CN112087208A - 一种辐射探测器前端读出宽动态范围的前置放大器 - Google Patents

一种辐射探测器前端读出宽动态范围的前置放大器 Download PDF

Info

Publication number
CN112087208A
CN112087208A CN202010911942.0A CN202010911942A CN112087208A CN 112087208 A CN112087208 A CN 112087208A CN 202010911942 A CN202010911942 A CN 202010911942A CN 112087208 A CN112087208 A CN 112087208A
Authority
CN
China
Prior art keywords
tube
nmos tube
flop
flip
pmos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010911942.0A
Other languages
English (en)
Other versions
CN112087208B (zh
Inventor
刘书焕
李龙
李卓奇
刘双瑛
张君
张坤
黄泰燚
许江涛
张国和
阿米尔
卡洛·菲奥里尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010911942.0A priority Critical patent/CN112087208B/zh
Publication of CN112087208A publication Critical patent/CN112087208A/zh
Application granted granted Critical
Publication of CN112087208B publication Critical patent/CN112087208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/70Charge amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • H04N25/773Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种辐射探测器前端读出宽动态范围的前置放大器,其特点是前置放大器能够根据输入信号大小自动调整反馈电容大小,实现转换增益自动调节。所述前置放大器由单端电荷灵敏放大器CSA与电压比较器VCM与第一D触发器D1和第二D触发器D2构成,本发明与现有的辐射探测器前端读出放大器相比具有增益自动调节功能,在低电荷量输入时调节为高增益,在高电荷量时自动切换为低增益,第一D触发器D1和第二D触发器D2均采用带有异步复位的D触发器,第一开关SW1、第二开关SW2、复位开关SWR均采用了改进型传输门电路,有效降低了电荷注入效应对电路的影响;拓展了前端读出放大器的输入动态范围。

Description

一种辐射探测器前端读出宽动态范围的前置放大器
技术领域
本发明属于辐射探测器前端读出领域,具体涉及一种辐射探测器前端读出宽动态范围的前置放大器。
背景技术
近些年来,由于半导体辐射探测器测量的粒子能量范围逐渐扩大,探测器输出到前端读出电路的电荷信号动态范围越来越大,可以从几fC到pC量级,前端读出电路对探测器输出的微弱的电荷信号进行积分放大处理,将电荷信号转化为电压信号后再进行滤波降噪处理。当输入到前端读出电路的信号范围过大时,前置放大器的转化增益原本固定的高转换增益的前端放大电路会随着输入信号的增大而达到饱和,无法满足半导体辐射探测器设计需求。
基于以上问题,对辐射探测器前端读出电路进行改进,通过改变反馈电容大小,自动降低单端电荷灵敏放大器的转化增益,拓展了探测器前端读出电路的动态范围。
发明内容
本发明的目的是对现有技术的不足而提供的一种能够自动调节转换增益的辐射探测器电荷灵敏前置放大器,有效降低了电荷注入效应对电路的影响;拓展了前端读出放大器的输入动态范围。
为了达到转化增益的自动调节,本发明采用如下的技术方案:
一种辐射探测器前端读出宽动态范围的前置放大器,由单端电荷灵敏放大器CSA、电压比较器VCM、第一D触发器D1和第二D触发器D2组成;其中单端电荷灵敏放大器CSA由单端折叠型共源共栅放大器AMP、初级反馈电容Cf0、第一反馈电容Cf1、第二反馈电容Cf2、第一开关SW1、第二开关SW2以及复位开关SWR构成;初级反馈电容Cf0为第一级反馈支路,第一反馈电容Cf1和第一开关SW1串联构成第二级反馈支路,第二反馈电容Cf2和第二开关SW2串联构成第三级反馈支路,复位开关SWR构成泄放支路;第一级反馈支路、第二级反馈支路、第三级反馈支路与泄放支路并联在单端折叠型共源共栅放大器AMP的输入端IN和输出端OUT;所述单端电荷灵敏放大器CSA的输出端与电压比较器VCM的正输入端连接,电压比较器的负端输入设定的比较阈值电压VTH,所述电压比较器VCM的输出端与第一D触发器的时钟端clk1和第二D触发器的时钟端clk2连接,所述第一D触发器输入端D1连接电源VDD,所述第一D触发器的复位端R2与第二D触发器的复位端R2短接,所述第一D触发器的输出端Q1与第二D触发器的输入端D2相连,第一D触发器的输出端Q1同时连接第一开关SW1的控制端,控制第二级反馈支路接入,所述第二D触发器的输出端Q2连接第二开关SW2的控制端,控制第三级反馈支路接入。
所述单端折叠型共源共栅放大器AMP由四个PMOS管和五个NMOS管及直流电流源IS组成,分别为第一PMOS管M1、第二PMOS管M4、第三PMOS管M7、第四PMOS管M9和第一NMOS管M2、第二NMOS管M3、第三NMOS管M5、第四NMOS管M6、第五NMOS管M8,第一PMOS管M1的栅极连接探测器输出信号,是前置放大器的输入端,第一PMOS管M1、第一NMOS管M2、第二NMOS管M3、第二PMOS管M4组成以PMOS管输入的折叠共源共栅放大器,第一PMOS管M1的漏极和第二NMOS管M3的源极共同连接到第一NMOS管M2的漏极,第一NMOS管M2的源极接地,第二NMOS管M3的漏极短接第二PMOS管M4的漏极作为输出端,第二PMOS管M4的源极和第一PMOS管M1的源极连接电源VDD,第三NMOS管M5、第四NMOS管M6、第三PMOS管M7、第五NMOS管M8、第四PMOS管M9作为偏置电路,为折叠共源共栅放大器提供偏置;直流电流源IS的输入端连接到电源VDD,第三NMOS管M5的漏极连接直流电流源IS的输出并连接到第一NMOS管M2的栅极,第三NMOS管M5栅极和自身漏极连接并与第四NMOS管M6的栅极短接,第三PMOS管M7的漏极和其自身栅极及第四PMOS管M9栅极连接,并连接到第二PMOS管M4的栅极为其提供偏置;第三PMOS管M7和第四PMOS管M9的源极连接到电源VDD,第五NMOS管M8的栅极和其自身漏极短接并和第四PMOS管M9的漏极连接,第三NMOS管M5、第四NMOS管M6及第五NMOS管M8的源极接地。
所述第一开关SW1采用改进型传输门电路、第二开关SW2、复位开关SWR与所述第一开关SW1结构相同;所述改进型传输门电路由四个NMOS管和四个PMOS管组成,分别为第六NMOS管M10、第七NMOS管M12、第八NMOS管M11、第九NMOS管M17以及第五PMOS管M13、第六PMOS管M15、第七PMOS管M14、第八PMOS管M16;第六NMOS管M10的栅极为改进型传输门电路的控制端COM,第七NMOS管M12的源极和其自身漏极短接构成“虚拟器件”,第八NMOS管M11、第六PMOS管M15、第七PMOS管M14与第七NMOS管M12连接方式相同,均属于“虚拟器件”,用于吸收开关通断时第六NMOS管M10的电荷注入;第九NMOS管M17的源极接地,第八PMOS管M16的源极接电源VDD,第九NMOS管M17和第八PMOS管M16的栅极短接,接到控制端COM,第九NMOS管M17和第八PMOS管M16的漏极短接构成输出端,输出端-COM与第五PMOS管M13的栅极、第七NMOS管M12的栅极、第八NMOS管M11的栅极相连,第六PMOS管M15、第七PMOS管M14的栅极连接控制端COM;第六NMOS管M10的源极和第五PMOS管M13的漏极连接构成改进型传输门电路的输入端,第六NMOS管M10的漏极和第五PMOS管M13的源极连接为改进型传输门电路的输出端。
所述第一D触发器D1为带有异步复位的D触发器,包括与门(AND)、异或门(XOR)、非门(INV)及D触发器DN。第一D触发器D1的内部结构如图4所示,其中D触发器DN的输出端Q作为第一D触发器的输出端Q1,与门的一个输入端作为第一D触发器的输入端D1,与门的另一个输入端连接到非门的输入端共同作为第一D触发器的复位端R1,异或门的一个输入端作为第一D触发器的时钟端clk1,非门的输出端连接到异或门的另一个输入端,异或门的输出端连接到D触发器的时钟端clk,与门的输出端连接D触发器的输入端D;所述第二D触发器D2与所述第一D触发器D1结构相同。
所述电压比较器VCM负端输入设定的比较阈值电压VTH=3V,电源VDD的电压为3.3V,所述单端电荷灵敏放大器CSA的初级反馈电容Cf0、第一反馈电容Cf1、第二反馈电容Cf2的电容值分别为0.5pF、2pF、3.5pF。
和现有技术相比较,本发明具备如下优点:
本发明具有结构简单,由于增加了电压比较器VCM和带有异步复位的D触发器,实现了反馈电容自动调节,在低电荷量输入时调节为高增益,在高电荷量时自动切换为低增益,因此增益调节迅速;由于采用三级不同反馈电容的布置,在对小电荷输入保证高增益的同时,扩展了前置电荷灵敏放大器读出的输入动态范围,实现了宽量程信号的自动处理。
第一D触发器D1和第二D触发器D2均采用带有异步复位的D触发器,第一开关SW1、第二开关SW2、复位开关SWR均采用了改进型传输门电路,有效降低了电荷注入效应对电路的影响;拓展了前端读出放大器的输入动态范围。
附图说明
图1为本发明结构示意图。
图2为单端折叠型共源共栅放大器AMP结构图。
图3为改进型传输门电路内部结构图。
图4为带有异步复位功能的D触发器内部结构图。
图5为输入电荷量QIN=200fC时电路的瞬态结果图。
图6为输入电荷量QIN=1.5PC时电路的瞬态结果图。
具体实施方式
如图1所示,本发明一种辐射探测器前端读出宽动态范围的前置放大器,由单端电荷灵敏放大器CSA、电压比较器VCM、第一D触发器D1和第二D触发器D2组成。其中单端电荷灵敏放大器CSA由单端折叠型共源共栅放大器AMP,初级反馈电容Cf0、第一反馈电容Cf1、第二反馈电容Cf2,第一开关SW1、第二开关SW2以及复位开关SWR构成。初级反馈电容Cf0为第一级反馈支路,第一反馈电容Cf1和第一开关SW1串联构成第二级反馈支路,第二反馈电容Cf2和第二开关SW2串联构成第三级反馈支路,复位开关SWR构成泄放支路。第一级反馈支路、第二级反馈支路、第三级反馈支路与泄放支路并联在单端折叠型共源共栅放大器AMP的输入IN和输出端OUT。所述单端电荷灵敏放大器CSA的输出端OUT与电压比较器VCM的正输入端连接,电压比较器的负端输入设定的比较阈值电压VTH,所述电压比较器VCM的输出端与第一D触发器的时钟端clk1和第二D触发器的时钟端clk2连接,所述第一D触发器的输入端D1连接电源VDD,所述第一D触发器的复位端R1与第二D触发器的复位端R2短接,所述第一D触发器的输出端Q1与第二D触发器的输入端D2相连,第一D触发器的输出端Q1同时连接第一开关SW1的控制端,控制第二级反馈支路接入,所述第二D触发器的输出端Q2连接第二开关SW2的控制端,控制第三级反馈支路接入。
如图2所示,所述单端折叠型共源共栅放大器AMP由四个PMOS管和五个NMOS管及直流电流源IS组成,分别为第一PMOS管M1、第二PMOS管M4、第三PMOS管M7、第四PMOS管M9和第一NMOS管M2、第二NMOS管M3、第三NMOS管M5、第四NMOS管M6、第五NMOS管M8,第一PMOS管M1的栅极连接探测器输出信号,是前置放大器的输入端,第一PMOS管M1、第一NMOS管M2、第二NMOS管M3、第二PMOS管M4组成以PMOS管输入的折叠共源共栅放大器,第一PMOS管M1的漏极和第二NMOS管M3的源极共同连接到第一NMOS管M2的漏极,第一NMOS管M2的源极接地,第二NMOS管M3的漏极短接第二PMOS管M4的漏极作为输出端,第二PMOS管M4的源极和第一PMOS管M1的源极连接电源VDD,第三NMOS管M5、第四NMOS管M6、第三PMOS管M7、第五NMOS管M8、第四PMOS管M9作为偏置电路,为折叠共源共栅放大器提供偏置;直流电流源IS的输入端连接到电源VDD,第三NMOS管M5的漏极连接直流电流源IS的输出并连接到第一NMOS管M2的栅极,第三NMOS管M5栅极和自身漏极连接并与第四NMOS管M6的栅极短接,第三PMOS管M7的漏极和其自身栅极及第四PMOS管M9栅极连接,并连接到第二PMOS管M4的栅极为其提供偏置;第三PMOS管M7和第四PMOS管M9的源极连接到电源VDD,第五NMOS管M8的栅极和其自身漏极短接并和第四PMOS管M9的漏极连接,第三NMOS管M5、第四NMOS管M6及第五NMOS管M8的源极接地。
如图3所示,所述第一开关SW1采用改进型传输门电路、第二开关SW2、复位开关SWR与所述第一开关SW1结构相同;所述改进型传输门电路由四个NMOS管和四个PMOS管组成,分别为第六NMOS管M10、第七NMOS管M12、第八NMOS管M11、第九NMOS管M17以及第五PMOS管M13、第六PMOS管M15、第七PMOS管M14、第八PMOS管M16;第六NMOS管M10的栅极为改进型传输门电路的控制端COM,第七NMOS管M12的源极和其自身漏极短接构成“虚拟器件”,第八NMOS管M11、第六PMOS管M15、第七PMOS管M14与第七NMOS管M12连接方式相同,均属于“虚拟器件”,用于吸收开关通断时第六NMOS管M10的电荷注入;第九NMOS管M17的源极接地,第八PMOS管M16的源极接电源VDD,第九NMOS管M17和第八PMOS管M16的栅极短接,接到控制端COM,第九NMOS管M17和第八PMOS管M16的漏极短接构成输出端,输出端-COM与第五PMOS管M13的栅极、第七NMOS管M12的栅极、第八NMOS管M11的栅极相连,第六PMOS管M15、第七PMOS管M14的栅极连接控制端COM;第六NMOS管M10的源极和第五PMOS管M13的漏极连接构成改进型传输门电路的输入端,第六NMOS管M10的漏极和第五PMOS管M13的源极连接为改进型传输门电路的输出端。
所述第一D触发器D1为带有异步复位的D触发器,包括与门AND、异或门XOR、非门INV及D触发器DN。第一D触发器D1的内部结构如图4所示,其中D触发器DN的输出端Q作为第一D触发器的输出端Q1,与门的一个输入端作为第一D触发器的输入端D1,与门的另一个输入端连接到非门的输入端共同作为第一D触发器的复位端R1,异或门的一个输入端作为第一D触发器的时钟端clk1,非门的输出端连接到异或门的另一个输入端,异或门的输出端连接到D触发器的时钟端clk,与门的输出端连接D触发器的输入端D;所述第二D触发器D2与所述第一D触发器D1结构相同。
前置放大器开始读出前,周期性脉冲信号Reset控制复位开关SWR闭合复位,周期性脉冲信号Reset经非门INV同时输入到第一D触发器D1的复位端R1、第二D触发器D2的复位端R2,对第一D触发器D1和第二D触发器D2复位。复位结束后,辐射探测器输出信号,如图1用脉冲电流信号Iin表示Cd表示等效探测器输出电容,输入到单端电荷灵敏放大器CSA的输入端IN,进行积分放大。当下一个复位信号来临,电路再次复位,准备下一次读出。
当所述单端电荷灵敏放大器CSA的输出电压VOUT小于电压比较器VCM的负端输入设定的比较阈值电压VTH时,电压比较器VCM输出0V的低电平,第二级反馈支路、第三级反馈支路处于断开状态,单端电荷灵敏放大器CSA处于高增益状态,VOUT≈QIN/Cf0。如图5所示,周期为3us、延时1us的复位信号R_CSA第五行,输入电荷QIN用延时2us、脉冲宽度为10ns的脉冲电流源表示,当电流峰值为20uA第一行时,表示QIN=200fC,此时CSA输出电压VOUT=2.919V第四行,第一D触发器D1、第二D触发器D2的输出均为0V第二行、第三行。
当所述单端电荷灵敏放大器CSA的输出电压VOUT大于电压比较器VCM的负端输入设定的比较阈值电压VTH时,电压比较器VCM的输出3.3V的高电平,从0产生一个上升沿脉冲输入第一D触发器D1、第二D触发器D2的时钟端clk,第一D触发器D1随之输出高电平控制第一开关SW1闭合并保持,第二级反馈支路接入单端电荷灵敏前置放大器CSA,单端电荷灵敏放大器CSA由高增益状态跳变为中等增益状态,单端电荷灵敏放大器CSA的输出电压由QIN/Cf0,降低到QIN/(Cf0+Cf1),如果此时的VOUT小于VTH,则第三级反馈支路处于断开状态,整个过程电压比较器VCM的输出经历了由0V跳变为3.3V,再由3.3V跳变为0V的过程。
当第二级反馈支路接入电荷灵敏前置放大器CSA后,CSA的输出开始下降,由于超调现象的出现,单端电荷灵敏放大器CSA的输出会先降到电压比较器设定的阈值,再上升至稳定值输出,当VOUT再次达到电压比较器的设定阈值VTH时,电压比较器VCM再次由低电平跳变为高电平,这时第二D触发器D2随之输出到电瓶控制第二开关SW2闭合并保持,第三级反馈支路接入电荷灵敏前置放大器CSA,单端电荷灵敏放大器CSA由中等增益状态跳变为低增益状态,单端电荷灵敏放大器CSA的输出电压由VOUT≈QIN/(Cf0+Cf1),降低到QIN/(Cf0+Cf1+Cf2)。
如图6所示,周期为3us、延时1us的复位信号R_CSA第五行,输入电荷QIN用延时2us、脉冲宽度为10ns的脉冲电流源表示,当电流峰值为150uA第一行时,表示QIN=1.5pC,第一D触发器D1先跳变输出高电平3.3V第三行、第二D触发器D2输出随后跳变为高电平3.3V第二行,CSA最终稳定输出电压VOUT=2.77V第四行。
本发明设定的电压比较器的比较阈值电压VTH略低于电源电压VDD,在单端电荷灵敏放大器CSA的输出电压VOUT达到设定的比较阈值电压VTH时,控制第一开关SW1开启,反馈电容增加,增益下降,动态范围增加,当输出电压VOUT第二次大于设定的比较阈值VTH时,控制第二开关SW2开启,反馈电容进一步增加,增益下降至最低,动态范围增加至最大。

Claims (5)

1.一种辐射探测器前端读出宽动态范围的前置放大器,其特征在于:由单端电荷灵敏放大器(CSA)、电压比较器(VCM)、第一D触发器(D1)和第二D触发器(D2)组成;其中单端电荷灵敏放大器(CSA)由单端折叠型共源共栅放大器(AMP)、初级反馈电容(Cf0)、第一反馈电容(Cf1)、第二反馈电容(Cf2)、第一开关(SW1)、第二开关(SW2)以及复位开关(SWR)构成;初级反馈电容(Cf0)为第一级反馈支路,第一反馈电容(Cf1)和第一开关(SW1)串联构成第二级反馈支路,第二反馈电容(Cf2)和第二开关(SW2)串联构成第三级反馈支路,复位开关(SWR)构成泄放支路;第一级反馈支路、第二级反馈支路、第三级反馈支路与泄放支路并联在单端折叠型共源共栅放大器(AMP)的输入端(IN)和输出端(OUT);所述单端电荷灵敏放大器(CSA)的输出端与电压比较器(VCM)的正输入端连接,电压比较器负端输入设定的比较阈值电压VTH,所述电压比较器(VCM)的输出端与第一D触发器的时钟端(clk1)和第二D触发器的时钟端(clk2)连接,所述第一D触发器的输入端(D1)连接电源(VDD),所述第一D触发器的复位端(R1)与第二D触发器的复位端(R2)短接,所述第一D触发器的输出端(Q1)与第二D触发器(的输入端(D2)相连,第一D触发器的输出端(Q1)同时连接第一开关(SW1)的控制端,控制第二级反馈支路接入,所述第二D触发器的输出端(Q2)连接第二开关(SW2)的控制端,控制第三级反馈支路接入。
2.根据权利要求1所述的一种辐射探测器前端读出宽动态范围的前置放大器,其特征在于:所述单端折叠型共源共栅放大器(AMP)由四个PMOS管和五个NMOS管及直流电流源(IS)组成,分别为第一PMOS管(M1)、第二PMOS管(M4)、第三PMOS管(M7)、第四PMOS管(M9)和第一NMOS管(M2)、第二NMOS管(M3)、第三NMOS管(M5)、第四NMOS管(M6)、第五NMOS管(M8),第一PMOS管(M1)的栅极连接探测器输出信号,是前置放大器的输入端,第一PMOS管(M1)、第一NMOS管(M2)、第二NMOS管(M3)、第二PMOS管(M4)组成以PMOS管输入的折叠共源共栅放大器,第一PMOS管(M1)的漏极和第二NMOS管(M3)的源极共同连接到第一NMOS管(M2)的漏极,第一NMOS管(M2)的源极接地,第二NMOS管(M3)的漏极短接第二PMOS管(M4)的漏极作为输出端,第二PMOS管(M4)的源极和第一PMOS管(M1)的源极连接电源(VDD),第三NMOS管(M5)、第四NMOS管(M6)、第三PMOS管(M7)、第五NMOS管(M8)、第四PMOS管(M9)作为偏置电路,为折叠共源共栅放大器提供偏置;直流电流源(IS)的输入端连接到电源(VDD),第三NMOS管(M5)的漏极连接直流电流源(IS)的输出并连接到第一NMOS管(M2)的栅极,第三NMOS管(M5)栅极和自身漏极连接并与第四NMOS管(M6)的栅极短接,第三PMOS管(M7)的漏极和其自身栅极及第四PMOS管(M9)栅极连接,并连接到第二PMOS管(M4)的栅极为其提供偏置;第三PMOS管(M7)和第四PMOS管(M9)的源极连接到电源(VDD),第五NMOS管(M8)的栅极和其自身漏极短接并和第四PMOS管(M9)的漏极连接,第三NMOS管(M5)、第四NMOS管(M6)及第五NMOS管(M8)的源极接地。
3.根据权利要求1所述的一种辐射探测器前端读出宽动态范围的前置放大器,其特征在于:所述第一开关(SW1)采用改进型传输门电路、第二开关(SW2)、复位开关(SWR)与所述第一开关(SW1)结构相同;所述改进型传输门电路由四个NMOS管和四个PMOS管组成,分别为第六NMOS管(M10)、第七NMOS管(M12)、第八NMOS管(M11)、第九NMOS管(M17)以及第五PMOS管(M13)、第六PMOS管(M15)、第七PMOS管(M14)、第八PMOS管(M16);第六NMOS管(M10)的栅极为改进型传输门电路的控制端COM,第七NMOS管(M12)的源极和其自身漏极短接构成“虚拟器件”,第八NMOS管(M11)、第六PMOS管(M15)、第七PMOS管(M14)与第七NMOS管(M12)连接方式相同,均属于“虚拟器件”,用于吸收开关通断时第六NMOS管(M10)的电荷注入;第九NMOS管(M17)的源极接地,第八PMOS管(M16)的源极接电源(VDD),第九NMOS管(M17)和第八PMOS管(M16)的栅极短接,接到控制端(COM),第九NMOS管(M17)和第八PMOS管(M16)的漏极短接构成输出端(-COM),输出端(-COM)与第五PMOS管(M13)的栅极、第七NMOS管(M12)的栅极、第八NMOS管(M11)的栅极相连,第六PMOS管(M15)、第七PMOS管(M14)的栅极连接控制端(COM);第六NMOS管(M10)的源极和第五PMOS管(M13)的漏极连接构成改进型传输门电路的输入端,第六NMOS管(M10)的漏极和第五PMOS管(M13)的源极连接为改进型传输门电路的输出端。
4.根据权利要求1所述的一种辐射探测器前端读出宽动态范围的前置放大器,其特征在于:所述第一D触发器(D1)为带有异步复位的D触发器,包括与门(AND)、异或门(XOR)、非门(INV)及D触发器(DN),;其中D触发器(DN)的输出端(Q)作为第一D触发器的输出端(Q1),与门的一个输入端作为第一D触发器的输入端(D1),与门的另一个输入端连接到非门的输入端共同作为第一D触发器的复位端(R1),异或门的一个输入端作为第一D触发器的时钟端(clk1),非门的输出端连接到异或门的另一个输入端,异或门的输出端连接到D触发器的时钟端(clk),与门的输出端连接D触发器的输入端(D);所述第二D触发器(D2)与所述第一D触发器(D1)结构相同。
5.根据权利要求1所述的一种辐射探测器前端读出宽动态范围的前置放大器,其特征在于:所述电压比较器(VCM)负端输入设定的比较阈值电压VTH=3V,电源(VDD)的电压为3.3V,所述单端电荷灵敏放大器(CSA)的初级反馈电容(Cf0)、第一反馈电容(Cf1)、第二反馈电容(Cf2)的电容值分别为0.5pF、2pF、3.5pF。
CN202010911942.0A 2020-09-02 2020-09-02 一种辐射探测器前端读出宽动态范围的前置放大器 Active CN112087208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010911942.0A CN112087208B (zh) 2020-09-02 2020-09-02 一种辐射探测器前端读出宽动态范围的前置放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010911942.0A CN112087208B (zh) 2020-09-02 2020-09-02 一种辐射探测器前端读出宽动态范围的前置放大器

Publications (2)

Publication Number Publication Date
CN112087208A true CN112087208A (zh) 2020-12-15
CN112087208B CN112087208B (zh) 2022-12-09

Family

ID=73733022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010911942.0A Active CN112087208B (zh) 2020-09-02 2020-09-02 一种辐射探测器前端读出宽动态范围的前置放大器

Country Status (1)

Country Link
CN (1) CN112087208B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782670A (zh) * 2020-12-30 2021-05-11 中国科学院微电子研究所 一种适用于激光雷达模拟前端的小信号放大电路及芯片
CN114721029A (zh) * 2022-06-09 2022-07-08 山东大学 一种基于无机钙钛矿的伽马光子探测器读出电子学***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523394A (zh) * 2011-11-23 2012-06-27 华东师范大学 一种光电转换前端检测式增益自动可调读出电路
CN108307133A (zh) * 2018-03-01 2018-07-20 江苏芯力特电子科技有限公司 一种用于图像探测器的自适应ctia读出电路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523394A (zh) * 2011-11-23 2012-06-27 华东师范大学 一种光电转换前端检测式增益自动可调读出电路
CN108307133A (zh) * 2018-03-01 2018-07-20 江苏芯力特电子科技有限公司 一种用于图像探测器的自适应ctia读出电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
甘波等: "用于CdZnTe探测器的低噪声前端读出电路", 《微电子学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782670A (zh) * 2020-12-30 2021-05-11 中国科学院微电子研究所 一种适用于激光雷达模拟前端的小信号放大电路及芯片
CN114721029A (zh) * 2022-06-09 2022-07-08 山东大学 一种基于无机钙钛矿的伽马光子探测器读出电子学***
CN114721029B (zh) * 2022-06-09 2022-09-02 山东大学 一种基于无机钙钛矿的伽马光子探测器读出电子学***

Also Published As

Publication number Publication date
CN112087208B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN112087208B (zh) 一种辐射探测器前端读出宽动态范围的前置放大器
CN108011635B (zh) 一种动态比较器及其失调校准的方法
KR101283998B1 (ko) 슬루 레이트 제어를 이용한 시간차이증폭기 및 시간차이증폭방법
CN111200402B (zh) 一种能够提升增益的高线性度动态残差放大器电路
TWI464743B (zh) 具低偏移調整之電流感測放大器及其操作方法
CN108270402B (zh) 电压检测及控制电路
CN112954237A (zh) 一种用于光电探测器的自适应可变增益积分电路
CN114520650A (zh) 适用于sar adc的低噪声二级动态比较器
CN113872574A (zh) 一种应用于高速模数转换器的高速比较器
CN113375796A (zh) 一种面向线性apd阵列非均匀性的自适应校正电路
CN108389598B (zh) 反相器钳位的灵敏放大器电路
CN110146179B (zh) 一种非制冷红外列级积分及单斜率转换读出电路
CN107517354B (zh) 一种红外焦平面读出电路及其反馈控制环路
US11991465B2 (en) Low power event driven pixels with passive, differential difference detection circuitry, and reset control circuits for the same
CN115574936A (zh) 一种基于电流比较的spad淬灭电路
CN115102511A (zh) 一种数据处理电路、方法和半导体存储器
CN109974863B (zh) 一种应用于紫外焦平面探测器的积分电路
CN210155569U (zh) 一种高精度快速瞬态响应全片上无电容型ldo
CN111277251B (zh) 自触发供电控制的低功耗前端读出电路
CN107331413B (zh) 一种反馈型防过充电流敏感放大器及其控制方法
CN112881775A (zh) 一种低功耗高分辨率电容测量电路
CN117135478B (zh) 一种基于双跨阻放大器的复合介质栅晶体管像素读出电路
Costantini et al. A CMOS 0.13 µm low power front-end for GEM detectors
CN112929017B (zh) 一种提升复位速度的积分器电路
CN113114260B (zh) 一种用于深低温环境的轨到轨输入cmos模数转换器电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant