CN112126814B - 一种空心阴极铋灯阴极用铜铋合金及其制备方法 - Google Patents

一种空心阴极铋灯阴极用铜铋合金及其制备方法 Download PDF

Info

Publication number
CN112126814B
CN112126814B CN201910553858.3A CN201910553858A CN112126814B CN 112126814 B CN112126814 B CN 112126814B CN 201910553858 A CN201910553858 A CN 201910553858A CN 112126814 B CN112126814 B CN 112126814B
Authority
CN
China
Prior art keywords
bismuth
copper
alloy
cathode
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910553858.3A
Other languages
English (en)
Other versions
CN112126814A (zh
Inventor
李中建
赵羽
罗远辉
李继东
张雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guobiao Beijing Testing & Certification Co ltd
Original Assignee
Guobiao Beijing Testing & Certification Co ltd
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guobiao Beijing Testing & Certification Co ltd, GRIMN Engineering Technology Research Institute Co Ltd filed Critical Guobiao Beijing Testing & Certification Co ltd
Priority to CN201910553858.3A priority Critical patent/CN112126814B/zh
Publication of CN112126814A publication Critical patent/CN112126814A/zh
Application granted granted Critical
Publication of CN112126814B publication Critical patent/CN112126814B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • G01N21/6404Atomic fluorescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及一种空心阴极铋灯阴极用铜铋合金及其制备方法,属于分析测试仪器技术领域。该铜铋合金中铋的质量分数为8wt%~70wt%,铜的质量分数为30wt%~92wt%。制备时首先按质量分数称取金属铜和金属铋;将铜和铋放入真空感应熔炼炉的熔炼坩埚中,抽真空;开启感应加热,将坩埚中的铜和铋加热,升温至熔炼温度,铜和铋熔化成合金液,同时开启高速电磁搅拌,进行感应熔炼;完成后,将铜铋合金液浇注在强制冷却的铸模中,冷却,脱模后得到铜铋合金锭。采用该合金作为阴极的铋灯,与采用纯铋阴极材料相比,稳定性好,漂移<0.6%,使用寿命提高50%以上,使铋灯在原子吸收和原子荧光分析中稳定性漂移过大和寿命短的问题得到明显改善。

Description

一种空心阴极铋灯阴极用铜铋合金及其制备方法
技术领域
本发明属于分析测试仪器技术领域,特别涉及一种空心阴极铋灯的阴极材料用铜铋合金及其制备方法。
背景技术
空心阴极铋灯用于原子吸收光谱分析,原子荧光光谱分析,分子吸收光谱分析,以及其他需要使用线光谱光源和基准波长等仪器中的铋锐线光源。
以往,过渡元素铋的空心阴极灯阴极的选择和加工,一般使用纯金属铋加工成形体,由于铋的电阻率相对较大,导电性较差,铋成形体的导电性差,空心阴极铋灯能量低,稳定性漂移大,使用寿命短。现代原子吸收光谱分析和原子荧光分析仪器灵敏度的提高,以及要求更长的使用寿命,很大程度上依赖于光源部分的改进提高,一些分析测试单位为了追求仪器的灵敏度,要求空心阴极铋灯具有高强度和高稳定性,以及较长的使用寿命,铋金属电阻率较大,导电性差,难以在大电流下使用,而分析测试时要得到高能量,只能加大电流,从而造成稳定性差,容易损坏,使用寿命短等问题。
发明内容
为了解决现有技术中空心阴极铋灯能量低,稳定性漂移大,使用寿命短的问题,本发明提供了一种空心阴极铋灯阴极材料用铜铋合金及其制备方法。
本发明采用铜铋合金阴极代替纯铋加工成形体阴极,铜铋合金具有比铋更低的电阻率,导电性更好,用其作阴极的空心阴极铋灯,与以纯铋成形体作阴极的空心阴极铋灯相比,具有更好的稳定性和更长的使用寿命。
本发明的目的是通过以下技术方案实现的:
一种空心阴极铋灯阴极材料铜铋合金,该铜铋合金中铋的质量分数为8wt%~70wt%,铜的质量分数为30wt%~92wt%。
优选的,该铜铋合金中铋的质量分数为15wt%~65wt%,铜的质量分数为35wt%~85wt%。
较优选的,该铜铋合金中铋的质量分数为20wt%~60wt%,铜的质量分数为40wt%~80wt%。
更优选的,该铜铋合金中铋的质量分数25wt%~55wt%,铜的质量分数为45wt%~75wt%。
最优选的,该铜铋合金中铋的质量分数为28wt%~42wt%,铜的质量分数为58wt%~72wt%。
上述空心阴极铋灯阴极材料铜铋合金的制备方法,包括如下步骤:
(1)按所述的质量分数称取金属铜和金属铋;
(2)将铜和铋放入真空感应熔炼炉的熔炼坩埚中,抽真空;
(3)开启感应加热,将坩埚中的铜和铋加热,升温至熔炼温度,铜和铋熔化成合金液,同时开启高速电磁搅拌,进行感应熔炼;
(4)熔炼完成后,将铜铋合金液浇注在强制冷却的铸模中,冷却,脱模后得到铜铋合金锭。
优选的,在步骤(1)中,所述的铜的纯度≥99.99wt%,所述的铋的纯度≥99.99wt%;所述的金属铜和金属铋可为块状或颗粒。
优选的,在步骤(2)中,所述的坩埚可使用石墨坩埚、镁砂坩埚或氧化铝坩埚;所述真空感应熔炼炉中,炉膛的真空度要求控制在低于1×l0-3Pa。
优选的,在步骤(3)中,所述的感应熔炼可以采用中频感应熔炼或高频感应熔炼。所述的熔炼温度为850℃~1450℃,更优选为1200℃~1360℃;熔炼时间为20min~200min,更优选为30min~60min。
优选的,在步骤(4)中,所述铸模可以是铜铸模或石墨铸模。所述冷却速度为30℃/min~170℃/min,更优选为30℃/min~80℃/min。
本发明的铜铋合金在制备空心阴极铋灯阴极材料中的应用:
采用本发明的铜铋合金制备空心阴极铋灯的阴极材料。采用该阴极材料的空心阴极铋灯,与以纯铋作阴极的空心阴极铋灯相比,具有更好的稳定性和更长的使用寿命,性能如下:
(1)稳定性漂移<0.6%;
(2)使用寿命延长50%以上。
本发明的有益效果为:以铜铋合金代替纯铋成形体,作为空心阴极铋灯的阴极材料,铜铋合金的电阻率比纯铋成形体小,导电性更好,以铜铋合金作阴极的空心阴极铋灯具有更高的光强度、更高的稳定性和更长的使用寿命。
本发明的铜铋合金用于加工空心阴极铋灯的原料,与采用纯铋阴极材料相比,稳定性好,漂移<0.6%,使用寿命提高50%以上,使铋灯在原子吸收和原子荧光分析中稳定性漂移过大和寿命短的问题得到明显改善。
具体实施方式
本发明铜铋合金中铋的质量分数为8wt%~70wt%,铜的质量分数为30wt%~92wt%。该铜铋合金可以替代纯铋用作空心阴极铋灯的阴极材料。
本发明空心阴极铋灯阴极用铜铋合金的制备方法,包括如下步骤:
(1)按上述比例称取金属铜(块状或颗粒)和金属铋(块状或颗粒);金属铜和金属铋的纯度大于99.99wt%。
(2)将称好的铜和铋放入真空感应熔炼炉的熔炼坩埚中,抽真空到炉膛真空度低于1×l0-3Pa;真空中频感应熔炼使用的坩埚为石墨坩埚、镁砂坩埚或氧化铝坩埚。
(3)开启感应加热,将坩埚中的铜和铋加热,升温至850℃~1450℃,原料铜和铋熔化,合金液同时发生高速电磁搅拌,熔炼时间为20min~200min;合金液在感应熔炼的同时发生高速电磁搅拌,使合金液化学成分均匀一致。铜铋合金熔炼可使用真空中频感应熔炼或真空高频感应熔炼。
(4)熔炼完成后,将铜铋合金液浇注在强制冷却的铸模中,铜铋合金熔炼后铸锭使用的铸模为铜铸模或石墨铸模,冷却速度为30℃/min~170℃/min,脱模后得到铜铋合金,用于加工空心阴极铋灯的原料。
实施例1
一种空心阴极铋灯的阴极材料铜铋合金,其中铜的质量分数为76wt%,铋的百分含量为24wt%。制备步骤如下:
(1)按上述比例称取金属铜和金属铋,金属铜和金属铋为块状,纯度均大于99.99wt%;
(2)将铜和铋原料放入石墨坩埚中,将坩埚放入真空感应熔炼炉中,炉膛抽真空到真空度为8.8×l0-4Pa;
(3)开启感应加热,升温至1270℃,原料熔化,同时发生强烈电磁搅拌,熔炼时间为36min,熔炼完毕后,将熔炼好的铜铋合金液浇注于带冷却管的铜铸模中,冷却管中通水冷却,控制水流量,冷却速度为34℃/min,冷却至室温取出,得到铜铋合金锭。
(4)以制备的铜铋合金作阴极材料,制作空心阴极铋灯,用于原子吸收分光仪,测试条件:狭缝0.2nm,波长306.8nm,预热30min,与旧灯(阴极材料为纯铋成形体,纯度为99.99wt%)相比,性能如表l所示,从表中可以看出,以本发明制备的铜铋合金阴极材料制作的空心阴极铋灯性能显著优于旧灯。
实施例2
一种空心阴极铋灯的阴极材料铜铋合金,其中铜的质量为68wt%,铋的质量分数为32wt%。制备步骤如下:
(1)按上述比例称取金属铜和金属铋,金属铜和金属锰为颗粒,纯度均大于99.99wt%;
(2)将铜和铋原料放入镁砂坩埚中,将坩埚放入真空感应熔炼炉中,炉膛抽真空到真空度为7.6×l0-4Pa;
(3)开启感应加热,升温至1220℃,原料熔化,同时发生强烈电磁搅拌,熔炼时间为42min,熔炼完毕后,将熔炼好的铜铋合金液浇注于带冷却管的石墨铸模中,冷却管中通水冷却,控制水流量,冷却速度为48℃/min,冷却至室温取出,得到铜铋合金锭。
(4)以制备的铜铋合金作阴极材料,制作空心阴极铋灯,用于原子吸收分光仪,测试条件:狭缝0.2nm,波长306.8nm,预热30min,与旧灯(阴极材料为纯铋金属成形体,纯度为99.99wt%)相比,性能如表l所示,从表中可以看出,以本发明制备的铜铋合金阴极材料制作的空心阴极铋灯性能显著优于旧灯。
实施例3
一种空心阴极铋灯的阴极材料铜铋合金,其中铜的质量为63wt%,铋的质量分数为37wt%。制备步骤如下:
(1)按上述比例称取金属铜和金属铋,金属铜和金属铋为块状,纯度均大于99.99wt%;
(2)将铜和铋原料放入氧化铝坩埚中,将坩埚放入真空感应熔炼炉中,炉膛抽真空到真空度为6.8×l0-4Pa;
(3)开启感应加热,升温至1310℃,原料熔化,同时发生强烈电磁搅拌,熔炼时间为35min,熔炼完毕后,将熔炼好的铜铋合金液浇注于带冷却管的铜铸模中,冷却管中通水冷却,控制水流量,冷却速度为58℃/min,冷却至室温取出,得到铜铋合金锭。
(4)以制备的铜铋合金作阴极材料,制作空心阴极铋灯,用于原子吸收分光仪,测试条件:狭缝0.2nm,波长306.8nm,预热30min,与旧灯(阴极材料为纯铋成形体,纯度为99.99wt%)相比,性能如表l所示,从表中可以看出,以本发明制备的铜铋合金阴极材料制作的空心阴极铋灯性能显著优于旧灯。
表1新旧空心阴极铋灯性能对比
Figure BDA0002106295710000051
由表1可以看到,以本发明制备的铜铋合金作阴极材料的空心阴极铋灯,与采用纯铋阴极材料相比,稳定性漂移<0.6%,使用寿命提高50%以上,使铋灯在原子吸收和原子荧光分析中的稳定性漂移大大降低,使用寿命大幅度提高。
以上实施例仅用以说明而非限制本发明的技术方案,尽管上述实施例对本发明进行了详细说明,本领域的相关技术人员应当理解:可以对本发明进行修改或者同等替换,但不脱离本发明精神和范围的任何修改和局部替换均应涵盖在本发明的权利要求范围内。

Claims (8)

1.一种铜铋合金在制备空心阴极铋灯的阴极材料中应用,其特征在于:该铜铋合金中铋的质量分数为8wt%~70wt%,铜的质量分数为30wt%~92wt%。
2.如权利要求1所述的铜铋合金在制备空心阴极铋灯的阴极材料中应用,其特征在于:所述铜铋合金的制备方法包括如下步骤:
(1)按所述的质量分数称取金属铜和金属铋;
(2)将铜和铋放入真空感应熔炼炉的熔炼坩埚中,抽真空;
(3)开启感应加热,将坩埚中的铜和铋加热,升温至熔炼温度,所述熔炼的温度为850℃~1450℃,铜和铋熔化成合金液,同时开启高速电磁搅拌,进行感应熔炼;
(4)熔炼完成后,将铜铋合金液浇注在强制冷却的铸模中,冷却,所述冷却的速度为30℃/min~170℃/min,脱模后得到铜铋合金锭。
3.如权利要求2所述的铜铋合金在制备空心阴极铋灯的阴极材料中应用,其特征在于:所述的铜的纯度≥99.99wt%,所述的铋的纯度≥99.99wt%。
4.如权利要求2所述的铜铋合金在制备空心阴极铋灯的阴极材料中应用,其特征在于:所述的坩埚为石墨坩埚、镁砂坩埚或氧化铝坩埚。
5.如权利要求2所述的铜铋合金在制备空心阴极铋灯的阴极材料中应用,其特征在于:所述的真空感应熔炼炉中,真空度低于1×l0-3Pa。
6.如权利要求2所述的铜铋合金在制备空心阴极铋灯的阴极材料中应用,其特征在于:所述的感应熔炼为中频感应熔炼或高频感应熔炼。
7.如权利要求6所述的铜铋合金在制备空心阴极铋灯的阴极材料中应用,其特征在于:所述熔炼时间为20min~200min。
8.如权利要求2所述的铜铋合金在制备空心阴极铋灯的阴极材料中应用,其特征在于:所述铸模为铜铸模或石墨铸模。
CN201910553858.3A 2019-06-25 2019-06-25 一种空心阴极铋灯阴极用铜铋合金及其制备方法 Active CN112126814B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910553858.3A CN112126814B (zh) 2019-06-25 2019-06-25 一种空心阴极铋灯阴极用铜铋合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910553858.3A CN112126814B (zh) 2019-06-25 2019-06-25 一种空心阴极铋灯阴极用铜铋合金及其制备方法

Publications (2)

Publication Number Publication Date
CN112126814A CN112126814A (zh) 2020-12-25
CN112126814B true CN112126814B (zh) 2022-02-11

Family

ID=73849179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910553858.3A Active CN112126814B (zh) 2019-06-25 2019-06-25 一种空心阴极铋灯阴极用铜铋合金及其制备方法

Country Status (1)

Country Link
CN (1) CN112126814B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770925A (zh) * 2008-12-30 2010-07-07 北京有色金属研究总院 一种空心阴极灯的阴极材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437038A (en) * 1979-05-29 1984-03-13 Westinghouse Electric Corp. Hollow cathode lamp with improved stability alloy for the cathode
EP0246248A1 (en) * 1985-11-28 1987-11-25 Photron Pty. Ltd. Hollow cathode assembly and lamp
CN109909511B (zh) * 2019-03-22 2022-05-03 中国工程物理研究院化工材料研究所 一种铋基空心纳米材料的制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770925A (zh) * 2008-12-30 2010-07-07 北京有色金属研究总院 一种空心阴极灯的阴极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Constraints imposed upon theories of the vacuum arc cathode region by specific ion energy measurements;H.Craig Miller;《Journal of Applied Physics》;19810731;4523-4530 *

Also Published As

Publication number Publication date
CN112126814A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2021018203A1 (zh) 一种非真空下引连铸铜铁合金扁锭的生产工艺
CN109371271B (zh) 铜铁合金的非真空熔炼及连铸工艺
CN101199988B (zh) 一种制备超高纯铜铸锭的方法
CN102358920B (zh) 一种自耗电极电弧熔炼炉制备CuWCr复合材料的方法
CN108977677A (zh) 一种低压铸造过程中铝合金的变质处理方法
CN102554192A (zh) 一种高导电耐热电极横梁部件的制造方法
CN106884110A (zh) 一种高真空电弧炉制备镍基高温合金的方法
CN103394826A (zh) 一种降低挤压棒缺陷的工艺方法
CN108179306B (zh) 一种机器人焊臂用铜基合金
CN112126818B (zh) 一种空心阴极铅灯阴极用铜铅合金及其制备方法
CN112126814B (zh) 一种空心阴极铋灯阴极用铜铋合金及其制备方法
CN109735730B (zh) 一种等离子体火炬电极材料的制备方法
CN104593612A (zh) 一种利用温度梯度纯化镁熔体的方法
CN109439955B (zh) 一种采用定向凝固制备高强度、高导电性超细丝合金材料的方法
CN107779790B (zh) 一种含锗无镍无磷大尺寸钯基非晶合金及其制备方法
CN114833326B (zh) 一种磁控电弧制备共晶高温合金定向凝固的设备和方法
JP2014051712A (ja) Cu−Ga系合金ターゲット及びその製造方法
CN114672687B (zh) 一种铜钛合金铸锭的熔炼工艺
CN105401104B (zh) 高强度块体Cu‑Zr‑Zn金属玻璃及制备方法
CN104190896A (zh) 非晶合金的电弧熔融压铸方法
CN115216637A (zh) 精密可伐合金箔材用合金锭的制备方法
CN110690101B (zh) 一种空心阴极锰灯阴极材料及其制备方法
CN110684911A (zh) 一种空心阴极锌灯阴极材料及其制备方法
JPH05287402A (ja) 極低酸素銅の製造法およびその製造法により得られた極低酸素銅
CN102321816A (zh) 一种电弧熔炼与熔渗法制备CuWCr复合材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230420

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: GUOBIAO (BEIJING) TESTING & CERTIFICATION CO.,LTD.

Address before: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee before: GUOBIAO (BEIJING) TESTING & CERTIFICATION CO.,LTD.

Patentee before: YOUYAN ENGINEERING TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd.

TR01 Transfer of patent right