CN112034312A - 一种电力设备绝缘缺陷模式识别方法 - Google Patents

一种电力设备绝缘缺陷模式识别方法 Download PDF

Info

Publication number
CN112034312A
CN112034312A CN202010791030.4A CN202010791030A CN112034312A CN 112034312 A CN112034312 A CN 112034312A CN 202010791030 A CN202010791030 A CN 202010791030A CN 112034312 A CN112034312 A CN 112034312A
Authority
CN
China
Prior art keywords
mfcc
insulation defect
omp
gis
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010791030.4A
Other languages
English (en)
Inventor
杨栋
张建刚
邬乾晋
周禹
龙方宇
许毅
金辉
王鑫
肖黄能
孙琨
吴德贯
夏辉
李红元
潘凯
邵成林
杨成
丁洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maintenance and Test Center of Extra High Voltage Power Transmission Co
Original Assignee
Maintenance and Test Center of Extra High Voltage Power Transmission Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maintenance and Test Center of Extra High Voltage Power Transmission Co filed Critical Maintenance and Test Center of Extra High Voltage Power Transmission Co
Priority to CN202010791030.4A priority Critical patent/CN112034312A/zh
Publication of CN112034312A publication Critical patent/CN112034312A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1209Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using acoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1254Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of gas-insulated power appliances or vacuum gaps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • G06F17/142Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Discrete Mathematics (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种电力设备绝缘缺陷模式识别方法,涉及GIS绝缘缺陷故障诊断领域,所述方法包括:采集GIS局部放电的超声信号;从超声信号中提取MFCC特征参数,并构造MFCC二维图谱;将样本按比例划分为训练集与测试集,使用训练集构建过完备字典,并根据建立的过完备字典采用OMP法对测试集进行稀疏重构;依据非零项的累积误差判断放电类型。本发明基于MFCC特征图谱和OMP稀疏重构,实现GIS绝缘缺陷的智能识别,提高GIS局部放电检测***的智能化水平。

Description

一种电力设备绝缘缺陷模式识别方法
技术领域
本发明涉及GIS绝缘缺陷故障诊断领域,具体涉及一种电力设备绝缘缺陷模式识别方法。
背景技术
封闭式组合电器(Gas Insulated Switchgear,GIS)是一种以SF6气体作为绝缘介质的气体绝缘金属封闭开关设备。与传统的敞开式变电站相比,GIS具有占地面积小、运行可靠性高、安全性强、维修周期长等显著优点。因此自20世纪60年代实用化以来,GIS在国内外电力***中得到广泛应用。
由于GIS在电网中应用的广泛性及其重要程度,它的运行情况与整个电网能否正常安全工作息息相关。对GIS局部放电进行在线监测则可以在掌握其绝缘情况的同时可以避免停运带来的负面影响,并且在不停运的状态下检测更能够表征GIS当前的绝缘状态,对于保证整个电力***的安全稳定运行具有重要意义。超声检测是目前常用的一种局部放电检测方法,但是基于超声检测局放信号对绝缘缺陷进行识别的方法准确率较低,无法实现GIS绝缘缺陷类别的精确诊断。
发明内容
针对现有技术中的不足,本发明的目的是为克服现有技术的不足,提供了一种GIS局放故障诊断方法,该方法基于MFCC特征图谱和OMP稀疏重构,实现GIS绝缘缺陷的智能识别,提高GIS局部放电检测***的智能化水平。
为实现上述目的,本发明的技术方案如下:
一种电力设备绝缘缺陷模式识别方法,其包括:
步骤1:采集GIS局部放电的超声信号;
步骤2:从超声信号中提取MFCC特征参数,并构造MFCC二维图谱;
步骤3:将样本按比例划分为训练集与测试集,使用训练集构建过完备字典,并根据建立的过完备字典采用OMP法对测试集进行稀疏重构;
步骤4:依据非零项的累积误差判断放电类型。
如上所述的电力设备绝缘缺陷模式识别方法,进一步地,构造MFCC二维图谱具体包括:
步骤2-1:对信号分帧加窗:取帧长为一个工频周期的长度即20ms,重叠率为50%,并为信号加汉明窗以防止在后续过程中发生频谱泄露;
步骤2-2:对加窗后信号进行FFT变换;
步骤2-3:使用Mel滤波器组过滤信号,Mel滤波器组的频率响应如下:
Figure BDA0002623743230000021
式中,f(m)为第m个三角滤波器的中心频率,共有M个三角滤波器;
步骤2-4:对Mel频谱进行对数能量处理,得到对数频谱;
Figure BDA0002623743230000022
式中X(k)为分帧信号的FFT,Hm(k)为Mel滤波器频率响应,N为FFT长度;
步骤2-5:将对数频谱进行离散余弦变换,得到M个MFCC特征参数;
步骤2-6:得到信号的MFCC特征参数后,依据分帧顺序排列构成特征矩阵,最终得到信号的二维MFCC特征图谱。
如上所述的电力设备绝缘缺陷模式识别方法,进一步地,OMP法对测试集进行稀疏重构具体包括:
OMP的输入量有特征量矩阵X,传感矩阵Φ,采样向量y,稀疏度K;输出量为X的K-稀疏的逼近
Figure BDA0002623743230000023
步骤3-1:初始化参数,残差r0=y,索引集Λ0=Φ,迭代次数t=1,最大迭代次数M;
步骤3-2:通过计算残差r和传感矩阵的列
Figure BDA0002623743230000024
的内积,获得最大值的角标λ,即
Figure BDA0002623743230000025
步骤3-3:由λt更新索引集Λt=Λt-1∪{λt},记录找到的传感矩阵中的重建原子集合
Figure BDA0002623743230000026
步骤3-4:由最小二乘法得
Figure BDA0002623743230000031
步骤3-5:更新残差
Figure BDA0002623743230000032
步骤3-6:循环步骤3-1到步骤3-5,直到判断迭代次数是否满足t≥M,若满足,则停止迭代,获得非零项累计误差即最终残差值,残差值最小的类型即为待识别样本的绝缘缺陷类型;若不满足,则返回执行步骤3-1。
本发明与现有技术相比,其有益效果在于:本发明首先提取超声局放信号的MFCC声纹特征参数,并构造形成MFCC特征图谱,其次使用样本构建过完备字典,并基于已建立的过完备字典采用OMP法对待测样本进行稀疏重构,最后依据非零项的累积误差判断放电类型,实现GIS绝缘缺陷的智能识别,提高GIS局部放电检测***的智能化水平。。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图进行简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为基于OMP稀疏重构的缺陷识别流程图;
图2为不同绝缘缺陷下GIS局放超声信号,其中,图2(a)为金属微粒,图2(b)为悬浮电位;图2(c)为沿面放电;图2(d)尖板放电;
图3为不同绝缘缺陷下的MFCC特征图谱,其中,图3(a)为金属微粒,图3(b)为悬浮电位;图3(c)为沿面放电;图3(d)尖板放电。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明基于GIS局放超声信号的特点,提出一种基于MFCC特征图谱和OMP稀疏重构的GIS绝缘缺陷诊断识别方法。首先提取超声局放信号的MFCC声纹特征参数,并构造形成MFCC特征图谱,其次使用样本构建过完备字典,并基于已建立的过完备字典采用OMP法对待测样本进行稀疏重构,最后依据非零项的累积误差判断放电类型。通过对大量试验数据测试,验证了本文的识别方法在GIS绝缘缺陷识别诊断的应用效果。
参见图1,图1为基于OMP稀疏重构的缺陷识别流程图,该方法可以包括以下步骤:
步骤1:使用超声传感器采集GIS局部放电的超声信号。
步骤2:从超声信号中提取MFCC特征参数,并构造MFCC二维图谱。
步骤3:将样本按比例划分为训练集与测试集,使用训练集构建过完备字典,并根据建立的过完备字典采用OMP法对测试集进行稀疏重构。
步骤4:依据非零项的累积误差判断放电类型。
梅尔频率倒谱系数(Mel frequency coefficient,MFCC)是将实际频率转换到Mel频率域中以获得声信号的声纹特性。梅尔频率与实际频率的关系为
Figure BDA0002623743230000041
式中,fmek为梅尔频率,f为实际频率。
建立MFCC特征图谱的具体流程如下:
步骤2-1:对信号分帧加窗:取帧长为一个工频周期的长度即20ms,重叠率为50%,并为信号加汉明窗以防止在后续过程中发生频谱泄露;
步骤2-2:对加窗后信号进行FFT变换;
步骤2-3:使用Mel滤波器组过滤信号,Mel滤波器组的频率响应如下:
Figure BDA0002623743230000042
式中,f(m)为第m个三角滤波器的中心频率,共有M个三角滤波器;
步骤2-4:对Mel频谱进行对数能量处理,得到对数频谱;
Figure BDA0002623743230000051
式中X(k)为分帧信号的FFT,Hm(k)为Mel滤波器频率响应,N为FFT长度;
步骤2-5:将对数频谱进行离散余弦变换,得到M个MFCC特征参数;
步骤2-6:得到信号的MFCC特征参数后,依据分帧顺序排列构成特征矩阵,最终得到信号的二维MFCC特征图谱。
正交匹配追踪法(OMP)的基本思想是在每次迭代的过程中,从全息矩阵中选出与测量信号相关度(内积)最大的一列,将该列从全息矩阵中移除而加入到扩展矩阵中,然后利用最小二乘法原理求出使残差最小的估计,再不断从全息矩阵中减去相关列重复上述过程,直至达到规定的迭代次数或达到稀疏度要求。
OMP的输入量有特征量矩阵X,传感矩阵Φ,采样向量y,稀疏度K;输出量为X的K-稀疏的逼近
Figure BDA0002623743230000052
具体步骤如下:
步骤3-1:初始化参数,残差r0=y,索引集Λ0=Φ,迭代次数t=1,最大迭代次数M;
步骤3-2:通过计算残差r和传感矩阵的列
Figure BDA0002623743230000053
的内积,获得最大值的角标λ,即
Figure BDA0002623743230000054
步骤3-3:由λt更新索引集Λt=Λt-1∪{λt},记录找到的传感矩阵中的重建原子集合
Figure BDA0002623743230000055
步骤3-4:由最小二乘法得
Figure BDA0002623743230000056
步骤3-5:更新残差
Figure BDA0002623743230000057
步骤3-6:循环步骤3-1到步骤3-5,直到判断迭代次数是否满足t≥M,若满足,则停止迭代,获得非零项累计误差即最终残差值,残差值最小的类型即为待识别样本的绝缘缺陷类型;若不满足,则返回执行步骤3-1。
为验证本专利中所提出方法的有效性,实验室中搭建四种GIS绝缘缺陷模型,分别是金属微粒放电、悬浮放电、尖板放电和沿面放电,并采集其超声局放信号,采集所得的原始信号如图2所示。
之后根据上述识别方法对采集所得超声信号进行分析诊断。提取每组信号的MFCC特征参数,形成MFCC特征矩阵后图像化该矩阵,所得MFCC特征图谱如图3所示。
随机选择70%样本为训练组,30%样本为测试组。使用训练集构建过完备字典,对测试集使用OMP法在过完备字典上进行稀疏重构,依据最小残差判断种放电类型,最终识别结果统计如下表1所示,平均识别准确率达到91.67%。
表1 OMP稀疏重构绝缘缺陷识别结果
Figure BDA0002623743230000061
为体现所提方法的优越性,同时建立SVM模型与ANN模型对MFCC特征图谱进行识别,不同识别方法的识别准确率统计如下表2:
表2不同模型的识别结果
Figure BDA0002623743230000062
对比表2中不同识别模型的识别准确率结果可知,OMP稀疏重构模型对于MFCC特征图谱识别准确率高于SVM与ANN,验证了本专利中所提方法的有效性。
本发明基于GIS局放超声信号的特点,提出一种基于MFCC特征图谱和OMP稀疏重构的GIS绝缘缺陷诊断识别方法。首先提取超声局放信号的MFCC声纹特征参数,并构造形成MFCC特征图谱,其次使用样本构建过完备字典,并基于已建立的过完备字典采用OMP法对待测样本进行稀疏重构,最后依据非零项的累积误差判断放电类型。通过对大量试验数据测试,验证了本文的识别方法在GIS绝缘缺陷识别诊断的应用效果。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (3)

1.一种电力设备绝缘缺陷模式识别方法,其特征在于,包括:
步骤1:采集GIS局部放电的超声信号;
步骤2:从超声信号中提取MFCC特征参数,并构造MFCC二维图谱;
步骤3:将样本按比例划分为训练集与测试集,使用训练集构建过完备字典,并根据建立的过完备字典采用OMP法对测试集进行稀疏重构;
步骤4:依据非零项的累积误差判断放电类型。
2.根据权利要求1所述的电力设备绝缘缺陷模式识别方法,其特征在于,构造MFCC二维图谱具体包括:
步骤2-1:对信号分帧加窗:取帧长为一个工频周期的长度即20ms,重叠率为50%,并为信号加汉明窗以防止在后续过程中发生频谱泄露;
步骤2-2:对加窗后信号进行FFT变换;
步骤2-3:使用Mel滤波器组过滤信号,Mel滤波器组的频率响应如下:
Figure FDA0002623743220000011
式中,f(m)为第m个三角滤波器的中心频率,共有M个三角滤波器;
步骤2-4:对Mel频谱进行对数能量处理,得到对数频谱;
Figure FDA0002623743220000012
式中X(k)为分帧信号的FFT,Hm(k)为Mel滤波器频率响应,N为FFT长度;
步骤2-5:将对数频谱进行离散余弦变换,得到M个MFCC特征参数;
步骤2-6:得到信号的MFCC特征参数后,依据分帧顺序排列构成特征矩阵,最终得到信号的二维MFCC特征图谱。
3.根据权利要求1所述的电力设备绝缘缺陷模式识别方法,其特征在于,OMP法对测试集进行稀疏重构具体包括:
OMP的输入量有特征量矩阵X,传感矩阵Φ,采样向量y,稀疏度K;输出量为X的K-稀疏的逼近
Figure FDA0002623743220000013
步骤3-1:初始化参数,残差r0=y,索引集Λ0=Φ,迭代次数t=1,最大迭代次数M;
步骤3-2:通过计算残差r和传感矩阵的列
Figure FDA0002623743220000021
的内积,获得最大值的角标λ,即
Figure FDA0002623743220000022
步骤3-3:由λt更新索引集Λt=Λt-1∪{λt},记录找到的传感矩阵中的重建原子集合
Figure FDA0002623743220000023
步骤3-4:由最小二乘法得
Figure FDA0002623743220000024
步骤3-5:更新残差
Figure FDA0002623743220000025
步骤3-6:循环步骤3-1到步骤3-5,直到判断迭代次数是否满足t≥M,若满足,则停止迭代,获得非零项累计误差即最终残差值,残差值最小的类型即为待识别样本的绝缘缺陷类型;若不满足,则返回执行步骤3-1。
CN202010791030.4A 2020-08-07 2020-08-07 一种电力设备绝缘缺陷模式识别方法 Pending CN112034312A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010791030.4A CN112034312A (zh) 2020-08-07 2020-08-07 一种电力设备绝缘缺陷模式识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010791030.4A CN112034312A (zh) 2020-08-07 2020-08-07 一种电力设备绝缘缺陷模式识别方法

Publications (1)

Publication Number Publication Date
CN112034312A true CN112034312A (zh) 2020-12-04

Family

ID=73582834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010791030.4A Pending CN112034312A (zh) 2020-08-07 2020-08-07 一种电力设备绝缘缺陷模式识别方法

Country Status (1)

Country Link
CN (1) CN112034312A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946442A (zh) * 2021-04-12 2021-06-11 厦门理工学院 一种开关柜局部放电检测方法、终端设备及存储介质
CN117630611A (zh) * 2024-01-22 2024-03-01 南京卓煊电力科技有限公司 全带宽高频局放prpd谱图捕获生成方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426835A (zh) * 2011-08-30 2012-04-25 华南理工大学 一种基于支持向量机模型的开关柜局部放电信号识别方法
CN107293302A (zh) * 2017-06-27 2017-10-24 苏州大学 一种用于语音测谎***中的稀疏谱特征提取方法
CN108231067A (zh) * 2018-01-13 2018-06-29 福州大学 基于卷积神经网络与随机森林分类的声音场景识别方法
CN109815357A (zh) * 2019-01-28 2019-05-28 辽宁工程技术大学 一种基于非线性降维及稀疏表示的遥感图像检索方法
CN109856517A (zh) * 2019-03-29 2019-06-07 国家电网有限公司 一种特高压设备局部放电检测数据的判别方法
CN110490071A (zh) * 2019-07-12 2019-11-22 国网上海市电力公司 一种基于mfcc的变电站声信号特征提取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426835A (zh) * 2011-08-30 2012-04-25 华南理工大学 一种基于支持向量机模型的开关柜局部放电信号识别方法
CN107293302A (zh) * 2017-06-27 2017-10-24 苏州大学 一种用于语音测谎***中的稀疏谱特征提取方法
CN108231067A (zh) * 2018-01-13 2018-06-29 福州大学 基于卷积神经网络与随机森林分类的声音场景识别方法
CN109815357A (zh) * 2019-01-28 2019-05-28 辽宁工程技术大学 一种基于非线性降维及稀疏表示的遥感图像检索方法
CN109856517A (zh) * 2019-03-29 2019-06-07 国家电网有限公司 一种特高压设备局部放电检测数据的判别方法
CN110490071A (zh) * 2019-07-12 2019-11-22 国网上海市电力公司 一种基于mfcc的变电站声信号特征提取方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
QINQIN ZHANG ET AL.: "Fault Identification Based on PD Ultrasonic Signal Using RNN, DNN and CNN", 《 2018 CONDITION MONITORING AND DIAGNOSIS (CMD)》 *
刘云鹏 等: "基于稀疏表示的绝缘子紫外图谱闪络状态分类评估方法", 《高电压技术》 *
张思建 等: "音频事件检测算法在计量费控用电压开关柜局部放电检测中的应用研究", 《电子器件》 *
杨丰源等: "基于压缩感知的高压直流电缆局部放电模式识别", 《高电压技术》 *
薛海双: "基于MCFF字典和SL0算法的语音压缩感知研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946442A (zh) * 2021-04-12 2021-06-11 厦门理工学院 一种开关柜局部放电检测方法、终端设备及存储介质
CN112946442B (zh) * 2021-04-12 2022-06-28 厦门理工学院 一种开关柜局部放电检测方法、终端设备及存储介质
CN117630611A (zh) * 2024-01-22 2024-03-01 南京卓煊电力科技有限公司 全带宽高频局放prpd谱图捕获生成方法及***
CN117630611B (zh) * 2024-01-22 2024-04-12 南京卓煊电力科技有限公司 全带宽高频局放prpd谱图捕获生成方法及***

Similar Documents

Publication Publication Date Title
CN111626153B (zh) 一种基于集成学习的局放故障状态识别方法
CN103558529B (zh) 一种三相共筒式超高压gis局部放电的模式识别方法
CN109507554B (zh) 一种电气设备绝缘状态评估方法
Alamdari et al. FRF-based damage localization method with noise suppression approach
CN112599134A (zh) 一种基于声纹识别的变压器声音事件检测方法
CN115169409B (zh) 基于滑窗的桥梁结构自振频率识别、预警方法及设备
CN112034312A (zh) 一种电力设备绝缘缺陷模式识别方法
CN101900789A (zh) 基于小波变换与分形维数的容差模拟电路故障诊断方法
CN111291918B (zh) 平稳子空间外源矢量自回归的旋转机械退化趋势预测方法
CN117251798A (zh) 一种基于两层渐进式的气象设备异常检测方法
CN112486137A (zh) 有源配电网故障特征库构建方法、***及故障诊断方法
CN117590172A (zh) 应用于变压器的局部放电声电联合定位方法、装置和设备
CN109557434B (zh) 基于复合字典稀疏表示分类的强背景噪声下局部放电信号识别方法
CN117633588A (zh) 基于频谱加权和残差卷积神经网络的管道泄漏定位方法
CN113076354A (zh) 一种基于非侵入式负荷监测的用户用电数据分析方法和装置
CN115389816B (zh) 一种电网谐波与间谐波的检测方法
CN109840386B (zh) 基于因子分析的损伤识别方法
CN115130516A (zh) 一种基于图谱功率谱熵的gis设备状态辨识方法及装置
CN114371426A (zh) 一种基于非负张量分解的变压器绕组机械状态检测方法
CN114609483A (zh) 一种基于Hilbert变换的GIS局部放电信号特征提取方法
CN114090949A (zh) 一种鲁棒的振动信号特征值计算方法
Ren et al. Research on the Noise Reduction Method of the Vibration Signal of the Hydrogenerator Unit Based on ITD‐PE‐SVD
Zhou et al. Fault diagnosis of distribution terminal units’ measurement system based on generative adversarial network combined with convolutional neural network
CN117741356B (zh) 一种复杂工况下避雷器阀片老化评估方法、介质及***
Bo et al. Transient-extracting wavelet transform for impulsive-like signals and application to bearing fault detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201204

RJ01 Rejection of invention patent application after publication