CN112186310B - 电池舱内电芯温控方法、存储介质、电池管理*** - Google Patents

电池舱内电芯温控方法、存储介质、电池管理*** Download PDF

Info

Publication number
CN112186310B
CN112186310B CN202011066142.XA CN202011066142A CN112186310B CN 112186310 B CN112186310 B CN 112186310B CN 202011066142 A CN202011066142 A CN 202011066142A CN 112186310 B CN112186310 B CN 112186310B
Authority
CN
China
Prior art keywords
temperature
battery
air conditioner
controlling
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011066142.XA
Other languages
English (en)
Other versions
CN112186310A (zh
Inventor
栾淑利
王峰
王君生
晏辉
徐楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Svolt Energy Technology Co Ltd
Original Assignee
Svolt Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Svolt Energy Technology Co Ltd filed Critical Svolt Energy Technology Co Ltd
Priority to CN202011066142.XA priority Critical patent/CN112186310B/zh
Publication of CN112186310A publication Critical patent/CN112186310A/zh
Application granted granted Critical
Publication of CN112186310B publication Critical patent/CN112186310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种电池舱内电芯温控方法、存储介质、电池管理***,其中,电池舱内电芯温控方法包括以下步骤:获取电池舱内空调器的制冷设定温度和制热设定温度,并根据制冷设定温度和制热设定温度计算基准温度;获取每个电芯的实时温度,并根据每个电芯的实时温度确定最大电芯温度和最小电芯温度,以及根据最大电芯温度、最小电芯温度和基准温度计算电芯综合温度;根据电芯综合温度对电池舱内的每个空调器进行控制。由此,该温控方法能够精准控制电芯的温度,降低电池舱内各电芯之间的温差,同时能够降低能耗。

Description

电池舱内电芯温控方法、存储介质、电池管理***
技术领域
本发明涉及电池技术领域,具体涉及一种电池舱内电芯温控方法、一种计算机可读存储介质和一种电池管理***。
背景技术
当前,电化学储能***在发电侧调峰调频,新能源辅助上网,电网侧辅助服务,用户侧储能备电等领域得到广泛的应用。在储能***中电池电芯作为***的核心部件,保障电芯的使用安全对于储能***的安全可靠性起着尤为关键的作用。
在相关技术中,通常在电池舱内布置一台或多台空调器,每台空调器根据自行回风温度进行判断与制冷/制热的控制方案,且多台空调之间相互独立运行。由于各空调独立运行,容易导致电池舱内环境的温度不均匀性而增大电池仓内的电芯温差。并且由于空调器根据自行回风温度进行判断与控制,没有考虑电池舱内电芯的实际运行温度,由于电芯温度与环境温度的不一致性,容易产生对温度的过调或失调,不能实现对电芯温度的精准控制。在储能***的自耗电中,空调器占据了80%以上,因此需要采用合理的控制方案实现降低功耗的意义。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的第一个目的在于提出一种电池舱内电芯温控方法,能够精准控制电芯的温度,降低电池舱内各电芯之间的温差,同时能够降低空调器的运行能耗。
本发明的二个目的在于提出一种计算机可读存储介质。
本发明的三个目的在于提出一种电池管理***。
为达上述目的,本发明第一方面实施例提出了一种电池舱内电芯温控方法,该方法包括以下步骤:获取电池舱内空调器的制冷设定温度和制热设定温度,并根据所述制冷设定温度和制热设定温度计算基准温度;获取每个电芯的实时温度,并根据所述每个电芯的实时温度确定最大电芯温度和最小电芯温度,以及根据所述最大电芯温度、所述最小电芯温度和所述基准温度计算电芯综合温度;根据所述电芯综合温度对所述电池舱内的每个空调器进行控制。
本发明实施例的温控方法首先获取电池舱内空调器的制冷设定温度和制热设定温度,然后根据所获取的制冷设定温度和制热设定温度计算基准温度;再获取每个电芯的实时温度,再根据每个电芯的实时温度确定最大电芯温度和最小电芯温度,然后根据最大电芯温度、最小电芯温度和基准温度计算电芯综合温度,再利用计算得到的电芯综合温度对电池舱内的每个空调器进行控制。由此,该温控方法能够精准控制电芯的温度,降低电池舱内各电芯之间的温差,同时能够降低能耗。
在本发明的一些示例中,根据所述制热设定温度、所述最大电芯温度、所述最小电芯温度和所述基准温度计算电芯综合温度,包括:根据所述最大电芯温度、所述制热设定温度和所述基准温度计算权重值;根据所述最大电芯温度、所述最小电芯温度和所述权重值计算所述电芯综合温度。
在本发明的一些示例中,所述基准温度根据以下公式计算:T0=(Tsc–Tsh)/2+Tsh,其中,T0为所述基准温度,Tsc为所述制冷设定温度,Tsh为所述制热设定温度;所述权重值根据以下公式计算:q=(Tmax-T0)/(T0-Tsh),其中,q为所述权重值,Tmax为所述最大电芯温度;所述综合温度根据以下公式计算:T=Tmax*q+Tmin*(1-q),其中,T为所述综合温度,Tmin为所述最小电芯温度。
在本发明的一些示例中,根据所述电芯综合温度对所述电池舱内的每个空调器进行控制,包括:确定所述综合温度大于所述制冷设定温度时,控制每个空调器制冷运行;在每个空调器制冷运行的过程中,确定所述综合温度回落至所述制冷设定温度与预设的制冷温度回差值之差时,控制每个空调器停止制冷。
在本发明的一些示例中,根据所述电芯综合温度对所述电池舱内的每个空调器进行控制,包括:确定所述综合温度小于所述制热设定温度时,控制每个空调器制热运行;在每个空调器制热运行的过程中,确定所述综合温度上升至所述制热设定温度与预设的制热温度回差值之和时,控制每个空调器停止制热。
在本发明的一些示例中,所述电池舱内设置多簇电池,其中,根据每簇电池中的最大电芯温度和最小电芯温度计算每簇电池的簇内温差,并根据每簇电池的簇内温差确定最大簇内温差;确定电池当前是否处于静置状态,并在所述电池当前处于静置状态时,根据所述最大簇内温差对每个空调器的风机进行控制。
在本发明的一些示例中,根据所述最大簇内温差对每个空调器的风机进行控制,包括:判断所述最大簇内温差是否大于预设的最大温差,并在所述最大簇内温差大于预设的最大温差时控制每个空调器的风机开启;在每个空调器的风机运行过程中,确定所述最大簇内温差回落至所述预设的最大温差与设定的温差回差值之差时,控制每个空调器的风机关闭。
在本发明的一些示例中,电池舱内电芯温控方法还包括:获取所述电池舱内多个环境湿度采集点的湿度值,并计算多个湿度值的平均湿度;判断所述平均湿度是否大于设定湿度,并在确定所述平均湿度大于所述设定湿度时,控制每个空调器除湿运行;在每个空调器除湿运行的过程中,确定所述平均湿度回落至所述设定湿度与预设的湿度回差值之差时,控制每个空调器停止除湿。
为达上述目的,本发明第二方面实施例提出了一种计算机可读存储介质,其上存储有电池舱内电芯温控程序,该电池舱内电芯温控程序被处理器执行时实现如上述实施例所述的电池舱内电芯温控方法。
根据本发明实施例的计算机可读存储介质,处理器执行存储在该存储介质上的电池舱内电芯温控程序时,实现上述实施例中的电池舱内电芯温控方法,从而能够精准控制电芯的温度,降低电池舱内各电芯之间的温差,同时能够降低能耗。
为达上述目的,本发明第三方面实施例提出了一种电池管理***,该***包括存储器、处理器及存储在存储器上并可在处理器上运行的电池舱内电芯温控程序,所述处理器执行所述电池舱内电芯温控程序时,实现如上述实施例所述的电池舱内电芯温控方法。
根据本发明实施例的电池管理***,处理器执行存储在存储器上的电池舱内电芯温控程序时,实现上述实施例中的电池舱内电芯温控方法,从而能够精准控制电芯的温度,降低电池舱内各电芯之间的温差,同时能够降低能耗。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是本发明一个实施例的电池舱内电芯温控方法的流程图;
图2是本发明第一个实施例的电池舱内电芯温控方法的流程图;
图3是本发明第二个实施例的电池舱内电芯温控方法的流程图;
图4是本发明第三个实施例的电池舱内电芯温控方法的流程图;
图5是本发明第四个实施例的电池舱内电芯温控方法的流程图;
图6是本发明第四个实施例具体的电池舱内电芯温控方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的电池舱内电芯温控方法、存储介质、电池管理***。
图1是本发明一个实施例的电池舱内电芯温控方法的流程图。
如图1所示,电池舱内电芯温控方法包括以下步骤:
S10,获取电池舱内空调器的制冷设定温度和制热设定温度,并根据制冷设定温度和制热设定温度计算基准温度。
需要说明的是,电池舱内可以包括多个电芯,每个电芯可以由各自对应的空调器进行温度和湿度调节。在该实施例中,首先对电池舱内的空调器的制冷设定温度和制热设定温度进行获取,可以理解的是,空调器的制冷设定温度表示当电芯的温度达到该制冷设定温度时,则需要控制空调器进行制冷;类似的,空调器的制热设定温度则表示当电芯的温度达到该制热设定温度时,那么需要控制空调器进行制热。需要说明的是,空调器的制冷设定温度和制热设定温度可以根据电池舱内电芯的多次工作数据分析得出。
在获取到空调器的制冷设定温度和制热设定温度之后,则根据该制冷设定温度和制热设定温度计算基准温度。
具体地,在一些实施例中,基准温度的计算公式为T0=(Tsc–Tsh)/2+Tsh,其中,T0为基准温度,Tsc为制冷设定温度,Tsh为制热设定温度;
举例而言,如果制冷设定温度Tsc为25℃,制热设定温度Tsh为15℃,那么根据上述公式计算可以得到基准温度T0为20℃。
S20,获取每个电芯的实时温度,并根据每个电芯的实时温度确定最大电芯温度和最小电芯温度,以及根据最大电芯温度、最小电芯温度和基准温度计算电芯综合温度。
S30,根据电芯综合温度对电池舱内的每个空调器进行控制。
具体地,在计算得到基准温度之后,则再对每个电芯的实时温度进行获取,然后从各个电芯的实时温度中确定一个最大电芯温度和一个最小电芯温度。需要说明的是,电池舱中的各个电芯在工作过程中产生的热量并不会一致,所以各个电芯的实时温度不一样,从而可以获取到一个最大电芯温度和一个最小电芯温度。在获取到最大电芯温度和最小电芯温度之后,可以根据该最大电芯温度、最小电芯温度和计算获得的基准温度来计算电芯综合温度,然后根据计算得到的电芯综合温度对空调制进行控制。
在一些实施例中,根据制热设定温度、最大电芯温度、最小电芯温度和基准温度计算电芯综合温度包括:根据最大电芯温度、制热设定温度和基准温度计算权重值;根据最大电芯温度、最小电芯温度和权重值计算电芯综合温度。
具体地,在该实施例中,可以根据最大电芯温度、制热设定温度和基准温度计算权重值,更具体地,权重值可以根据以下公式计算:q=(Tmax-T0)/(T0-Tsh),其中,q为权重值,Tmax为最大电芯温度,T0为基准温度,Tsh为制热设定温度。在计算得到权重值之后,则可以进一步根据权重值、最大电芯温度和最小电芯温度计算电芯综合温度,具体地,电芯综合温度可以根据以下公式计算:T=Tmax*q+Tmin*(1-q),其中,T为电芯综合温度,Tmax为最大电芯温度,Tmin为最小电芯温度,q为权重值。
在本发明的一些实施例中,如图2所示,在综合温度大于制冷预设温度时,根据电芯综合温度对电池舱内的每个空调器进行控制包括:S101,确定综合温度大于制冷设定温度时,控制每个空调器制冷运行;S102,在每个空调器制冷运行的过程中,确定综合温度回落至制冷设定温度与预设的制冷温度回差值之差时,控制每个空调器停止制冷。
具体地,在通过上述实施例的计算公式得到电芯综合温度之后,将该综合温度与制冷设定温度进行比较,当综合温度大于制冷设定温度时,则控制每个空调器制冷运行。根据综合温度计算公式T=Tmax*q+Tmin*(1-q)可知,在每个空调器制冷运行过程中,由于最大电芯温度Tmax和权重值q都会逐渐变小,所以综合温度会随着变小。在该实施例中,当空调器以制冷模式运行时,可以实时检测电芯综合温度并对该综合温度进行判断,可选地,每隔预设时间对综合温度判断一次,其中,预设时间可以由人们自行设定,如5秒等。当判断得到综合温度回落至制冷设定温度与预设的制冷温度回差值之差时,则控制每个空调器停止制冷。需要说明的是,预设的制冷温度回差值可以是人们自己设定的,可以理解的是,通过该预设的制冷温度回差值能够更准确地控制空调器运行。
在本发明的一些实施例中,如图3所示,在综合温度小于制热预设温度时,根据电芯综合温度对电池舱内的每个空调器进行控制包括:S201,确定综合温度小于制热设定温度时,控制每个空调器制热运行;S202,在每个空调器制热运行的过程中,确定综合温度上升至制热设定温度与预设的制热温度回差值之和时,控制每个空调器停止制热。
具体地,在通过上述实施例的计算公式得到电芯综合温度之后,将该综合温度与制热设定温度进行比较,当综合温度小于制热设定温度时,则控制每个空调器制热运行。更具体地,根据综合温度计算公式T=Tmax*q+Tmin*(1-q)可知,在每个空调器制热运行过程中,由于最大电芯温度Tmax和权重值q都会逐渐变大,所以综合温度会随着变大。在该实施例中,当空调器以制热模式运行时,可以实时检测电芯综合温度对该综合温度进行判断,可选地,每隔预设时间对综合温度判断一次,其中,预设时间可以人们自行设定,如5秒等。当判断得到综合温度上升至制热设定温度与预设的制热温度回差值之和时,则控制每个空调器停止制热。需要说明的是,预设的制热温度回差值可以是人们自己设定的,可以理解的是,通过该预设的制热温度回差值能够更准确地控制空调器运行。
在本发明的一些实施例中,如图4所示,控制器对电池舱进行除湿包括以下步骤:S301,获取电池舱内多个环境湿度采集点的湿度值,并计算多个湿度值的平均湿度;S302,判断平均湿度是否大于设定湿度,并在确定平均湿度大于设定湿度时,控制每个空调器除湿运行;S303,在每个空调器除湿运行的过程中,确定平均湿度回落至设定湿度与预设的湿度回差值之差时,控制每个空调器停止除湿。
具体地,在该实施例中,空调器还可以对电池舱内的湿度进行处理。如图4所示,首先获取电池舱内的多个环境湿度采集点的湿度值,并计算多个湿度值的平均湿度,可以理解的是,环境湿度采集点可以均匀分布在电池舱内。在计算得到多个湿度值的平均湿度之后,则对该平均湿度进行判断,当该平均湿度大于设定湿度时,则控制每个空调器除湿运行。在该实施例中,当空调器以除湿模式运行时,可以实时检测电池舱内的平均湿度并对该平均湿度进行判断,可选地,每隔预设时间对平均湿度判断一次,其中,预设时间可以由人们自行设定,如5秒等。当判断得到平均湿度降低至设定湿度与预设的湿度回差值之差时,则控制每个空调器停止除湿。需要说明的是,预设的湿度回差值可以是人们自己设定的,可以理解的是,通过该预设的湿度回差值能够更准确地控制空调器运行。
在本发明的一些实施例中,电池舱内设置多簇电池,其中,如图5所示,空调器的风机控制包括以下步骤:S401,根据每簇电池中的最大电芯温度和最小电芯温度计算每簇电池的簇内温差,并根据每簇电池的簇内温差确定最大簇内温差;S402,确定电池当前是否处于静置状态,并在电池当前处于静置状态时,根据最大簇内温差对每个空调器的风机进行控制。
具体地,电池舱一般配置有多簇电池,可以理解的,每簇电池在工作过程中其自身的温度并不完全一致,即每簇电池内存在温度差,在该实施例中,可以根据每簇电池中的最大电芯温度和最小电芯温度计算得到每簇电池的簇内温差,再根据每簇电池的簇内温差筛选出最大簇内温差。可以理解的是,电池具有充电、放电和静置三种状态,在该实施例中,当电池当前处于静置状态时,则根据最大簇内温差对每个空调器的风机进行控制。
在该实施例中,如图6所示,根据最大簇内温差对每个空调器的风机进行控制包括:S403,判断最大簇内温差是否大于预设的最大温差,并在最大簇内温差大于预设的最大温差时控制每个空调器的风机开启;S404,在每个空调器的风机运行过程中,确定最大簇内温差回落至预设的最大温差与设定的温差回差值之差时,控制每个空调器的风机关闭。
具体地,在电池处于静置状态时,可以先对最大簇内温差与预设的最大差值进行判断,当最大簇内温差大于预设的最大温差时,则控制每个空调器的风机开启。在该实施例中,当空调器开启风机运行过程中,可以实时检测最大簇内温差并对该最大簇内温差进行判断,可选地,每隔预设时间对最大簇内温差判断一次,其中,预设时间可以由人们自行设定,如5秒等。当判断得到最大簇内温差回落至预设的最大温差与设定的温差回差值之差时,则控制每个空调器的风机关闭。需要说明的是,设定的温差回差值可以是人们自己设定的,可以理解的是,通过该设定的温差回差值能够更准确地控制空调器的风机运行。
需要说明的是,上述实施例中所出现的预设值和设定值都可以由人们进行设定,可选地,人们可以通过多次测试或者模拟测试从而得出预设值和设定值。
综上,本发明实施例中的电池舱内电芯温控方法能够精准控制电芯的温度,降低电池舱内各电芯之间的温差,同时能够降低能耗。
进一步地,本发明提出了一种计算机可读存储介质,其上存储有电池舱内电芯温控程序,该电池舱内电芯温控程序被处理器执行时实现如上述实施例中的电池舱内电芯温控方法。
本发明实施例的计算机可读存储介质,其上存储的与上述电池舱内电芯温控方法相对应的电池舱内电芯温控程序被执行时,能够精准控制电芯的温度,降低电池舱内各电芯之间的温差,同时能够降低能耗。
进一步地,本发明提出了一种电池管理***,该***包括存储器、处理器及存储在存储器上并可在处理器上运行的电池舱内电芯温控程序,处理器执行电池舱内电芯温控程序时,实现如上述实施例中的电池舱内电芯温控方法。
本发明实施例的电池管理***,在存储器上存储的与上述电池舱内电芯温控方法相对应的电池舱内电芯温控程序被执行时,能够精准控制电芯的温度,降低电池舱内各电芯之间的温差,同时能够降低能耗。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

1.一种电池舱内电芯温控方法,其特征在于,包括以下步骤:
获取电池舱内空调器的制冷设定温度和制热设定温度,并根据所述制冷设定温度和制热设定温度计算基准温度;
获取每个电芯的实时温度,并根据所述每个电芯的实时温度确定最大电芯温度和最小电芯温度,以及根据所述最大电芯温度、所述最小电芯温度和所述基准温度计算电芯综合温度;
根据所述电芯综合温度对所述电池舱内的每个空调器进行控制;
其中,根据所述制热设定温度、所述最大电芯温度、所述最小电芯温度和所述基准温度计算电芯综合温度,包括:
根据所述最大电芯温度、所述制热设定温度和所述基准温度计算权重值;
根据所述最大电芯温度、所述最小电芯温度和所述权重值计算所述电芯综合温度;
所述基准温度根据以下公式计算:
T0=(Tsc–Tsh)/2+Tsh,其中,T0为所述基准温度,Tsc为所述制冷设定温度,Tsh为所述制热设定温度;
所述权重值根据以下公式计算:
q=(Tmax-T0)/(T0-Tsh),其中,q为所述权重值,Tmax为所述最大电芯温度;
所述综合温度根据以下公式计算:
T=Tmax*q+Tmin*(1-q),其中,T为所述综合温度,Tmin为所述最小电芯温度。
2.如权利要求1所述的电池舱内电芯温控方法,其特征在于,根据所述电芯综合温度对所述电池舱内的每个空调器进行控制,包括:
确定所述综合温度大于所述制冷设定温度时,控制每个空调器制冷运行;
在每个空调器制冷运行的过程中,确定所述综合温度回落至所述制冷设定温度与预设的制冷温度回差值之差时,控制每个空调器停止制冷。
3.如权利要求1所述的电池舱内电芯温控方法,其特征在于,根据所述电芯综合温度对所述电池舱内的每个空调器进行控制,包括:
确定所述综合温度小于所述制热设定温度时,控制每个空调器制热运行;
在每个空调器制热运行的过程中,确定所述综合温度上升至所述制热设定温度与预设的制热温度回差值之和时,控制每个空调器停止制热。
4.如权利要求1所述的电池舱内电芯温控方法,其特征在于,所述电池舱内设置多簇电池,其中,
根据每簇电池中的最大电芯温度和最小电芯温度计算每簇电池的簇内温差,并根据每簇电池的簇内温差确定最大簇内温差;
确定电池当前是否处于静置状态,并在所述电池当前处于静置状态时,根据所述最大簇内温差对每个空调器的风机进行控制。
5.如权利要求4所述的电池舱内电芯温控方法,其特征在于,根据所述最大簇内温差对每个空调器的风机进行控制,包括:
判断所述最大簇内温差是否大于预设的最大温差,并在所述最大簇内温差大于预设的最大温差时控制每个空调器的风机开启;
在每个空调器的风机运行过程中,确定所述最大簇内温差回落至所述预设的最大温差与设定的温差回差值之差时,控制每个空调器的风机关闭。
6.如权利要求1所述的电池舱内电芯温控方法,其特征在于,还包括:
获取所述电池舱内多个环境湿度采集点的湿度值,并计算多个湿度值的平均湿度;
判断所述平均湿度是否大于设定湿度,并在确定所述平均湿度大于所述设定湿度时,控制每个空调器除湿运行;
在每个空调器除湿运行的过程中,确定所述平均湿度回落至所述设定湿度与预设的湿度回差值之差时,控制每个空调器停止除湿。
7.一种计算机可读存储介质,其特征在于,其上存储有电池舱内电芯温控程序,该电池舱内电芯温控程序被处理器执行时实现如权利要求1-6中任一项所述的电池舱内电芯温控方法。
8.一种电池管理***,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的电池舱内电芯温控程序,所述处理器执行所述电池舱内电芯温控程序时,实现如权利要求1-6中任一项所述的电池舱内电芯温控方法。
CN202011066142.XA 2020-09-30 2020-09-30 电池舱内电芯温控方法、存储介质、电池管理*** Active CN112186310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011066142.XA CN112186310B (zh) 2020-09-30 2020-09-30 电池舱内电芯温控方法、存储介质、电池管理***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011066142.XA CN112186310B (zh) 2020-09-30 2020-09-30 电池舱内电芯温控方法、存储介质、电池管理***

Publications (2)

Publication Number Publication Date
CN112186310A CN112186310A (zh) 2021-01-05
CN112186310B true CN112186310B (zh) 2021-12-21

Family

ID=73949302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011066142.XA Active CN112186310B (zh) 2020-09-30 2020-09-30 电池舱内电芯温控方法、存储介质、电池管理***

Country Status (1)

Country Link
CN (1) CN112186310B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116780019B (zh) * 2023-06-20 2024-03-19 苏州黑盾环境股份有限公司 一种风冷储能空调电芯温度控制的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026116A (ja) * 2011-07-25 2013-02-04 Toyota Industries Corp 電池温度制御システムおよび方法
US9337680B2 (en) * 2013-03-12 2016-05-10 Ford Global Technologies, Llc Method and system for controlling an electric vehicle while charging
CN104979594B (zh) * 2014-04-02 2018-02-09 比亚迪股份有限公司 动力电池的控制方法及***
CN105720318B (zh) * 2014-12-03 2019-06-21 广州汽车集团股份有限公司 一种新能源汽车的液冷电池***及其温度控制方法
CN107203145A (zh) * 2016-03-17 2017-09-26 姜洪军 一种含智能终端产品和自动控制***的互联互通智能网络化管理平台
CN107336577A (zh) * 2016-12-26 2017-11-10 安徽江淮汽车集团股份有限公司 电动车辆双蒸发器空调控制方法及装置
US10424821B2 (en) * 2017-04-03 2019-09-24 Yotta Solar, Inc. Thermally regulated modular energy storage device and methods
CN108471139B (zh) * 2018-04-27 2021-03-23 国网天津市电力公司 一种含新能源和温控负荷的区域电网动态需求响应方法
CN108819774B (zh) * 2018-07-03 2021-06-15 北京航空航天大学 电动汽车以及其电池管理***
CN109088124B (zh) * 2018-08-01 2021-01-12 桑德新能源技术开发有限公司 电池液冷***的控制策略确定方法及装置
CN109616719B (zh) * 2018-10-23 2020-12-01 深圳市科陆电子科技股份有限公司 基于储能电池温度差异的空调温控***及控制方法
CN209796380U (zh) * 2019-04-28 2019-12-17 蜂巢能源科技有限公司 储能集装箱
CN110661058A (zh) * 2019-08-22 2020-01-07 西安开天铁路电气股份有限公司 一种封闭式碳酸锂储能舱温湿度控制***
CN111009703A (zh) * 2019-12-26 2020-04-14 上海派能能源科技股份有限公司 一种电池的加热控制装置及其加热控制方法
CN211578828U (zh) * 2020-02-19 2020-09-25 蜂巢能源科技有限公司 储能集装箱以及储能***
CN211350906U (zh) * 2020-02-25 2020-08-25 蜂巢能源科技有限公司 储能电池插箱及其储能***

Also Published As

Publication number Publication date
CN112186310A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN108302719B (zh) 多联机空调***的控制方法、装置、***和存储介质
US8207740B2 (en) Method for use with a vehicle battery pack having a number of individual battery cells
CN108297677B (zh) 纯电动汽车及其冷却***的控制方法和控制装置
US20080284378A1 (en) Method and Device for Controlling the Operating Point of a Battery
CN109297134B (zh) 一种空调的过负荷保护方法、装置、存储介质及空调
WO2011155186A1 (en) Charging control system
CN111216598A (zh) 电动汽车及其蓄电池的充电方法与装置
CN109751731B (zh) 一种空调机组控制方法和装置
CN108063293B (zh) 电池组均衡控制方法及控制***
KR20170092984A (ko) 배터리 관리 장치 및 방법
CN110726204B (zh) 空调机器人的自动回充控制方法和装置
CN112186310B (zh) 电池舱内电芯温控方法、存储介质、电池管理***
CN110608518A (zh) 运行控制方法、装置、空调器和计算机可读存储介质
JP2016125932A (ja) 二次電池の劣化状態推定装置
CN116544564A (zh) 车用液冷热管理的测试方法、装置、液冷机组和电子设备
CN108800464B (zh) 空调的节能控制方法、装置及空调
CN111370812B (zh) 一种电池加热控制方法、装置、***及存储介质
US20160104924A1 (en) Secondary Battery System
JP2023514203A (ja) バッテリ退化度算出方法及びバッテリ退化度算出装置
CN111952681B (zh) 电池***、车辆以及控制电池***的方法
CN116565394A (zh) 一种储能***温度控制方法、装置及储能***
CN112564068A (zh) 保护控制方法与装置、存储介质、控制器、设备
CN114552068A (zh) 车辆及其动力电池加热方法、装置及存储介质
CN114683960A (zh) 动力电池soc显示控制方法与装置、存储介质、管理***
CN110808436B (zh) 电池模组控制方法、装置和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: No.8899 Xincheng Avenue, Jintan District, Changzhou City, Jiangsu Province

Patentee after: SVOLT Energy Technology Co.,Ltd.

Address before: No.8899 Xincheng Avenue, Jintan District, Changzhou City, Jiangsu Province

Patentee before: SVOLT Energy Technology Co.,Ltd.

CP01 Change in the name or title of a patent holder