CN112071924B - 一种红外探测器及其制备方法 - Google Patents

一种红外探测器及其制备方法 Download PDF

Info

Publication number
CN112071924B
CN112071924B CN202010771103.3A CN202010771103A CN112071924B CN 112071924 B CN112071924 B CN 112071924B CN 202010771103 A CN202010771103 A CN 202010771103A CN 112071924 B CN112071924 B CN 112071924B
Authority
CN
China
Prior art keywords
infrared detector
gesi
nano
film
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010771103.3A
Other languages
English (en)
Other versions
CN112071924A (zh
Inventor
杨为家
邱晨
吴质朴
何畏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Orient Components Co ltd
Original Assignee
Shenzhen Orient Components Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Orient Components Co ltd filed Critical Shenzhen Orient Components Co ltd
Priority to CN202010771103.3A priority Critical patent/CN112071924B/zh
Publication of CN112071924A publication Critical patent/CN112071924A/zh
Application granted granted Critical
Publication of CN112071924B publication Critical patent/CN112071924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种红外探测器及其制备方法,包括:第一电极;Si基红外探测器,所述Si基红外探测器与所述第一电极连接;Si‑GeSi‑Ge纳米柱,述Si‑GeSi‑Ge纳米柱与所述Si基红外探测器连接;第二电极,所述第二电极与所述Si‑GeSi‑Ge纳米柱连接。所述Ge壳层具有较强的金属属性,可以与金属电极形成良好的界面接触,提高器件的光生载流子的提取效率;与此同时,可以使整个外加的偏压电场分布得更加均匀,有利于缩短光生载流子的迁移路径。Si‑GeSi‑Ge纳米柱可以起到减反膜的作用,同时其量子效应可以帮助提高对光的吸收效率。Si与Ge可以形成良好的异质结,提高对光的吸收效率。

Description

一种红外探测器及其制备方法
技术领域
本发明涉及传感器加工领域,特别涉及一种红外探测器及其制备方法。
背景技术
Si基光电二极管(PD)、雪崩型光电二极管(APD)具有成本低、工艺较为成熟等优点,在红外探测领域得到了广泛的应用,是目前红外探测器的主流之一。然而,受限于材料和器件结构的原因,红外探测器的效率比较低,难以满足对深度红外检测的需求。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种红外探测器及其制备方法,提高器件的光生载流子的提取效率,缩短光生载流子的迁移路径,提高对光的吸收效率。
本发明还提出一种具有上述的优点的红外探测器制备方法。
根据本发明第一方面实施例的红外探测器,包括:第一电极;Si基红外探测器,所述Si基红外探测器与所述第一电极连接;Si-GeSi-Ge纳米柱,所述Si-GeSi-Ge纳米柱包括Ge壳层和GeSi中间层,所述Si-GeSi-Ge纳米柱与所述Si基红外探测器连接;第二电极,所述第二电极与所述Si-GeSi-Ge纳米柱连接。
根据本发明实施例的红外探测器,至少具有如下有益效果:所述第一电极是背电极,所述第二电极的形状是环形,所述Ge壳层具有较强的金属属性,可以与金属电极形成良好的界面接触,提高器件的光生载流子的提取效率;与此同时,可以使整个外加的偏压电场分布得更加均匀,有利于缩短光生载流子的迁移路径。Si-GeSi-Ge纳米柱可以起到减反膜的作用,同时其量子效应可以帮助提高对光的吸收效率。Si与Ge可以形成良好的异质结,提高对光的吸收效率。
根据本发明的一些实施例,所述Si-GeSi-Ge纳米柱的形状为圆形或者六边形,其直径为50-800nm,相邻所述Si-GeSi-Ge纳米柱之间的中心间距为150-1600nm,所述Si-GeSi-Ge纳米柱的高度为50-500nm;所述Ge壳层的厚度5-50nm,所述GeSi中间层的厚度为1-5nm。所述Ge壳层具有较强的金属属性,可以与金属电极形成良好的界面接触,提高器件的光生载流子的提取效率;与此同时,所述Ge壳层使整个外加的偏压电场分布得更加均匀,有利于缩短光生载流子的迁移路径。所述Si-GeSi-Ge纳米柱具有减反膜的作用,所述Si-GeSi-Ge纳米柱的量子效应提高对光的吸收效率。
根据本发明的一些实施例,所述Si-GeSi-Ge纳米柱还包括异质结,所述异质结位于Si与Ge之间。所述异质结提高对光的吸收效率。
根据本发明第二方面实施例的一种红外探测器的制备方法,包括步骤:旋涂光刻胶,在Si基红外探测器上用旋涂仪在红外光入射面均匀旋涂一层光刻胶;曝光,使用光刻机进行曝光显影;湿法刻蚀,采用腐蚀溶液进行刻蚀,获得Si纳米柱阵列;清洗,去除所述光刻胶,清洗所述腐蚀溶液;Ge膜制备,使用镀膜机在所述Si纳米柱阵列上蒸镀Ge薄膜;分步退火,包括晶化和渗入;蒸镀电极:分别在背面和正面蒸镀电极,并进行合金化,获得Si-GeSi-Ge纳米柱增强红外探测器。
根据本发明实施例的一种红外探测器的制备方法,至少具有如下有益效果:Ge壳层具有较强的金属属性,可以与金属电极形成良好的界面接触,提高器件的光生载流子的提取效率;与此同时,可以使整个外加的偏压电场分布得更加均匀,有利于缩短光生载流子的迁移路径。Si-GeSi-Ge纳米柱/棱台可以起到减反膜的作用,同时其量子效应可以帮助提高对光的吸收效率。Si与Ge可以形成良好的异质结,提高对光的吸收效率。
根据本发明的一些实施例,所述Ge薄膜的厚度为5-50nm。
根据本发明的一些实施例,所述分步退火包括:晶化,将所述Ge薄膜一次升温并一次保温,使所述Ge膜完全晶化;渗入,将所述Ge薄膜二次升温并退火。
根据本发明的一些实施例,所述一次升温包括以5℃/min的速率升温到300℃或者以10℃/min的速率升温到400℃。
根据本发明的一些实施例,所述一次保温是对所述Ge薄膜保温30分钟。
根据本发明的一些实施例,所述二次升温包括以20℃/min的速率升温到600℃或者以50℃/min的速率升温到900℃。
根据本发明的一些实施例,所述二次升温后退火包括:如果所述二次升温以20℃的速率升温到600℃,则退火120分钟;如果所述二次升温以50℃的速率升温到900℃,则退火30分钟。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为Si-GeSi-Ge纳米柱增强红外探测器结构示意图;
图2为Si-GeSi-Ge纳米柱增强红外探测器制程流程图;
图3为Si-GeSi-Ge纳米柱增强红外探测器制程分步退火流程图;
附图标记:
第一电极101、
Si基红外探测器102、
Si-GeSi-Ge纳米柱103、
第二电极104。
具体实施方式
本发明实施例第一方面的红外探测器及其制备方法,包括第一电极101;Si基红外探测器102,所述Si基红外探测器102与所述第一电极101连接;Si-GeSi-Ge纳米柱103,所述Si-GeSi-Ge纳米柱包括Ge壳层和GeSi中间层,所述Si-GeSi-Ge纳米柱103与所述Si基红外探测器102连接;第二电极104,所述第二电极104与所述Si-GeSi-Ge纳米柱103连接。所述第一电极101是背电极,所述第二电极104的形状是环形,所述Ge壳层具有较强的金属属性,可以与金属电极形成良好的界面接触,提高器件的光生载流子的提取效率;与此同时,可以使整个外加的偏压电场分布得更加均匀,有利于缩短光生载流子的迁移路径。Si-GeSi-Ge纳米柱103可以起到减反膜的作用,同时其量子效应可以帮助提高对光的吸收效率。Si与Ge可以形成良好的异质结,提高对光的吸收效率。
进一步,在发明的一些具体实施例中,所述Si-GeSi-Ge纳米柱103的形状为圆形或者六边形,所述Si-GeSi-Ge纳米柱103直径为50-800nm,相邻所述Si-GeSi-Ge纳米柱103之间的中心间距为150-1600nm,所述Si-GeSi-Ge纳米柱的103高度为50-500nm;所述Ge壳层的厚度5-50nm,所述GeSi中间层的厚度为1-5nm。Ge壳层具有较强的金属属性,可以与金属电极形成良好的界面接触,提高器件的光生载流子的提取效率;与此同时,可以使整个外加的偏压电场分布得更加均匀,有利于缩短光生载流子的迁移路径。所述Si-GeSi-Ge纳米柱103可以起到减反膜的作用,同时其量子效应可以帮助提高对光的吸收效率。
根据本发明第二方面实施例中,所述Si-GeSi-Ge纳米柱103还包括异质结,所述异质结位于Si与Ge之间。提高对光的吸收效率。
在本发明的一些具体实施例中,利用了本发明上述第一方面实施例的红外探测器及其制备方法。包括步骤:
S201:旋涂光刻胶,在Si基红外探测器102上用旋涂仪在红外光入射面均匀旋涂一层光刻胶;
S202:曝光,使用光刻机进行曝光显影;
S203:湿法刻蚀,采用腐蚀溶液进行刻蚀,获得Si纳米柱阵列;
S204:清洗,去除所述光刻胶,清洗所述腐蚀溶液;
S205:Ge膜制备,使用镀膜机在所述Si纳米柱阵列上蒸镀Ge薄膜;
S206:分步退火,包括晶化和渗入;
S207:蒸镀电极:分别在背面和正面蒸镀电极,并进行合金化,获得Si-GeSi-Ge纳米柱103增强红外探测器。Ge壳层具有较强的金属属性,可以与金属电极形成良好的界面接触,提高器件的光生载流子的提取效率;与此同时,可以使整个外加的偏压电场分布得更加均匀,有利于缩短光生载流子的迁移路径。Si-GeSi-Ge纳米柱103/棱台可以起到减反膜的作用,同时其量子效应可以帮助提高对光的吸收效率。Si与Ge可以形成良好的异质结,提高对光的吸收效率。
在本发明的一些具体实施例中,所述Ge薄膜的厚度为5-50nm。
在本发明的一些具体实施例中,所述分步退火包括:
S301:晶化,将所述Ge薄膜一次升温并一次保温,使所述Ge膜完全晶化;
S302:渗入,将所述Ge薄膜二次升温并退火。
本发明还提供了以下具体制备实施例,所述一次升温包括以5℃/min的速率升温到300℃或者以10℃/min的速率升温到400℃。
本发明还提供了以下具体制备实施例,所述一次保温是对所述Ge薄膜保温30分钟。
本发明还提供了以下具体制备实施例,所述二次升温包括以20℃/min的速率升温到600℃或者以50℃/min的速率升温到900℃。
本发明还提供了以下具体制备实施例,所述二次升温后退火包括:如果所述二次升温以20℃的速率升温到600℃,则退火120分钟;如果所述二次升温以50℃的速率升温到900℃,则退火30分钟。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (9)

1.一种红外探测器,其特征在于,包括:
第一电极;
Si基红外探测器,所述Si基红外探测器与所述第一电极连接;
Si-GeSi-Ge纳米柱,所述Si-GeSi-Ge纳米柱包括Ge壳层和GeSi中间层,所述Si-GeSi-Ge纳米柱与所述Si基红外探测器连接;
第二电极,所述第二电极与所述Si-GeSi-Ge纳米柱连接;
所述红外探测器通过以下步骤制备:
旋涂光刻胶,在Si基红外探测器上在所述Si基红外探测器的红外光入射面均匀旋涂一层光刻胶;
曝光,在所述Si基红外探测器上进行曝光显影;
湿法刻蚀,采用腐蚀溶液进行刻蚀,获得Si纳米柱阵列;
清洗,去除所述光刻胶,清洗所述腐蚀溶液;
Ge膜制备,在所述Si纳米柱阵列上蒸镀Ge薄膜;
分步退火,包括晶化,将所述Ge薄膜一次升温并一次保温,使所述Ge薄膜完全晶化,渗入,将所述Ge薄膜二次升温并退火;
蒸镀电极,并进行合金化,获得所述Si-GeSi-Ge纳米柱增强红外探测器。
2.根据权利要求1所述的一种红外探测器,其特征在于:所述Si-GeSi-Ge纳米柱的形状为圆形或者六边形,其直径为50-800nm,相邻所述Si-GeSi-Ge纳米柱之间的中心间距为150-1600nm,所述Si-GeSi-Ge纳米柱的高度为50-500nm;所述Ge壳层的厚度5-50nm,所述GeSi中间层的厚度为1-5nm。
3.根据权利要求1所述的一种红外探测器,其特征在于:所述Si-GeSi-Ge纳米柱还包括异质结,所述异质结位于Si与Ge之间。
4.一种如权利要求1至3任一所述的一种红外探测器的制备方法,其特征在于,包括步骤:
旋涂光刻胶,在Si基红外探测器上在所述Si基红外探测器的红外光入射面均匀旋涂一层光刻胶;
曝光,在所述Si基红外探测器上进行曝光显影;
湿法刻蚀,采用腐蚀溶液进行刻蚀,获得Si纳米柱阵列;
清洗,去除所述光刻胶,清洗所述腐蚀溶液;
Ge膜制备,在所述Si纳米柱阵列上蒸镀Ge薄膜;
分步退火,包括晶化,将所述Ge薄膜一次升温并一次保温,使所述Ge薄膜完全晶化,渗入,将所述Ge薄膜二次升温并退火;
蒸镀电极,并进行合金化,获得所述Si-GeSi-Ge纳米柱增强红外探测器。
5.根据权利要求4所述的一种红外探测器的制备方法,其特征在于:所述Ge薄膜的厚度为5-50nm。
6.根据权利要求4所述的一种红外探测器的制备方法,其特征在于:所述一次升温包括以5℃/min的速率升温到300℃或者以10℃/min的速率升温到400℃。
7.根据权利要求6所述的一种红外探测器的制备方法,其特征在于:所述一次保温是对所述Ge薄膜保温30分钟。
8.根据权利要求4所述的一种红外探测器的制备方法,其特征在于:所述二次升温包括以20℃/min的速率升温到600℃或者以50℃/min的速率升温到900℃。
9.根据权利要求8所述的一种红外探测器的制备方法,其特征在于:所述二次升温后退火包括:
如果所述二次升温以20℃的速率升温到600℃,则退火120分钟;
如果所述二次升温以50℃的速率升温到900℃,则退火30分钟。
CN202010771103.3A 2020-08-04 2020-08-04 一种红外探测器及其制备方法 Active CN112071924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010771103.3A CN112071924B (zh) 2020-08-04 2020-08-04 一种红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010771103.3A CN112071924B (zh) 2020-08-04 2020-08-04 一种红外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112071924A CN112071924A (zh) 2020-12-11
CN112071924B true CN112071924B (zh) 2022-04-01

Family

ID=73657670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010771103.3A Active CN112071924B (zh) 2020-08-04 2020-08-04 一种红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112071924B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740654A (zh) * 2008-11-19 2010-06-16 中国科学院半导体研究所 一种半导体p-i-n结太阳能电池外延片及其制备方法
CN102105963A (zh) * 2008-07-24 2011-06-22 夏普株式会社 生长薄膜的方法以及形成结构的方法和器件
KR20110117592A (ko) * 2010-04-21 2011-10-27 서울대학교산학협력단 반도체 광소자 및 그 제조 방법
WO2013030935A1 (ja) * 2011-08-29 2013-03-07 株式会社日立製作所 太陽電池
CN103620785A (zh) * 2011-05-20 2014-03-05 立那工业股份有限公司 钝化直立纳米结构和其制造方法
CN107394013A (zh) * 2017-07-26 2017-11-24 卡姆丹克太阳能(江苏)有限公司 一种硅锗黑磷烯pin异质结太阳能电池的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977568B2 (en) * 2007-01-11 2011-07-12 General Electric Company Multilayered film-nanowire composite, bifacial, and tandem solar cells
US8748940B1 (en) * 2012-12-17 2014-06-10 Intel Corporation Semiconductor devices with germanium-rich active layers and doped transition layers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105963A (zh) * 2008-07-24 2011-06-22 夏普株式会社 生长薄膜的方法以及形成结构的方法和器件
CN101740654A (zh) * 2008-11-19 2010-06-16 中国科学院半导体研究所 一种半导体p-i-n结太阳能电池外延片及其制备方法
KR20110117592A (ko) * 2010-04-21 2011-10-27 서울대학교산학협력단 반도체 광소자 및 그 제조 방법
CN103620785A (zh) * 2011-05-20 2014-03-05 立那工业股份有限公司 钝化直立纳米结构和其制造方法
WO2013030935A1 (ja) * 2011-08-29 2013-03-07 株式会社日立製作所 太陽電池
CN107394013A (zh) * 2017-07-26 2017-11-24 卡姆丹克太阳能(江苏)有限公司 一种硅锗黑磷烯pin异质结太阳能电池的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Controlled formation of GeSi nanostructures on periodic Si (001) sub-micro pillars;Tong Zhou等;《Nanoscale》;20140421;第6卷(第8期);全文 *

Also Published As

Publication number Publication date
CN112071924A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
US9459797B2 (en) Uniformly distributed self-assembled cone-shaped pillars for high efficiency solar cells
US20220052218A1 (en) Silicon carbide-based full-spectrum-responsive photodetector and method for producing same
US8384179B2 (en) Black silicon based metal-semiconductor-metal photodetector
US7977637B1 (en) Honeycomb infrared detector
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN110224041B (zh) 一种包含石墨烯夹层结构的光电探测器
CN109742178B (zh) 一种透红外的高灵敏可见光探测器及其制备方法
JP2016532320A (ja) 水分バリアを有するエピタキシャルシリコン太陽電池
JP5982195B2 (ja) ヨウ素処理によるHgCdTe表面不動態化
CN109273543B (zh) 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用
CN101241946A (zh) 背照射铟镓砷微台面线列或面阵探测器芯片及制备工艺
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN112071924B (zh) 一种红外探测器及其制备方法
CN209418524U (zh) 一种增强蓝光型硅基雪崩光电二极管阵列
JP4144204B2 (ja) 光吸収膜およびその製造方法
CN111129198A (zh) 一种石墨烯/硫化铅红外探测器及其制备方法
CN104659152B (zh) 一种基于扭转双层石墨烯的光电探测器及其制备方法
CN109742093A (zh) 一种增强蓝光型硅基雪崩光电二极管阵列及其制备方法
CN209544353U (zh) 一种可见光短波段硅基雪崩光电二极管阵列
CN107507882A (zh) 一种台面式硅掺砷阻挡杂质带探测器及其制备方法
CN103730535A (zh) 应用硅锗薄膜的非制冷红外焦平面阵列像元制造方法
CN104505429A (zh) 一种应用于晶硅太阳能电池的光刻工艺
TW200950109A (en) UV inspector for zinc oxide nano-pillar
CN114300551A (zh) 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法
JP2005116783A (ja) 太陽電池の製造方法およびその方法により製造した太陽電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant