CN112126197A - 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法 - Google Patents

一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法 Download PDF

Info

Publication number
CN112126197A
CN112126197A CN202011062360.6A CN202011062360A CN112126197A CN 112126197 A CN112126197 A CN 112126197A CN 202011062360 A CN202011062360 A CN 202011062360A CN 112126197 A CN112126197 A CN 112126197A
Authority
CN
China
Prior art keywords
epoxy resin
parts
foaming
epoxy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011062360.6A
Other languages
English (en)
Inventor
王醴均
刘渝
王天喜
杨荣强
粟多文
郑红开
宋世豪
熊晏安
靳灵杰
蔡孝生
代银强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUIZHOU KUMKUAT MATERIALS Ltd
Original Assignee
GUIZHOU KUMKUAT MATERIALS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUIZHOU KUMKUAT MATERIALS Ltd filed Critical GUIZHOU KUMKUAT MATERIALS Ltd
Priority to CN202011062360.6A priority Critical patent/CN112126197A/zh
Publication of CN112126197A publication Critical patent/CN112126197A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/107Nitroso compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/104Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof
    • C08J9/105Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,包括:将环氧树脂100份、固化剂60‑100份、助剂0.05‑1份在80‑95℃下反应至体系扭矩值为0.02‑0.08dN.m,冷却得到固态混合物;取100份与导电粒子0‑30份、发泡剂0.3‑3份球磨分散2‑30min得到环氧混合物粉末;先将一种环氧混合物粉末压实,再倒入相同质量另一种配方的环氧混合物粉末,压实为两层结构,如此重复得到多层待发泡样,在90‑160℃发泡成型2‑4h;然后升温至180‑200℃保温2h,自然冷却至室温脱模即得到。本发明可简单方便的调控相邻层中的泡孔结构、层厚、导电粒子含量及层界面,材料电磁波吸收性能及力学性能较好。

Description

一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法
技术领域
本发明涉及聚合物加工技术领域,具体涉及一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法。
背景技术
环氧发泡材料具有较好的热稳定性、力学性能、隔热性能以及轻质等优点,已经广泛应用在汽车、电子灌封、飞机制件、船体外壳等领域。通过向环氧发泡体系中加入碳系导电物质,可以制备出既具有导电功能又具有良好力学性能的环氧树脂基导电复合材料,赋予环氧发泡制品抗静电、电磁屏蔽等功能。国内外广泛报道了通过超临界气体间歇发泡法制备环氧树脂导电复合微孔发泡材料,然而,这种工艺发泡时间长,工艺复杂,且难以制备大件复杂制品。采用化学发泡法可以方便、高效、简单的制备出大尺寸环氧发泡制品,但由于环氧树脂初期粘度较低,制备的发泡材料的泡孔尺寸较大,且泡孔分布也不均匀,严重降低了环氧发泡材料的力学性能。
交替多层结构结合了不同发泡材料的优点,其形成的受限空间可以有效抑制泡孔过分生长,从而降低泡孔尺寸,此外,通过单层设计每一层的结构,可以赋予材料更多复杂的功能。研究表明,多层发泡结构可以有效改善材料的吸波、隔音及力学性能。中国专利CN106393541A于2017年2月15日公开了发明名称为“交替多层聚合物微孔发泡材料的制备方法”,其选择了维卡软化点或熔点不同的实体层和发泡层基体,将其成型为交替多层结构的初始样品后,再通过超临界发泡制备了具有实体层和发泡层交替排列的发泡材料,可以降低发泡材料的平均泡孔尺寸。中国专利CN110216958A于2019年9月10日公开了发明名称为“一种低热导率耐拉耐压的多层发泡材料及其制备方法”,其通过多层共挤及间歇发泡法制备了一种发泡层和实体层交替叠合的聚烯烃材料,该发泡材料具有较高的隔热和力学性能。中国专利CN109532047A于2019年3月29日公开了发明名称为“一种交替多层微孔硅橡胶泡沫材料的制备方法”,其利用不同种类白炭黑在硅橡胶基体中的成核效能的差异,通过多层共挤及间歇发泡法制备了一种相邻层中泡孔分布不一的多层微孔硅橡胶泡沫材料。但上述专利申请采用的是多层共挤和间歇发泡法制备多层发泡材料,得到的材料大多存在实体不发泡层,增大了材料的密度;如果相邻层为不同聚合物材料,由于较差的界面结合容易使得材料剥离,严重降低材料的使用价值;此外,这种技术路线难以调控每层的泡孔结构和厚度,也难以应用于制备多层环氧发泡材料。
发明内容
本发明的目的在于克服上述缺点而提供的一种可简单方便的调控相邻层中的泡孔结构、层厚、导电粒子含量及层界面,材料电磁波吸收性能及力学性能较好的交替多层环氧树脂基导电复合微孔发泡材料的制备方法。
为实现本发明的发明目的,采用以下技术方案:
本发明的一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,包括如下步骤:
(1)预固化:将环氧树脂100份、固化剂60-100份、助剂0.05-1份在80-95℃下反应至体系扭矩值为0.02-0.08dN.m,冷却得到固态混合物;
(2)共混制粉:将预固化后的固态混合物100份、导电粒子0-30份、发泡剂0.3-3份球磨分散2-30min得到环氧混合物粉末;
(3)多层压片:选择上述范围的两种不同配方的环氧混合物粉末,先将一种在10MPa的压力下压实,再倒入相同质量另一种配方的环氧混合物粉末,10MPa的压力下压实为两层结构,如此重复得到多层待发泡样,控制单层厚度为0.2-2mm;
(4)发泡固化:将上述多层待发泡样放入模具中,在90- 160℃发泡成型2-4h;然后升温至180-200℃保温2h,自然冷却至室温脱模即得到交替多层环氧树脂基导电复合微孔发泡材料。
上述的一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,其中:所述步骤(1)中环氧树脂为双酚A类环氧树脂,固化剂为液态酸酐,助剂为DMP-30。
上述的一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,其中:所述步骤(2)中导电粒子为碳系导电粒子:纳米导电炭黑、多壁碳纳米管、石墨烯或纳米碳纤维中的一种。
上述的一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,其中:所述步骤(2)中发泡剂为为碳酸氢钠、4,4-氧代双苯磺酰肼、偶氮二异丁腈或N,N’-二亚硝基五次甲基四胺中的一种。
本发明与现有技术相比,具有明显的有益效果,从以上技术方案可知:本发明采用的交替多层排列方式中相邻两种材料中配方不同,并采用多层冷压及化学发泡技术,可以简单方便的调控相邻层中的泡孔结构、层厚、导电粒子含量及层界面,制备出相邻层泡孔结构明显不同的交替多层微孔环氧发泡材料,多层发泡材料固化后,界面清晰,且由于发生交联反应形成较高的层间界面结合强度,无论是受力弯曲时还是平行于界面压缩时,多层环氧发泡材料都不会发生剥离,具有较好力学性能。同时由于发泡材料为交替多层泡孔结构,且可以使得相邻层中的导电粒子含量和种类不同,层界面能够引起电磁波的多次反射,增强电磁波的损耗,当电导率低的一面对着入射电磁波,电磁波在表面的反射减少,而内部的吸收作用增强使得材料电磁波吸收性能好。
附图说明
图1 是CNT含量为0.5%和2%的两种材料叠层形成的4层环氧发泡材料的电镜照片;
图2为实施例1中电磁屏蔽吸收效率随层数的变化图;
图3是发泡剂含量为0.5%和1.5%的两种材料叠层形成的4层环氧发泡材料的电镜照片;
图4是实施例3中多层发泡材料的压缩强度的变化图。
具体实施方式
下结合附图及较佳实施例,对依据本发明提出的一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,具体实施方式、结构、特征及其功效,详细说明如下:
实施例1:
一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,包括如下步骤:
取双酚A型环氧树脂100份,液态酸酐固化剂85份,DMP-30助剂0.3份在高速分散机中搅拌均匀,然后加入反应器中在85℃反应至体系扭矩值为0.04dN.m,冷却得到固态混合物。然后取100份固态环氧树脂混合物,多壁碳纳米管0.5份,发泡剂N,N’-二亚硝基五次甲基四胺0.5份在球磨机中,球磨分散4min,得到混合物粉末A;取100份固体环氧树脂混合物,多壁碳纳米管2份,发泡剂N,N’-二亚硝基五次甲基四胺0.5份在球磨机中,球磨分散4min,得到混合物粉末B;先取粉末A倒入直径为25mm的圆柱形模具中在10MPa压力下压实成单层厚度为0.2 mm片层,再倒入相同质量的粉末B,10MPa的压力下压成AB两层结构,每层单层厚度为0.2mm,如此重复得到ABAB四层结构或ABABAB六层结构等待发泡样;将多层待发泡样放入模具中,在90℃下发泡成型2h后,烘箱升高温度至200℃保温2h,自然冷却至室温脱模得到交替多层环氧树脂基微孔发泡材料。
实验结果:低倍照片图1(1)中基本看不出4L发泡材料的层界面及泡孔差异,高倍照片图1(2)可以看出相邻两层的泡孔存在一定差异,B层中多壁碳纳米管含量高如图1(3),泡孔尺寸略小,泡孔密度高;A层中多壁碳纳米管含量低如图1(4),泡孔尺寸略大,泡孔密度低。从图2中可以看出,随着层数的增加,多层环氧发泡材料的电磁屏蔽吸收效率SEr不断增大。
实施例2:
一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,包括如下步骤:
取双酚A型环氧树脂100份,液态酸酐固化剂80份,DMP-30助剂0.15份,在高速分散机中搅拌均匀,然后加入反应器中在85℃反应至体系扭矩值为0.04dN.m,冷却得到固态混合物。然后取100份固态环氧树脂混合物,多壁碳纳米管2份,发泡剂N,N’-二亚硝基五次甲基四胺0.5份在球磨机中球磨分散4min,得到混合物粉末A;取100份固体环氧树脂混合物,多壁碳纳米管2份,发泡剂N,N’-二亚硝基五次甲基四胺1.5份在球磨机中球磨分散4min,得到混合物粉末B;先取A倒入直径为25mm的圆柱形模具中在10MPa压力下压实成单层厚度为0.5 mm片层,再倒入相同质量的粉末B,10MPa的压力下压成AB两层结构,每层单层厚度为0.5mm,如此重复可以得到ABAB四层结构、ABABAB六层结构等待发泡样;然后将多层待发泡样放入模具中,在110℃下发泡成型2h后,烘箱升高温度至200℃保温2h,自然冷却至室温脱模得到交替多层环氧树脂基微孔发泡材料。
实验结果:低倍照片图2(1)中可以明显看出4L发泡材料的层界面及泡孔差异,高倍照片图1(2)可以看出相邻两层的界面清晰,且粘结紧密,B层中发泡剂含量高,泡孔尺寸大,泡孔密度高;A层中发泡剂含量低,泡孔尺寸小,泡孔密度低。
实施例3:
一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,包括如下步骤:
取双酚A型环氧树脂100份,液态酸酐固化剂90份,DMP-30助剂0.15份,加入反应器中在85℃反应至至体系扭矩值为0.08dN.m,冷却得到固态混合物。然后取100份固态环氧树脂混合物,发泡剂偶氮二异丁腈0.5份在球磨机中球磨分散4min,得到不同混合物粉末A;取100份固体环氧树脂混合物,多壁碳纳米管2份,发泡剂偶氮二异丁腈0.5份,在球磨机中球磨分散4min,得到混合物粉末B;先取A在10MPa压力下压实成单层厚度1mm片层,再倒入相同质量的粉末B,10MPa的压力下压成AB两层结构,每层单层厚度为1mm,如此重复可以得到ABAB四层结构、ABABAB六层结构等待发泡样;然后将多层待发泡样放入模具中,在110℃下发泡成型2h后,提升烘箱温度至200℃保温2h,自然冷却至室温脱模得到交替多层环氧树脂基微孔发泡材料。
经测试,如图4所示,固定交替发泡层数为4层,A组分中加入0-30份的碳纤维,随着A层中碳纤维含量增加,多层发泡材料的压缩强度不断增大;固定A层中碳纤维含量为20份,随着交替多层层数的增加,多层发泡材料的压缩强度略有增大。因而可以通过增强交替层中的一种发泡层即可达到整体增强的效果。
实施例4:
取双酚A型环氧树脂100份,液态酸酐固化剂100份,DMP-30助剂1份,加入反应器中在80℃反应至室温下至体系扭矩值为0.02dN.m,冷却得到固态混合物。然后取100份固态环氧树脂混合物,石墨烯8份,发泡剂碳酸氢钠0.3份在球磨机中球磨分散2min,得到混合物粉末A;取100份固态环氧树脂混合物,纳米导电炭黑10份,发泡剂碳酸氢钠0.3份在球磨机中球磨分散2min,得到混合物粉末B;先取一定质量的A在10MPa压力下压实成单层厚度为2mm片层,再倒入相同质量的粉末B 在10MPa的压力下压成AB两层结构,每层单层厚度为2mm,如此重复可以得到ABAB四层结构、ABABAB六层结构等待发泡样;然后将多层待发泡样放入模具中,在150℃下发泡成型2h后,提升烘箱温度至200℃保温2h,自然冷却至室温脱模得到交替多层环氧树脂基微孔发泡材料。
实施例5:
取双酚A型环氧树脂100份,液态酸酐固化剂60份,DMP-30助剂0.05份,加入反应器中在95℃反应至体系扭矩值为0.08dN.m,冷却得到固态混合物。然后取100份固态环氧树脂混合物,纳米碳纤维30份,4,4-氧代双苯磺酰肼3份在球磨机中球磨分散30min,得到混合物粉末A;取100份固态环氧树脂混合物,多壁碳纳米管2份,4,4-氧代双苯磺酰肼3份在球磨机中球磨分散30min,得到混合物粉末B;先取A在10MPa压力下压实成单层厚度为1.5mm片层,再倒入一定质量的粉末B,10MPa的压力下压成AB两层结构,每层单层厚度为1.5mm,如此重复可以得到ABAB四层结构、ABABAB六层结构等待发泡样;然后将多层板放入模具中,在160℃下发泡成型4h后,提升烘箱温度至180℃保温2h,自然冷却至室温脱模得到交替多层环氧树脂基微孔发泡材料。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,任何未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (4)

1.一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,包括如下步骤:
(1)预固化:将环氧树脂100份、固化剂60-100份、助剂0.05-1份在80-95℃下反应至体系扭矩值为0.02-0.08dN.m,冷却得到固态混合物;
(2)共混制粉:将预固化后的固态混合物100份、导电粒子0-30份、发泡剂0.3-3份球磨分散2-30min得到环氧混合物粉末;
(3)多层压片:选择上述范围的两种不同配方的环氧混合物粉末,先将一种在10MPa的压力下压实,再倒入相同质量另一种配方的环氧混合物粉末,10MPa的压力下压实为两层结构,如此重复得到多层待发泡样,控制单层厚度为0.2-2mm;
(4)发泡固化:将上述多层待发泡样放入模具中,在90- 160℃发泡成型2-4h;然后升温至180-200℃保温2h,自然冷却至室温脱模即得到交替多层环氧树脂基导电复合微孔发泡材料。
2.如权利要求1所述的一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,其中:所述步骤(1)中环氧树脂为双酚A类环氧树脂,固化剂为液态酸酐,助剂为DMP-30。
3.如权利要求1或2所述的一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,其中:所述步骤(2)中导电粒子为碳系导电粒子:纳米导电炭黑、多壁碳纳米管、石墨烯或纳米碳纤维中的一种。
4.如权利要求3所述的一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法,其中:所述步骤(2)中发泡剂为为碳酸氢钠、4,4-氧代双苯磺酰肼、偶氮二异丁腈或N,N’-二亚硝基五次甲基四胺中的一种。
CN202011062360.6A 2020-09-30 2020-09-30 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法 Pending CN112126197A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011062360.6A CN112126197A (zh) 2020-09-30 2020-09-30 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011062360.6A CN112126197A (zh) 2020-09-30 2020-09-30 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法

Publications (1)

Publication Number Publication Date
CN112126197A true CN112126197A (zh) 2020-12-25

Family

ID=73843546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011062360.6A Pending CN112126197A (zh) 2020-09-30 2020-09-30 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法

Country Status (1)

Country Link
CN (1) CN112126197A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114149655A (zh) * 2021-12-06 2022-03-08 饭田(佛山)橡塑有限公司 高发泡隔音树脂衬及应用该树脂衬的尼龙骨架

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040058181A1 (en) * 2000-12-13 2004-03-25 Anne-Marie Garnault Multi-layer metal sandwich materials comprising epoxy-based adhesive systems
JP2005126566A (ja) * 2003-10-23 2005-05-19 Mitsui Chemicals Inc 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグ、積層板および配線板
FR2928778A1 (fr) * 1986-03-07 2009-09-18 Poudres & Explosifs Ste Nale Materiau composite souple ou rigide absorbant les ondes electromagnetiques.
CN105949720A (zh) * 2016-05-19 2016-09-21 北京化工大学 纳米复合发泡剂、发泡制品及其制法和应用
CN106398122A (zh) * 2016-10-13 2017-02-15 常州大学 一种石墨烯环氧树脂复合泡沫材料及其制备方法
CN106633656A (zh) * 2016-12-21 2017-05-10 贵州凯科特材料有限公司 一种较低粘度下微孔发泡环氧树脂基材料的制备方法
CN107226996A (zh) * 2017-05-27 2017-10-03 江苏省江南新型复合研磨材料及制品工程技术研究中心有限公司 一种环氧树脂发泡材料基材及其制备工艺
CN109049919A (zh) * 2018-06-22 2018-12-21 四川大学 一种发泡吸波材料及其制备方法
CN109591391A (zh) * 2018-11-08 2019-04-09 中北大学 一种低反射高屏蔽梯度结构泡沫材料
CN110028763A (zh) * 2019-04-12 2019-07-19 西北工业大学 低密度高倍率环氧树脂微孔材料的制备方法
CN111138706A (zh) * 2020-01-08 2020-05-12 四川大学 一种具有梯度填料结构的聚合物电磁屏蔽复合泡沫及其制备方法
CN111660641A (zh) * 2020-06-24 2020-09-15 四川大学 一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928778A1 (fr) * 1986-03-07 2009-09-18 Poudres & Explosifs Ste Nale Materiau composite souple ou rigide absorbant les ondes electromagnetiques.
US20040058181A1 (en) * 2000-12-13 2004-03-25 Anne-Marie Garnault Multi-layer metal sandwich materials comprising epoxy-based adhesive systems
JP2005126566A (ja) * 2003-10-23 2005-05-19 Mitsui Chemicals Inc 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグ、積層板および配線板
CN105949720A (zh) * 2016-05-19 2016-09-21 北京化工大学 纳米复合发泡剂、发泡制品及其制法和应用
CN106398122A (zh) * 2016-10-13 2017-02-15 常州大学 一种石墨烯环氧树脂复合泡沫材料及其制备方法
CN106633656A (zh) * 2016-12-21 2017-05-10 贵州凯科特材料有限公司 一种较低粘度下微孔发泡环氧树脂基材料的制备方法
CN107226996A (zh) * 2017-05-27 2017-10-03 江苏省江南新型复合研磨材料及制品工程技术研究中心有限公司 一种环氧树脂发泡材料基材及其制备工艺
CN109049919A (zh) * 2018-06-22 2018-12-21 四川大学 一种发泡吸波材料及其制备方法
CN109591391A (zh) * 2018-11-08 2019-04-09 中北大学 一种低反射高屏蔽梯度结构泡沫材料
CN110028763A (zh) * 2019-04-12 2019-07-19 西北工业大学 低密度高倍率环氧树脂微孔材料的制备方法
CN111138706A (zh) * 2020-01-08 2020-05-12 四川大学 一种具有梯度填料结构的聚合物电磁屏蔽复合泡沫及其制备方法
CN111660641A (zh) * 2020-06-24 2020-09-15 四川大学 一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114149655A (zh) * 2021-12-06 2022-03-08 饭田(佛山)橡塑有限公司 高发泡隔音树脂衬及应用该树脂衬的尼龙骨架
CN114149655B (zh) * 2021-12-06 2023-10-20 饭田(佛山)橡塑有限公司 高发泡隔音树脂衬及应用该树脂衬的尼龙骨架

Similar Documents

Publication Publication Date Title
Li et al. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding
Pan et al. Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites
Kumar et al. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding
Gupta et al. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band
Cheng et al. Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion
US8691129B2 (en) Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
US8728679B2 (en) Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications
US7758783B2 (en) Continious production of exfoliated graphite composite compositions and flow field plates
US8501307B2 (en) Recompressed exfoliated graphite articles
US20090151847A1 (en) Process for producing laminated exfoliated graphite composite-metal compositions for fuel cell bipolar plate applications
US20090057940A1 (en) Method of producing less anisotropic flexible graphite
US20080277628A1 (en) Exfoliated graphite composite compositions for fuel cell flow field plates
Arief et al. Graphene analogues as emerging materials for screening electromagnetic radiations
CN112208157B (zh) 碳泡沫填充碳纳米管蜂窝电磁屏蔽材料及其制法与应用
CN115891137A (zh) 一种聚烯烃弹性体基3d打印具有多孔结构电磁屏蔽制件的方法
CN108084484B (zh) 一种轻量化导电隔热复合材料及其制备方法、***
CN112126197A (zh) 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法
Liu et al. 3D expanded graphite frameworks for dual-functional polymer composites with exceptional thermal conductive and electromagnetic interference shielding capabilities
CN114506131B (zh) 一种三维石墨烯功能复合层压材料及其制备方法和应用
CN115179609A (zh) 一种轻质疏导防隔热复合材料及其制备方法
CN114591580A (zh) 一种含氟树脂混合物,半固化片,高导热高频覆铜板
Yue et al. Carbon-based materials with combined functions of thermal management and electromagnetic protection: Preparation, mechanisms, properties, and applications
CN109265919B (zh) 一种3d导热复合材料及其制备方法
CN113337077B (zh) 一种具有隔离结构的高导热电磁屏蔽聚醚醚酮复合材料及其制备方法和应用
CN116160737A (zh) 一种各向异性导热多层聚合物复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201225

WD01 Invention patent application deemed withdrawn after publication