CN112133638B - 一种基于前驱溶液控制ZnO膜成膜厚度的方法及其应用 - Google Patents

一种基于前驱溶液控制ZnO膜成膜厚度的方法及其应用 Download PDF

Info

Publication number
CN112133638B
CN112133638B CN202010351032.1A CN202010351032A CN112133638B CN 112133638 B CN112133638 B CN 112133638B CN 202010351032 A CN202010351032 A CN 202010351032A CN 112133638 B CN112133638 B CN 112133638B
Authority
CN
China
Prior art keywords
precursor solution
acetic acid
film
concentration
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010351032.1A
Other languages
English (en)
Other versions
CN112133638A (zh
Inventor
王肖珩
肖志河
周翔
乔元哲
周健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Changfeng Electromechanical Technology Research And Design Institute
Beijing Institute of Environmental Features
Beijing Institute of Remote Sensing Equipment
Original Assignee
China Changfeng Electromechanical Technology Research And Design Institute
Beijing Institute of Environmental Features
Beijing Institute of Remote Sensing Equipment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Changfeng Electromechanical Technology Research And Design Institute, Beijing Institute of Environmental Features, Beijing Institute of Remote Sensing Equipment filed Critical China Changfeng Electromechanical Technology Research And Design Institute
Priority to CN202010351032.1A priority Critical patent/CN112133638B/zh
Publication of CN112133638A publication Critical patent/CN112133638A/zh
Application granted granted Critical
Publication of CN112133638B publication Critical patent/CN112133638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种基于前驱体溶液控制ZnO膜成膜厚度的方法及其应用。该方法通过将前驱体溶液通过化学气相沉积法得到ZnO膜,所述前驱体溶液为添加有乙酸的乙酸锌水溶液,通过控制乙酸在前驱体溶液中的浓度来控制ZnO膜的成膜厚度;其中,乙酸在前驱体溶液中的浓度为0.06‑0.09。本发明通过调节前驱体溶液中的乙酸浓度来控制热解反应及ZnO高温结晶生长速度,进而非常有效地改变ZnO薄膜厚度;本发明将乙酸在前驱体溶液中的浓度控制在0.06‑0.09,找到了最适合ZnO薄膜均匀稳定生长的乙酸浓度,并能够达到利用乙酸浓度调控薄膜厚度在百纳米级的变化,成膜厚度从200nm~400nm可调。

Description

一种基于前驱溶液控制ZnO膜成膜厚度的方法及其应用
技术领域
本发明涉及光电产品技术领域,尤其涉及一种基于前驱溶液控制ZnO膜成膜厚度的方法及其应用。
背景技术
ZnO是直接带隙宽禁带半导体,其高激子束缚能使得ZnO在室温或更高温度下可发生受激发射,且具有较高稳定性,这一特性使其在短波段具有优异的发光特性而受到了广泛的关注。薄膜生长工艺是决定材料、器件的关键,所以制备性能良好、重复性高的薄膜是获得高性能紫外探测器的关键前提。而薄膜厚度是影响薄膜性质的一个因素。因此,如何实现ZnO膜厚度可调是一个待解决的问题。
发明内容
本发明的第一目的是提供一种基于前驱体溶液控制ZnO膜成膜厚度的方法。
本发明的第二目的是提供一种利用上述方法制备200-400nm厚的ZnO膜的方法。
为了实现上述目的,本发明提供了如下技术方案:
一种基于前驱体溶液控制ZnO膜成膜厚度的方法,通过将前驱体溶液通过化学气相沉积法得到ZnO膜,所述前驱体溶液为添加有乙酸的乙酸锌水溶液,通过控制乙酸在前驱体溶液中的浓度来控制ZnO膜的成膜厚度;其中,乙酸在前驱体溶液中的浓度为0.06-0.09。
优选地,所述乙酸锌水溶液的浓度为0.5-0.7mol/L,优选为0.5mol/L。
优选地,在所述化学气相沉积法中,所用载气为氮气;
优选地,载气流速为3-6L/min,更优选为4L/min。
优选地,在所述化学气相沉积法中,生长温度为300-350℃,优选为300℃。
优选地,在所述化学气相沉积法中,生长衬底为玻璃衬底。
优选地,所述ZnO膜的厚度为200-400nm。
本发明还提供了利用上述任一种方法制备200-400nm厚的ZnO膜的方法,其特征在于,所述方法包括如下步骤:
配制前驱体溶液,所述前驱体溶液为添加有乙酸的乙酸锌水溶液,乙酸在前驱体溶液中的浓度为0.06-0.09;以及
所述前驱体溶液经化学气相沉积而得到200-400nm厚的ZnO膜。
优选地,所述乙酸锌水溶液的浓度为0.5-0.7mol/L,优选为0.5mol/L。
优选地,在所述化学气相沉积法中,所用载气为氮气;
优选地,载气流速为3-6L/min,更优选为4L/min。
优选地,在所述化学气相沉积法中,生长温度为300-350℃,优选为300℃;和/或在所述化学气相沉积法中,生长衬底为玻璃衬底。
有益效果
本发明的上述技术方案具有如下优点:
本发明通过调节前驱体溶液中的乙酸浓度来控制热解反应及ZnO高温结晶生长速度,进而非常有效地改变ZnO薄膜厚度;本发明将乙酸在前驱体溶液中的浓度控制在0.06-0.09。如果前驱体溶液中乙酸浓度低于<00.06,ZnO薄膜不能在衬底上沉积,是因为正向反应速度太快,刚结晶的白色ZnO粉来不及沉积就被载气带走,腔体内壁能够观察到大量白色粉末。乙酸浓度高于0.09时,反应速度过慢,ZnO在衬底的停留时间过长,生成薄膜过厚,透过率明显降低。
本发明优选采用乙酸锌作为Zn源,并且将前驱体溶液的浓度控制在为0.5-0.7mol/L,最优选为0.5mol/L。如果前驱体溶液过于黏稠,或溶质的熔点、沸点较高,可能不是以气相,而是以液滴形式在生长衬底表面缓慢溶解、蒸发,降落到衬底表面颗粒较大,形成的薄膜表面有岛状的颗粒,影响薄膜表面平整度。如果溶质在很低的温度下就会分解,在下降过程中,热分解反应就已经进行,那么将不会形成透明的薄膜状结构,而是一层白色粉末,有些情况还会被载气带走。
本发明通过对化学沉积工艺参数进行控制,使得本发明提供的方法可以按照模式C成膜。
附图说明
图1是不同乙酸浓度时,ZnO的薄膜厚度与乙酸含量的关系,d表示薄膜厚度。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
<第一方面>
本发明在第一方面提供了一种基于前驱体溶液控制ZnO膜成膜厚度的方法,通过将前驱体溶液通过化学气相沉积法得到ZnO膜,所述前驱体溶液为添加有乙酸的乙酸锌水溶液,通过控制乙酸在前驱体溶液中的浓度来控制ZnO膜的成膜厚度;其中,乙酸在前驱体溶液中的浓度为0.06-0.09。
前驱体溶液
前驱体溶液提供Zn源。本发明采用乙酸锌作为Zn源,热解速度可调。
另外,本发明还在乙酸锌水溶液中加入了乙酸,并且通过控制乙酸在前驱体溶液中的浓度来控制ZnO膜的成膜厚度。
发明人在研究中发现,前驱体溶液中的乙酸浓度对于沉积得到的ZnO膜的成膜厚度有一定的影响,通过调节前驱体溶液中的乙酸浓度能控制热解反应及ZnO高温结晶生长速度,进而非常有效地改变ZnO薄膜厚度。随着乙酸浓度的少量增加,ZnO薄膜厚度明显增加。因此,本发明提供的方法可以有效地取代通过生长时间来控制薄膜厚度,在相同的时间里只需要少量调节前驱体溶液中的乙酸浓度就可以有效实现薄膜厚度100nm的变化。
本发明将乙酸在前驱体溶液中的浓度(指体积比,即乙酸体积与前驱体溶液体积之比)控制在0.06-0.09。如果前驱体溶液中乙酸浓度低于<0.06,ZnO薄膜不能在衬底上沉积,是因为正向反应速度太快,刚结晶的白色ZnO粉来不及沉积就被载气带走,腔体内壁能够观察到大量白色粉末。乙酸浓度高于0.09时,反应速度过慢,ZnO在衬底的停留时间过长,生成薄膜过厚,透过率明显降低。
另外,本发明所用的乙酸锌水溶液的浓度优选为0.5-0.7mol/L,最优选为0.5mol/L。
化学气相沉积法
化学气相沉积法属于制备半导体氧化物薄膜的常规方法,通过载气将有源化合物以气态形式带入生长室,在被加热的生长衬底上有源化合物发生水解反应,而后氧化物结晶择优生在生长衬底上形成薄膜。
在本发明中,所用载气为氮气和/或氢气;优选地,载气流速为3-6L/min,更优选为4L/min。
在本发明中,生长温度为300-350℃,优选为300℃。
在本发明中,生长衬底为玻璃衬底。
1)ZnO晶体择优生长模式
利用化学气相沉积法生长ZnO薄膜时,在高温下乙酸盐分解生成ZnO晶体,随温度、浓度等不同,ZnO晶粒择优生长沉积薄膜过程存在如图1的几种模式:
在模式A中,随着气溶胶小液滴降落至沉积位置表面的过程,乙酸锌发生热分解反应,分子在衬底表面发生迁移运动,结晶生长薄膜,颗粒较大,形成的薄膜表面有岛状的颗粒,薄膜表面不均匀。
在模式B中,小液滴下降过程中溶剂蒸发,留下粉末状的乙酸锌溶质降落到衬底表面,一部分继续发生热分解反应,一部分被载气带走。
在模式C中,小液滴下降过程中水蒸汽不断蒸发,气相高温的溶质与生长层的水蒸气结合,高温下生成乙酸盐中间产物,吸附在衬底表面进行热解反应成膜。
在模式D中,在更高温度下,气相的溶质与水蒸气结合,生成乙酸盐中间产物后,在到达衬底前发生热解反应。
模式C是比较理想的成膜条件,液滴在下降过程中失去水分,在衬底表面迁移,乙酸锌高温分解,与水蒸气生成乙酸盐中间产物吸附在生长衬底上,随后经过高温分解,在生长衬底表面沉积ZnO薄膜。这样的条件比较容易获得择优取向晶向的单晶薄膜。实际情况并不是唯一的选定其中一种情况结晶,多是在几种情况共同作用的结果。本发明提供的方法可以按照模式C成膜,即择优生长模式为模式C。
另外,发明人还发现,如果前驱体溶液过于黏稠,或溶质的熔点、沸点较高,可能不是以气相,而是以液滴形式在生长衬底表面缓慢溶解、蒸发,降落到衬底表面颗粒较大,形成的薄膜表面有岛状的颗粒,影响薄膜表面平整度。发明人还发现,如果溶质在很低的温度下就会分解,在下降过程中,热分解反应就已经进行,那么将不会形成透明的薄膜状结构,而是一层白色粉末。有些情况还会被载气带走。因此,正如上文所述,本发明优选采用乙酸锌作为Zn源,并且将前驱体溶液的浓度控制在0.5-0.7mol/L,优选为0.5mol/L。
2)生长ZnO薄膜化学反应步骤
本发明生成ZnO薄膜的化学反应分为如下步骤:
Figure BDA0002471943450000051
Figure BDA0002471943450000052
Figure BDA0002471943450000053
随雾状颗粒在趋向加热层过程,水分减少,薄膜组分物质熔化或升华,传递至沉积层位置,乙酸锌高温下分解,首先生成乙酸盐,接着生成ZnO,乙酸在300℃时挥发,随载气被带走。要获得择优取向生长的ZnO单晶薄膜,经质量光谱测定法证明,首先分解生成乙酸盐是高质量ZnO薄膜沉积必须经历的中间产物。
综上,前驱体溶液的选择及溶液浓度等具体的工艺参数对薄膜透过率、均匀性、成膜面积、厚度等影响较大,最终决定了薄膜的成膜质量。对于弱酸盐水解反应生成ZnO薄膜的制备,选用适当浓度及含量的弱酸添加至前驱溶液当中,能够控制反应速度,进而较大程度的影响成膜质量,且能够控制薄膜厚度在百纳米级的变化。本发明找到了最适合ZnO薄膜均匀稳定生长的乙酸浓度,并能够达到利用乙酸浓度调控薄膜厚度在百纳米级的变化,成膜厚度从200nm~400nm可调。利用这种工艺参数制备的ZnO薄膜透过性高、可重复性高、性能稳定,只需调节弱酸浓度就可以达到控制结晶成膜的目的,是化学气相沉积法制备薄膜工艺的新方法。
<第二方面>
本发明在第二方面提供了一种利用第一方面提供的所述方法制备200-400nm厚的ZnO膜的方法。具体地,所述方法包括如下步骤:
配制前驱体溶液,所述前驱体溶液为添加有乙酸的乙酸锌水溶液,乙酸在前驱体溶液中的浓度为0.06-0.09;以及
所述前驱体溶液经超声雾化、热解反应、晶体择优生长而得到200-400nm厚的ZnO膜。
在一些优选的实施方式中,所述乙酸锌水溶液的浓度为0.5-0.7mol/L,优选为0.5mol/L。
在一些优选的实施方式中,在所述化学气相沉积法中,所用载气为氮气和/或氢气;优选地,载气流速为3-6L/min,更优选为4L/min。
在一些优选的实施方式中,在所述化学气相沉积法中,生长温度为300-350℃,优选为300℃;和/或在所述化学气相沉积法中,生长衬底为玻璃衬底。
本发明使用化学气相沉积法生长ZnO薄膜,从晶体生长吸附过程、择优生长模式几个维度分析了ZnO制备的原理,得到了可以控制薄膜生长质量、均匀度、透过率、厚度等重要参数的方法,是制备ZnO薄膜工艺的新方法。
以下是本发明列举的实施例。
实施例1
利用化学气相沉积法生长ZnO薄膜的前驱溶液选择Zn(CH3COO)2作为Zn源,并加入一定量的乙酸,乙酸在前驱体溶液中的浓度为0.04。选择在玻璃衬底沉积薄膜。生长过程中以氮气作为载气,流量为4L/min,生长温度设定在300℃,沉积时间为30分钟。
结果:ZnO薄膜不能在衬底上沉积,刚结晶的白色ZnO粉来不及沉积就被载气带走,腔体内壁能够观察到大量白色粉末。
实施例2
利用化学气相沉积法生长ZnO薄膜的前驱溶液选择Zn(CH3COO)2作为Zn源,并加入一定量的乙酸,乙酸在前驱体溶液中的浓度为0.06。选择在玻璃衬底沉积薄膜。生长过程中以氮气作为载气,流量为4L/min,生长温度设定在300℃,沉积时间为30分钟。
该方法能够在直径为10cm大小的衬底上沉积厚度均匀的薄膜厚度见图1。
实施例3
利用化学气相沉积法生长ZnO薄膜的前驱溶液选择Zn(CH3COO)2作为Zn源,并加入一定量的乙酸,乙酸在前驱体溶液中的浓度为0.07。选择在玻璃衬底沉积薄膜。生长过程中以氮气作为载气,流量为4L/min,生长温度设定在300℃,沉积时间为30分钟。
该方法能够在直径为10cm大小的衬底上沉积厚度均匀的薄膜厚度见图1。
实施例4
利用化学气相沉积法生长ZnO薄膜的前驱溶液选择Zn(CH3COO)2作为Zn源,并加入一定量的乙酸,乙酸在前驱体溶液中的浓度为0.08。选择在玻璃衬底沉积薄膜。生长过程中以氮气作为载气,流量为4L/min,生长温度设定在300℃,沉积时间为30分钟。
该方法能够在直径为10cm大小的衬底上沉积厚度均匀的薄膜厚度见图1。
实施例5
利用化学气相沉积法生长ZnO薄膜的前驱溶液选择Zn(CH3COO)2作为Zn源,并加入一定量的乙酸,乙酸在前驱体溶液中的浓度为0.09。选择在玻璃衬底沉积薄膜。生长过程中以氮气作为载气,流量为4L/min,生长温度设定在300℃,沉积时间为30分钟。
该方法能够在直径为10cm大小的衬底上沉积厚度均匀的薄膜厚度见图1。
实施例6
利用化学气相沉积法生长ZnO薄膜的前驱溶液选择Zn(CH3COO)2作为Zn源,并加入一定量的乙酸,乙酸在前驱体溶液中的浓度为0.11。选择在玻璃衬底沉积薄膜。生长过程中以氮气作为载气,流量为4L/min,生长温度设定在300℃,沉积时间为30分钟。
结果:反应速度过慢,ZnO在衬底的停留时间过长,生成薄膜的透过率明显降低。
通过上述实施例可知,在加热温度为300℃时,如果前驱液中乙酸添加量过少(<0.06),ZnO薄膜不能在衬底上沉积,是因为正向反应速度太快,刚结晶的白色ZnO粉来不及沉积就被载气带走,实验过程中,腔体内壁能够观察到大量白色粉末。乙酸含量过多时(>0.09),反应速度过慢,ZnO在衬底的停留时间过长,生成薄膜过厚,透过率明显降低。生长温度为300℃,载气流速为4L/min的条件下,通过调节前驱液中乙酸含量可以充分控制ZnO结晶速度,进而非常有效地改变薄膜厚度:随乙酸含量少量增加,薄膜厚度明显增加。这种新方法可以有效地取代通过生长时间来控制薄膜厚度,在相同的时间里只需要少量调节乙酸含量就可以有效实现薄膜厚度100nm的变化,从200nm~400nm可调。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (17)

1.一种基于前驱体溶液控制ZnO膜成膜厚度的方法,通过将前驱体溶液通过化学气相沉积法得到ZnO膜,其特征在于:
所述前驱体溶液为添加有乙酸的乙酸锌水溶液,通过控制乙酸在前驱体溶液中的浓度来控制ZnO膜的成膜厚度;其中,乙酸在前驱体溶液中的浓度为0.06-0.09;所述乙酸在前驱体溶液中的浓度为乙酸体积与前驱体溶液体积之比;所述乙酸锌水溶液的浓度为0.5-0.7mol/L。
2.根据权利要求1所述的方法,其特征在于:
所述乙酸锌水溶液的浓度为0.5mol/L。
3.根据权利要求1所述的方法,其特征在于:
在所述化学气相沉积法中,所用载气为氮气。
4.根据权利要求3所述的方法,其特征在于:
所述载气的流速为3-6L/min。
5.根据权利要求4所述的方法,其特征在于:
所述载气的流速为4L/min。
6.根据权利要求1所述的方法,其特征在于:
在所述化学气相沉积法中,生长温度为300-350℃。
7.根据权利要求1所述的方法,其特征在于:
在所述化学气相沉积法中,生长温度为300℃。
8.根据权利要求1所述的方法,其特征在于:
在所述化学气相沉积法中,生长衬底为玻璃衬底。
9.根据权利要求1所述的方法,其特征在于:
所述ZnO膜的厚度为200-400nm。
10.利用权利要求1至9任一项所述方法制备200-400nm厚的ZnO膜的方法,其特征在于,所述方法包括如下步骤:
配制前驱体溶液,所述前驱体溶液为添加有乙酸的乙酸锌水溶液,乙酸在前驱体溶液中的浓度为0.06-0.09;以及
所述前驱体溶液经化学气相沉积而得到200-400nm厚的ZnO膜。
11.根据权利要求10所述的方法,其特征在于:
所述乙酸锌水溶液的浓度为0.5-0.7mol/L。
12.根据权利要求11所述的方法,其特征在于:
所述乙酸锌水溶液的浓度为0.5mol/L。
13.根据权利要求10所述的方法,其特征在于:
在所述化学气相沉积法中,所用载气为氮气。
14.根据权利要求13所述的方法,其特征在于:
所述载气的流速为3-6L/min。
15.根据权利要求14所述的方法,其特征在于:
所述载气的流速为4L/min。
16.根据权利要求15所述的方法,其特征在于:
在所述化学气相沉积法中,生长温度为300-350℃;和/或在所述化学气相沉积法中,生长衬底为玻璃衬底。
17.根据权利要求16所述的方法,其特征在于:
在所述化学气相沉积法中,所述生长温度为300-350℃。
CN202010351032.1A 2020-04-28 2020-04-28 一种基于前驱溶液控制ZnO膜成膜厚度的方法及其应用 Active CN112133638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010351032.1A CN112133638B (zh) 2020-04-28 2020-04-28 一种基于前驱溶液控制ZnO膜成膜厚度的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010351032.1A CN112133638B (zh) 2020-04-28 2020-04-28 一种基于前驱溶液控制ZnO膜成膜厚度的方法及其应用

Publications (2)

Publication Number Publication Date
CN112133638A CN112133638A (zh) 2020-12-25
CN112133638B true CN112133638B (zh) 2023-06-16

Family

ID=73850399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010351032.1A Active CN112133638B (zh) 2020-04-28 2020-04-28 一种基于前驱溶液控制ZnO膜成膜厚度的方法及其应用

Country Status (1)

Country Link
CN (1) CN112133638B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880413A1 (en) * 2005-04-14 2008-01-23 Tallinn University of Technology Method of preparing zinc oxide nanorods on a substrate by chemical spray pyrolysis
CN102747424A (zh) * 2012-08-06 2012-10-24 苏州汶颢芯片科技有限公司 一种在ito玻璃上制备可调控直径和高度的氧化锌纳米线/管阵列的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3190593B2 (ja) * 1997-03-27 2001-07-23 スター精密株式会社 亜酸化銅膜の製造方法
CN101086060A (zh) * 2007-07-17 2007-12-12 湘潭大学 一种制备具有室温铁磁性氧化锌基稀磁半导体薄膜的方法
CN102165097A (zh) * 2008-09-24 2011-08-24 东芝三菱电机产业***株式会社 氧化锌膜(ZnO)或氧化镁锌膜(ZnMgO)的成膜方法及氧化锌膜或氧化镁锌膜的成膜装置
CN102330075A (zh) * 2011-09-26 2012-01-25 中国地质大学(武汉) 一种ZnO基透明导电薄膜的制备方法
CN108385089B (zh) * 2018-03-07 2019-10-29 北京环境特性研究所 一种超声雾化热解沉积装置及利用该装置制备薄膜的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880413A1 (en) * 2005-04-14 2008-01-23 Tallinn University of Technology Method of preparing zinc oxide nanorods on a substrate by chemical spray pyrolysis
CN102747424A (zh) * 2012-08-06 2012-10-24 苏州汶颢芯片科技有限公司 一种在ito玻璃上制备可调控直径和高度的氧化锌纳米线/管阵列的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
前驱体浓度对超声雾化热解法制备ZnO薄膜性能的影响;周佳;韩高荣;李敏睿;;材料导报(第01期);正文全文 *

Also Published As

Publication number Publication date
CN112133638A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
US8808801B2 (en) Method of preparing zinc oxide nanorods on a substrate by chemical spray pyrolysis
Yahia et al. Raman study of oriented ZnO thin films deposited by sol–gel method
TW202000582A (zh) 用於製造二維材料之化學氣相沈積方法
KR100825765B1 (ko) 산화물계 나노 구조물의 제조 방법
CN111893565A (zh) 一种利用促进剂生长单层二硫化钼或二硒化钼的方法
Lee et al. Effects of the deposition condition on the microstructure and properties of ZnO thin films deposited by metal organic chemical vapor deposition with ultrasonic nebulization
CN112133638B (zh) 一种基于前驱溶液控制ZnO膜成膜厚度的方法及其应用
CN109706434B (zh) 一种固溶体纳米线及其制备方法和用途
EP2024291A2 (en) Method of depositing zinc oxide coatings on a substrate
JPH01301515A (ja) 透明な導電性酸化亜鉛層及びその形成方法
US20090091033A1 (en) Fabrication of metal oxide films
CN110607516B (zh) 一种单层或双层二硫化钨薄膜的制备方法
Kim Parametric dependence of CsPbI2Br perovskite film growth using a mist chemical vapor deposition method
JP3991815B2 (ja) 酸化亜鉛結晶膜の育成方法
Helbing et al. Growth of CaS thin films by solid source metalorganic chemical vapor deposition
Pirposhte et al. ZnO Thin Films: Fabrication Routes, and Applications
Ikhmayies Tuning the properties of nanocrystalline CdS thin films
KR101317406B1 (ko) 실리카 나노와이어의 제조 방법
Rameshkumar et al. Structural Studies of ZnO: Al Thin Film Synthesized by Low Cost Spray Pyrolysis for Optoelectronic Applications
Mateen Some methodologies used for the synthesis of cuprous oxide: a review
CN108396290B (zh) 一种TiZn合金膜及其制备方法和用途
RU2397572C1 (ru) Способ получения пленочных покрытий оксида олова на подложках
CN102275978A (zh) 一种自催化生长ZnO纳米结构的气相沉积方法
Taskin et al. Study the Effect of Molar Concentration on the Optical and Surface Properties of ZnO Thin Films Prepared by Spray Pyrolysis
CN108585531B (zh) 一种有机-无机杂化铅卤化物钙钛矿纳米线的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant