-ST陶瓷的压电常数d33和d31在20-200℃内基本不变,其室温下数值分别为120pC/N和80pC/N,表明BSFS-BT-ST陶瓷具有较好的热稳定性。由图7可以看出在0-900小时内压电常数d33的值基本不变,相对改变<3%,说明BSFS-BT-ST陶瓷具有优异的老化性能。由图8可以看出BSFS-BT-ST陶瓷的压电常数d33随测量循环次数的增加没有明显的波动,相对改变<3%,且循环次数>105,说明BSFS-BT-ST陶瓷具有良好的疲劳特性。
实施例4
本发明实施例4提供了一种压电陶瓷传感器,其包括压电陶瓷电容器,所述压电陶瓷电容器包括底电极、顶电极以及电介质;所述电介质位于所述底电极与所述顶电极之间,所述电介质为实施例1所述压电陶瓷材料,所述压电陶瓷传感器压电性能高,压电输出灵敏度高,且工作温度高,使用寿命长。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种压电陶瓷材料,其特征在于:为钐、钪共掺杂铁酸铋-钛酸钡-钛酸锶压电陶瓷材料,其是由铁电材料BiFeO3、BaTiO3和SrTiO3通过掺杂稀土元素Sm、Sc并固相烧结制成,具有以下化学通式:0.4Bi0.85Sm0.15Fe0.95Sc0.05O3-0.27BaTiO3-0.33SrTiO3
2.根据权利要求1所述的压电陶瓷材料的制备方法,其特征在于,包括以下操作步骤:
步骤S1、配料
选取分析纯Bi2O3、BaCO3、TiO2、Sm2O3、Sc3O2、SrCO3和Fe2O3为原料,按制备化学通式为[0.4Bi0.85Sm0.15Fe0.95Sc0.05O3-0.27BaTiO3-0.33SrTiO3]体系所需化学计量比称取上述原料粉料;
步骤S2、球磨
对步骤S1所得原料粉料进行球磨处理,得到混合粉料;对所述混合粉料进行密封预烧2小时,再对预烧后的混合粉料进行二次球磨处理;
步骤S3、研磨造粒
向步骤S2所得混合粉料加入胶黏剂充分研磨造粒,然后压成压电陶瓷胚体;
步骤S4、排胶烧结
对步骤S3所得压电陶瓷胚体进行排胶处理,随后将排胶处理后的压电陶瓷胚体密封烧结3小时,待冷却后即得所述压电陶瓷材料。
3.根据权利要求2所述的压电陶瓷材料的制备方法,其特征在于:所述步骤S2中的球磨处理为在粉料中加入氧化锆磨球和乙醇后,以300~500转/分钟的转速球磨12~36小时。
4.根据权利要求3所述的压电陶瓷材料的制备方法,其特征在于:所述步骤S2中所述球磨处理中所述粉料与所述氧化锆磨球的质量比为1:1,所述氧化锆磨球的直径为3~6mm。
5.根据权利要求4所述的压电陶瓷材料的制备方法,其特征在于:所述步骤S2中氧化锆磨球中直径为6mm的磨球、直径为4~5mm的磨球以及直径为3mm的磨球的数量比为1:2:3。
6.根据权利要求5所述的压电陶瓷材料的制备方法,其特征在于:所述步骤S2中在球磨处理、密封预烧以及二次球磨处理后还包括对所得混合粉料进行烘干,并对烘干后不含乙醇的混合粉料进行研磨。
7.根据权利要求2所述的压电陶瓷材料的制备方法,其特征在于:所述步骤S2中所述密封预烧的具体操作步骤为先将干燥后的混合粉料放置于一个氧化铝坩埚中,并将该氧化铝坩埚正放置于氧化铝烧结板上,并在该氧化铝坩埚周围沿周向添加一层与所述混合粉料成分及配比相同的原料粉料;再在盛放有所述混合粉料的氧化铝坩埚上方倒扣放置一个氧化铝坩埚,并在倒扣放置的氧化铝坩埚开口处沿周向覆盖一层氧化铝粉末进行密封。
8.根据权利要求2所述的压电陶瓷材料的制备方法,其特征在于:步骤S3所述排胶处理为将压电陶瓷胚体先在300℃保温1小时后升温至500℃保温2小时;所述密封预烧的处理温度为800℃,所述密封烧结的处理温度为1100℃。
9.根据权利要求8所述的压电陶瓷材料的制备方法,其特征在于:所述步骤S4中所述密封烧结的具体操作步骤为先将所述陶瓷胚体正放置于氧化铝烧结板上,并在所述陶瓷胚体上添加一层与所述混合粉料成分及配比相同的原料粉料;再在所述陶瓷胚体的上方倒扣放置氧化铝坩埚,并在所述氧化铝坩埚开口处沿周向覆盖一层氧化铝粉末进行密封。
10.一种压电陶瓷传感器,其特征在于:包括压电陶瓷电容器;所述压电陶瓷电容器包括底电极、顶电极以及电介质;所述电介质位于所述底电极与所述顶电极之间,所述电介质为权利要求1所述压电陶瓷材料。
CN202010955959.6A 2020-09-11 2020-09-11 一种压电陶瓷材料、其制备方法及压电陶瓷传感器 Active CN112225550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010955959.6A CN112225550B (zh) 2020-09-11 2020-09-11 一种压电陶瓷材料、其制备方法及压电陶瓷传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010955959.6A CN112225550B (zh) 2020-09-11 2020-09-11 一种压电陶瓷材料、其制备方法及压电陶瓷传感器

Publications (2)

Publication Number Publication Date
CN112225550A true CN112225550A (zh) 2021-01-15
CN112225550B CN112225550B (zh) 2022-10-04

Family

ID=74117239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010955959.6A Active CN112225550B (zh) 2020-09-11 2020-09-11 一种压电陶瓷材料、其制备方法及压电陶瓷传感器

Country Status (1)

Country Link
CN (1) CN112225550B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493345A (zh) * 2021-06-30 2021-10-12 清华大学 一种掺钐的铁酸铋-钛酸钡陶瓷薄膜及其制备方法和应用
CN115231915A (zh) * 2022-07-19 2022-10-25 陕西科技大学 一种致密无杂相铁酸铋-钛酸锶陶瓷材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006738A (ja) * 2016-06-28 2018-01-11 キヤノン株式会社 圧電材料、圧電素子、液体吐出ヘッド、液体吐出装置、振動波モータ、光学機器、振動装置、塵埃除去装置、撮像装置および電子機器
CN109020541A (zh) * 2018-07-19 2018-12-18 华南师范大学 一种高性能环保电容器电介质及其制备方法
CN111205076A (zh) * 2020-03-03 2020-05-29 北京科技大学 一种铁酸铋-钛酸钡(BiFeO3-BaTiO3)压电陶瓷的制备方法
CN111320468A (zh) * 2020-03-03 2020-06-23 北京科技大学 一种掺杂型铁酸铋-钛酸钡无铅压电陶瓷材料的制备方法
CN111592346A (zh) * 2020-05-18 2020-08-28 哈尔滨工业大学 一种高纯高致密的a/b位多离子共掺杂铁酸铋基陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006738A (ja) * 2016-06-28 2018-01-11 キヤノン株式会社 圧電材料、圧電素子、液体吐出ヘッド、液体吐出装置、振動波モータ、光学機器、振動装置、塵埃除去装置、撮像装置および電子機器
CN109020541A (zh) * 2018-07-19 2018-12-18 华南师范大学 一种高性能环保电容器电介质及其制备方法
CN111205076A (zh) * 2020-03-03 2020-05-29 北京科技大学 一种铁酸铋-钛酸钡(BiFeO3-BaTiO3)压电陶瓷的制备方法
CN111320468A (zh) * 2020-03-03 2020-06-23 北京科技大学 一种掺杂型铁酸铋-钛酸钡无铅压电陶瓷材料的制备方法
CN111592346A (zh) * 2020-05-18 2020-08-28 哈尔滨工业大学 一种高纯高致密的a/b位多离子共掺杂铁酸铋基陶瓷及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DAISUKE KAN ET AL.: "Combinatorial Investigation of Structural and Ferroelectric Properties of A- and B-Site Co-Doped BiFeO3 Thin Films", 《INTEGRATED FERROELECTRICS》 *
FANG KANG ET AL.: "Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
N. WANG 等: "Structure, magnetic and ferroelectric properties of Sm and Sc doped BiFeO3 polycrystalline ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
XIANLU GAO ET AL.: "High energy storage performances of Bi1−xSmxFe0.95Sc0.05O3 lead-free ceramics synthesized by rapid hot press sintering", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
李妍等: "单/双离子替代对铁酸铋薄膜性能影响的研究进展", 《材料工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493345A (zh) * 2021-06-30 2021-10-12 清华大学 一种掺钐的铁酸铋-钛酸钡陶瓷薄膜及其制备方法和应用
CN115231915A (zh) * 2022-07-19 2022-10-25 陕西科技大学 一种致密无杂相铁酸铋-钛酸锶陶瓷材料的制备方法

Also Published As

Publication number Publication date
CN112225550B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN110511018B (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
JP5979992B2 (ja) 圧電材料
CN112225550B (zh) 一种压电陶瓷材料、其制备方法及压电陶瓷传感器
CN108546125B (zh) 一种面向高温环境应用的压电陶瓷材料及其制备方法
CN112876247B (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN110330332B (zh) 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法
CN111548156A (zh) 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法
CN113929450B (zh) 一种高压电性能的CaBi4Ti4O15陶瓷的制备方法
Hussain et al. Na0. 5Bi0. 5TiO3–BaZrO3 textured ceramics prepared by reactive templated grain growth method
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN113213918B (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
KR102628407B1 (ko) 배향 무연 압전 세라믹 조성물 및 이의 제조방법
Fang et al. Preparation and electrical properties of high-Curie temperature ferroelectrics
CN106986629B (zh) 一种钛酸铋基铋层状结构铁电陶瓷靶材的制备方法
CN115385675A (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
Takeuchi et al. Rapid preparation of lead titanate sputtering target using spark‐plasma sintering
CN114716241B (zh) 一种高电压陶瓷介质材料及其制备方法与应用
Tan et al. Preparation and Characterization of PbO-SrO-Na 2 O-Nb 2 O 5-SiO 2 Glass Ceramics Thin Film for High-Energy Storage Application
CN114507070B (zh) 一种掺杂改性的铌酸铋钙基陶瓷材料及其制备方法
CN108511112A (zh) 一种镍酸镧导电薄膜及其制备方法和应用
CN115340375B (zh) 一种宽温谱钛酸铋钠-钛酸钡基铁电陶瓷电介质材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant