CN112023976A - 双金属改性mcm-41分子筛催化剂及制备方法和应用 - Google Patents

双金属改性mcm-41分子筛催化剂及制备方法和应用 Download PDF

Info

Publication number
CN112023976A
CN112023976A CN202010900967.0A CN202010900967A CN112023976A CN 112023976 A CN112023976 A CN 112023976A CN 202010900967 A CN202010900967 A CN 202010900967A CN 112023976 A CN112023976 A CN 112023976A
Authority
CN
China
Prior art keywords
molecular sieve
mcm
toluene
catalyst
sieve catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010900967.0A
Other languages
English (en)
Inventor
黄宇
王美霞
曹军骥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Earth Environment Innovation Research Institute
Institute of Earth Environment of CAS
Original Assignee
Xi'an Earth Environment Innovation Research Institute
Institute of Earth Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Earth Environment Innovation Research Institute, Institute of Earth Environment of CAS filed Critical Xi'an Earth Environment Innovation Research Institute
Priority to CN202010900967.0A priority Critical patent/CN112023976A/zh
Publication of CN112023976A publication Critical patent/CN112023976A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

双金属改性MCM‑41分子筛催化剂及制备方法和应用,将模板剂、稀释剂与酸混合,或将模板剂、稀释剂与碱混合,然后加入硅源,搅拌均匀,过滤,洗涤,干燥,得到MCM‑41分子筛;将金属硝酸盐与MCM‑41分子筛通过球磨混合均匀,然后焙烧,得到双金属改性MCM‑41分子筛催化剂。本发明的制备方法简单易操作,金属硝酸盐经过分解产生的双金属氧化物种能够更好的分散于MCM‑41分子筛上,从而有效避免活性位点团聚烧结;可有效地提高甲苯完全氧化反应的活性等问题,降低了反应温度窗口,抑制了部分积碳的生成催化剂的稳定性为反应37小时后甲苯转化率不变。

Description

双金属改性MCM-41分子筛催化剂及制备方法和应用
技术领域
本发明属于提升甲苯催化氧化反应活性的催化技术,涉及双金属改性MCM-41分子筛催化剂及制备方法和应用。
背景技术
VOCs(volatile organic compounds,挥发性有机物),根据世界卫生组织的定义,指常温下沸点50℃~260℃或20℃时饱和蒸气压大于等于10Pa的各种有机化合物的统称。VOCs是大气环境中二次有机气溶胶和O3污染的重要前体物之一,VOCs的减排与治理已经成为当前大气污染防治的重点工作。甲苯(toluene)是一种典型的VOCs,广泛存在于石油化工行业的废气废液以及室内家具装饰物等中,属于有害空气污染物(HAPs)。
甲苯的有效治理除源头和过程控制外,末端治理是重点。末端治理技术有吸收法、燃烧法、冷凝法、吸附法、生物法、低温等离子体法等。其中燃烧法是一种彻底破坏的办法,分直接燃烧法和催化燃烧法,直接燃烧法运行温度高(800~1200℃),工艺能耗高,燃烧尾气中易出现二噁英、NOx等副产物,应用范围逐渐被限制,为了提高热经济性,研究者们通过改进催化剂使反应温度降低,改变原有反应路径,降低反应活化能,从而加速反应,即催化燃烧法(催化氧化法)。该方法使用的催化剂大致可以分为贵金属催化剂、过渡金属氧化物催化剂和稀土复合氧化物催化剂三大类。复合过渡金属氧化物催化剂的活性明显高于单金属氧化物催化剂,且某些复合氧化物在一定条件下能够达到贵金属催化剂的效果,同时,负载型过渡金属氧化物催化剂可有效解决高温下活性位点烧结的问题。作为贵金属催化剂的替代品,过渡金属氧化物催化剂目前得到了广泛的关注。
目前,关于该反应催化剂和工艺研究的文献和专利逐年增多,大多数研究者将目光集中在过渡金属氧化物催化剂的助剂、载体选择和制备方法上,以期得到催化活性优异,且稳定性高、价格便宜的催化剂。载体类型及性质对其负载助催化剂有重要的影响,研究通常从材料比表面积、孔隙结构、亲疏水性等方面对载体进行综合考虑。MCM-41分子筛具有高的比表面积、发达的孔隙结构和可调的亲疏水性,可有效提高助剂的分散性。已有的MCM-41负载型催化剂在甲苯催化氧化反应中,温度窗口较高,反应能耗大。
发明内容
本发明的目的在于提升甲苯催化氧化反应的活性,提供一种双金属改性MCM-41分子筛催化剂及制备方法和应用,该催化剂具有活性较高、选择性好、稳定性较好及制备成本低的特点,制备方法过程简单。
为实现上述目的,本发明通过下述技术方案予以实现:
双金属改性MCM-41分子筛催化剂的制备方法,包括以下步骤:
(1)将模板剂、稀释剂与酸混合,或将模板剂、稀释剂与碱混合,然后加入硅源,搅拌均匀,过滤,洗涤,干燥,得到MCM-41分子筛;
(2)将金属硝酸盐与MCM-41分子筛通过球磨混合均匀,然后焙烧,得到双金属改性MCM-41分子筛催化剂。
本发明进一步的改进在于,模板剂为十六烷基三甲基溴化铵、十六烷基三乙基溴化铵、溴代十六烷基吡啶或溴化1-十六烷基-3-甲基咪唑离子液体;硅源为正硅酸乙酯、硅酸钠、微硅粉或硅溶胶;稀释剂为水;酸为盐酸;碱为氨水。
本发明进一步的改进在于,盐酸的质量浓度为35%,氨水的质量浓度为29%。
本发明进一步的改进在于,模板剂、硅源、稀释剂与酸的物质的量的比为1:(2~7):(305~1000):(8~28),模板剂、硅源、稀释剂与碱的物质的量的比为1:(2~7):(305~1000):(8~28)。
本发明进一步的改进在于,金属硝酸盐与MCM-41分子筛中的硅的摩尔比为1:(2~150)。
本发明进一步的改进在于,金属硝酸盐为九水合硝酸铁、六水合硝酸铈、四水合硝酸锰、三水合硝酸铜、六水合硝酸钴与硝酸银中的任意两种;球磨的转速为500转/min,时间为1~30h;
本发明进一步的改进在于,焙烧的温度为350~600℃,时间为4~7h;以1-5℃/min的升温速率自室温升温至350~600℃。
一种根据上述方法制备的双金属改性MCM-41分子筛催化剂。
双金属改性MCM-41分子筛催化剂在甲苯催化氧化反应中的应用。
本发明进一步的改进在于,将0.05~0.4g催化剂加入到反应容器中,然后向反应容器中通入氮气、氧气与甲苯,氮气、氧气与甲苯的总空速为10000mL/(g·h)~100000mL/(g·h),在150~400℃下反应,实现甲苯的催化氧化;其中,氮气、氧气与甲苯的混合气中,甲苯的体积浓度为0.05-1%。
与现有技术相比,本发明的有益效果:
本发明以MCM-41分子筛为载体,采用简单的球磨方法,通过不同双金属前驱体的选择,制备出一系列双金属改性MCM-41分子筛催化剂,获得性能更加优异的甲苯催化氧化催化剂,催化甲苯的反应如下:
C7H8+9O2→7CO2+4H2O
本发明的制备方法简单易操作,相较于传统的浸渍法、溶胶凝胶法、共沉淀法、离子交换法,金属硝酸盐经过分解产生的双金属氧化物种能够更好的分散于MCM-41分子筛上,从而有效避免活性位点团聚烧结;同时,由于进行了双金属负载,与传统分子筛催化剂相比,可有效地提高甲苯完全氧化反应的活性等问题,降低了反应温度窗口,抑制了部分积碳的生成,0.1%体积浓度的甲苯、30000mL/(g·h)反应空速下,266℃可达T90,催化剂的稳定性为反应37小时后甲苯转化率不变。本发明催化剂对环境友好,无污染。
附图说明
图1为对比例1H-MCM-41分子筛的N2吸附脱附曲线。
图2为实施例7和实施例10-13五个双金属改性MCM-41分子筛样品的XRD谱图。
图3为实施例7和实施例10-13五个双金属改性MCM-41分子筛样品于甲苯催化氧化反应活性图。
图4为实施例7和实施例10-13五个双金属改性MCM-41分子筛样品的O2-TPD谱图。
图5为实施例7的Cu1/60Ce1/15Oz/MCM-41样品的稳定性测试结果。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
本发明的一种用于甲苯催化氧化的不同双金属(Fe/Ce、Mn/Ce、Ag/Ce、Co/Ce、Cu/Ce)改性MCM-41分子筛催化剂的制备方法如下:
不同双金属(Fe/Ce、Mn/Ce、Ag/Ce、Co/Ce、Cu/Ce)改性MCM-41分子筛催化剂,以不同酸碱性条件合成的MCM-41分子筛催化剂为载体,不同双金属前驱体以球磨的方法与MCM-41分子筛结合,金属前驱体与载体的摩尔比为1:150~1:2,处理时间为1~30h,形成活性较优、稳定性较好,金属前驱体与载体的摩尔比和处理时间优选为1:120~1:4、2~24h。
具体制备方法,按照下述步骤进行:
(1)制备MCM-41分子筛:以十六烷基三甲基溴化铵(CTAB)、十六烷基三乙基溴化铵、溴代十六烷基吡啶(CPBr)或溴化1-十六烷基-3-甲基咪唑离子液体为模板剂,正硅酸乙酯(TEOS)、硅酸钠、微硅粉或硅溶胶为硅源,水为稀释剂,酸性条件使用质量浓度为35%的盐酸,碱性条件使用质量浓度为29%的氨水(NH3·H2O),室温下搅拌1.5h~48h,过滤,洗涤,110℃干燥,得到MCM-41分子筛。
模板剂、硅源、稀释剂与酸/碱的摩尔比为1:(2~7):(305~1000):(8~28)。
(2)将金属前驱体与MCM-41分子筛球磨,球磨的转速为500转/min,时间为1~30h。利用模板剂与分子筛硅墙之间的作用,使金属盐***到模板剂与分子筛硅墙之间,然后焙烧,得到双金属改性MCM-41分子筛催化剂。
其中,金属前驱体与MCM-41分子筛的摩尔比为1:(2~150)。
金属前驱体为九水合硝酸铁、六水合硝酸铈、四水合硝酸锰、三水合硝酸铜、六水合硝酸钴与硝酸银中的任意两种。采用硝酸盐使得焙烧无杂质残留。
焙烧的温度为350~600℃,时间为4~7h。
催化剂在甲苯催化氧化反应中应用为:将0.05~0.4g催化剂加入到反应容器中,然后向反应容器中通入氮气、氧气与甲苯,氮气、氧气与甲苯的总空速为10000mL/(g·h)~100000mL/(g·h),在150~400℃下反应,实现甲苯的催化氧化;其中,氮气、氧气与甲苯的混合气中,甲苯的体积浓度为0.05-1%。
下面为具体实施例。
实施例1
MCM-41分子筛的制备:称量2.7333g的CTAB于200mL烧杯中,量取93mL的去离子水、13.32mL的盐酸加入烧杯,搅拌至CTAB完全溶解,量取8.4mL的TEOS加入烧杯,继续搅拌6h,过滤、洗涤至中性、110℃过夜干燥,即得到MCM-41分子筛载体,记为H-MCM-41(4个200mL烧杯同时制备)。
双金属改性MCM-41分子筛催化剂的制备:称取2g所述H-MCM-41分子筛加入到50mL玛瑙球磨罐体,称取0.0842g九水合硝酸铁、0.0912g六水合硝酸铈加入前述罐体,密封好,500转/min球磨12h。待球磨结束后,于马弗炉中1℃/min的升温速率自室温升温至400℃,焙烧6h,最终得到双金属Fe/Ce改性MCM-41分子筛,记为Fe1/60Ce1/60Oz/H-MCM-41。
实施例2
MCM-41分子筛的制备:同实施例1。
双金属改性MCM-41分子筛催化剂的制备:称取2g所述H-MCM-41分子筛加入到50mL玛瑙球磨罐体,称取0.0842g九水合硝酸铁、0.1824g六水合硝酸铈加入前述罐体,密封好,500转/min球磨12h。待球磨结束后,于马弗炉中1℃/min的升温速率至400℃,焙烧6h,最终得到双金属Fe/Ce改性MCM-41分子筛,记为Fe1/60Ce1/30Oz/H-MCM-41。
实施例3
MCM-41分子筛的制备:同实施例1。
双金属改性MCM-41分子筛催化剂的制备:称取2g所述H-MCM-41分子筛加入到50mL玛瑙球磨罐体,称取0.0842g九水合硝酸铁、0.3648g六水合硝酸铈加入前述罐体,密封好,500转/min球磨12h。待球磨结束后,于马弗炉中1℃/min的升温速率至400℃,焙烧6h,最终得到双金属Fe/Ce改性MCM-41分子筛,记为Fe1/60Ce1/15Oz/H-MCM-41。
实施例4
MCM-41分子筛的制备:同实施例1。
双金属改性MCM-41分子筛催化剂的制备:称取2g所述H-MCM-41分子筛加入到50mL玛瑙球磨罐体,称取0.0842g九水合硝酸铁、0.5472g六水合硝酸铈加入前述罐体,密封好,500转/min球磨12h。待球磨结束后,于马弗炉中1℃/min的升温速率至400℃,焙烧6h,最终得到双金属Fe/Ce改性MCM-41分子筛,记为Fe1/60Ce1/10Oz/H-MCM-41。
实施例5
MCM-41分子筛的制备:同实施例1。
双金属改性MCM-41分子筛催化剂的制备:称取2g所述H-MCM-41分子筛加入到50mL玛瑙球磨罐体,称取0.0842g九水合硝酸铁、1.0944g六水合硝酸铈加入前述罐体,密封好,500转/min球磨12h。待球磨结束后,于马弗炉中1℃/min的升温速率至400℃,焙烧6h,最终得到双金属Fe/Ce改性MCM-41分子筛,记为Fe1/60Ce1/5Oz/H-MCM-41。
对比例1
该对比例1中的样品是实施例1所示的H-MCM-41,于马弗炉中1℃/min的升温速率至540℃,焙烧6h,该分子筛没有负载金属。图1为该样品的N2吸附脱附曲线,结果显示为有H3型迟滞环的朗格缪尔IV型等温线,表明该样品是典型的介孔材料。
取0.1g压片筛分后的催化剂样品(40~60目)在常压,200~400℃下,原料甲苯的体积浓度为0.1%,气体总空速30000mL/(g·h)下于固定床反应器中进行反应,反应前,催化剂原位高纯氮气吹扫3h。产品尾气保温进气相在线色谱分析结果。
表1不同Fe/Ce含量改性Fe1/60CeyOz/H-MCM-41催化甲苯完全氧化反应结果
Figure BDA0002659773770000071
从表1可以看出,载体MCM-41完全没有甲苯催化氧化活性,在Fe含量一定的条件下,随着Ce含量的增加,甲苯催化氧化反应活性呈火山型变化趋势,当Ce含量再增加,活性略有提升,与负载量相比,提升幅度略低,因此综合考虑,实施例3的Fe1/60Ce1/15Oz/H-MCM-41样品结果更优。
确定最优金属负载量后,继续探究不同双金属对甲苯催化氧化反应性能的影响。
实施例6
在其他实验条件与实施例3完全相同的情况下,将九水合硝酸铁改为四水合硝酸锰。
实施例7
在其他实验条件与实施例3完全相同的情况下,将九水合硝酸铁改为三水合硝酸铜。
实施例8
在其他实验条件与实施例3完全相同的情况下,将九水合硝酸铁改为六水合硝酸钴。
实施例9
在其他实验条件与实施例3完全相同的情况下,将九水合硝酸铁改为硝酸银。
最终得到的催化剂通过活性测试对比可得出最优的双金属。
表2不同双金属改性H-MCM-41催化甲苯完全氧化反应结果
Figure BDA0002659773770000081
从表2中可以看出,Cu/Ce双金属改性MCM-41分子筛催化剂的甲苯催化氧化活性最佳。
确定Cu/Ce双金属改性MCM-41分子筛后,继续探究不同Cu/Ce含量对反应的影响。
实施例10
在其他实验条件与实施例7完全相同的情况下,固定金属负载量,改变三水合硝酸铜和六水合硝酸铈的比例,使得摩尔比Cu/Ce=0:5,得到Cu0Ce1/12Oz/MCM-41。
实施例11
在其他实验条件与实施例7完全相同的情况下,固定金属负载量,改变三水合硝酸铜和六水合硝酸铈的比例,使得摩尔比Cu/Ce=0.5:4.5,得到Cu1/120Ce3/40Oz/MCM-41。
实施例12
在其他实验条件与实施例7完全相同的情况下,固定金属负载量,改变三水合硝酸铜和六水合硝酸铈的比例,使得摩尔比Cu/Ce=2:3,得到Cu1/30Ce1/20Oz/MCM-41。
实施例13
在其他实验条件与实施例7完全相同的情况下,固定金属负载量,改变三水合硝酸铜和六水合硝酸铈的比例,使得摩尔比Cu/Ce=5:0,得到Cu1/12Ce0Oz/MCM-41。
最终得到的催化剂通过活性测试对比可得出最优的双金属含量。
表3不同Cu/Ce含量的CuxCeyOz/MCM-41催化甲苯完全氧化反应结果
Figure BDA0002659773770000091
从表3中可以看出,在固定负载量的条件下,不同Cu/Ce含量的双金属改性MCM-41分子筛催化剂的甲苯催化氧化活性与Cu含量呈火山型变化趋势,可得出实施例7为最优的Cu/Ce含量。图2-图4为这五个样品的XRD、反应活性和O2-TPD图。从XRD结果中可以看出,当Cu负载量过多时,出现明显的CuO晶相;反应活性图可以直观的看出对于甲苯催化氧化反应来说存在最优的Cu/Ce含量,在266℃可实现甲苯90%的转化;O2-TPD图显示,各样品表现出不同的氧分布情况。图5给出实施例7样品的甲苯催化氧化反应稳定性测试结果,表明该样品不仅反应活性优,还很稳定,在连续反应37h的条件下,活性不变。
实施例14
MCM-41分子筛的制备:称量2.7333g的CTAB于200mL烧杯中,量取87mL的去离子水、20mL的氨水加入烧杯,搅拌至CTAB完全溶解,量取8.4mL的TEOS加入烧杯,继续搅拌6h,过滤、洗涤至中性、110℃过夜干燥,即得到MCM-41分子筛载体,记为B-MCM-41。
在其他实验条件与实施例7完全相同的情况下,将H-MCM-41分子筛改为B-MCM-41分子筛。即碱性条件得到的分子筛载体。通过活性测试对比可得出适宜的载体分子筛。
表4不同载体合成条件下Cu1/60Ce1/15Oz/MCM-41催化甲苯完全氧化反应结果
Figure BDA0002659773770000092
从表4中可以看出,H-MCM-41分子筛做载体于甲苯催化氧化活性远优于B-MCM-41做载体,说明酸性条件合成MCM-41载体对于该球磨方法得到的双金属负载型催化剂用于甲苯催化氧化反应至关重要。
实施例15
在其他实验条件与实施例7完全相同的情况下,改变制备H-MCM-41的模板剂为十六烷基三乙基溴化铵。
实施例16
在其他实验条件与实施例7完全相同的情况下,改变制备H-MCM-41的模板剂为溴代十六烷基吡啶(CPBr)。
实施例17
在其他实验条件与实施例7完全相同的情况下,改变制备H-MCM-41的模板剂为离子液体溴化1-十六烷基-3-甲基咪唑。
实施例18
在其他实验条件与实施例7完全相同的情况下,改变制备H-MCM-41的硅源为硅酸钠。
实施例19
在其他实验条件与实施例7完全相同的情况下,改变制备H-MCM-41的硅源为微硅粉。
实施例20
在其他实验条件与实施例7完全相同的情况下,改变制备H-MCM-41的硅源为硅溶胶。
表5不同H-MCM-41合成条件下Cu1/60Ce1/15Oz/MCM-41催化甲苯完全氧化反应结果
Figure BDA0002659773770000101
从表5中可以看出,不同模板剂下合成的H-MCM-41分子筛做载体于甲苯催化氧化活性影响较小,由于CTAB成本较低,因此优选;不同硅源合成的H-MCM-41分子筛做载体于甲苯催化氧化活性影响较大,说明在上述合成配比下,优选TEOS。
实施例21
在其他实验条件与实施例7完全相同的情况下,改变焙烧温度为350℃。
实施例22
在其他实验条件与实施例7完全相同的情况下,改变焙烧温度为500℃。
实施例23
在其他实验条件与实施例7完全相同的情况下,改变焙烧温度为600℃。
实施例24
在其他实验条件与实施例7完全相同的情况下,改变升温速率为2℃/min。
实施例25
在其他实验条件与实施例7完全相同的情况下,改变升温速率为5℃/min。
表6不同焙烧条件下Cu1/60Ce1/15Oz/MCM-41催化甲苯完全氧化反应结果
Figure BDA0002659773770000111
从表6中可以看出,不同焙烧温度或升温速率得到的双金属改性MCM-41分子筛于甲苯催化氧化活性影响较大。
对比以上结果,该催化剂在实验条件:将0.2g催化剂加入到反应容器中,然后向反应容器中通入氮气、氧气与甲苯,氮气、氧气与甲苯的总空速为30000mL/(g·h),在200-400℃下反应,实现甲苯的催化氧化;其中,氮气、氧气与甲苯的混合气中,甲苯的体积浓度为0.1%。参见图3和图5,可以看出在266℃可实现对甲苯90%的转化,稳定性较好。本发明的催化剂成本低、制备方法简单、活性高,具有实现工业化的前景。
依据本发明中发明内容部分记载的方案进行工艺参数的调整,均可制备本发明的催化剂,采用相关表征手段进行测试后,基本上表现出与实施例一致的结构和性能。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.双金属改性MCM-41分子筛催化剂的制备方法,其特征在于,包括以下步骤:
(1)将模板剂、稀释剂与酸混合,或将模板剂、稀释剂与碱混合,然后加入硅源,搅拌均匀,过滤,洗涤,干燥,得到MCM-41分子筛;
(2)将金属硝酸盐与MCM-41分子筛通过球磨混合均匀,然后焙烧,得到双金属改性MCM-41分子筛催化剂。
2.根据权利要求1所述的双金属改性MCM-41分子筛催化剂的制备方法,其特征在于,模板剂为十六烷基三甲基溴化铵、十六烷基三乙基溴化铵、溴代十六烷基吡啶或溴化1-十六烷基-3-甲基咪唑离子液体;硅源为正硅酸乙酯、硅酸钠、微硅粉或硅溶胶;稀释剂为水;酸为盐酸;碱为氨水。
3.根据权利要求2所述的双金属改性MCM-41分子筛催化剂的制备方法,其特征在于,盐酸的质量浓度为35%,氨水的质量浓度为29%。
4.根据权利要求1所述的双金属改性MCM-41分子筛催化剂的制备方法,其特征在于,模板剂、硅源、稀释剂与酸的物质的量的比为1:(2~7):(305~1000):(8~28),模板剂、硅源、稀释剂与碱的物质的量的比为1:(2~7):(305~1000):(8~28)。
5.根据权利要求1所述的双金属改性MCM-41分子筛催化剂的制备方法,其特征在于,金属硝酸盐与MCM-41分子筛中的硅的摩尔比为1:(2~150)。
6.根据权利要求1所述的双金属改性MCM-41分子筛催化剂的制备方法,其特征在于,金属硝酸盐为九水合硝酸铁、六水合硝酸铈、四水合硝酸锰、三水合硝酸铜、六水合硝酸钴与硝酸银中的任意两种;球磨的转速为500转/min,时间为1~30h。
7.根据权利要求1所述的双金属改性MCM-41分子筛催化剂的制备方法,其特征在于,焙烧的温度为350~600℃,时间为4~7h;以1-5℃/min的升温速率自室温升温至350~600℃。
8.根据权利要求1-7任意一项所述方法制备得到的双金属改性MCM-41分子筛催化剂。
9.根据权利要求1-7任意一项所述方法制备得到的双金属改性MCM-41分子筛催化剂在甲苯催化氧化反应中的应用。
10.根据权利要求9所述的应用,其特征在于,将0.05~0.4g催化剂加入到反应容器中,然后向反应容器中通入氮气、氧气与甲苯,氮气、氧气与甲苯的总空速为10000mL/(g·h)~100000mL/(g·h),在150~400℃下反应,实现甲苯的催化氧化;其中,氮气、氧气与甲苯的混合气中,甲苯的体积浓度为0.05-1%。
CN202010900967.0A 2020-08-31 2020-08-31 双金属改性mcm-41分子筛催化剂及制备方法和应用 Pending CN112023976A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010900967.0A CN112023976A (zh) 2020-08-31 2020-08-31 双金属改性mcm-41分子筛催化剂及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010900967.0A CN112023976A (zh) 2020-08-31 2020-08-31 双金属改性mcm-41分子筛催化剂及制备方法和应用

Publications (1)

Publication Number Publication Date
CN112023976A true CN112023976A (zh) 2020-12-04

Family

ID=73587334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010900967.0A Pending CN112023976A (zh) 2020-08-31 2020-08-31 双金属改性mcm-41分子筛催化剂及制备方法和应用

Country Status (1)

Country Link
CN (1) CN112023976A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602534A (zh) * 2022-03-27 2022-06-10 山东亮剑环保新材料有限公司 一种改性分子筛催化氧化co催化剂的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028216A (ko) * 1999-09-20 2001-04-06 주덕영 휘발성유기화합물 제거용 촉매 및 이의 제조방법
US6887815B2 (en) * 2001-09-28 2005-05-03 Volvo Technology Corporation Porous material, method and arrangement for catalytic conversion of exhaust gases
CN1736597A (zh) * 2005-06-11 2006-02-22 太原理工大学 固相负载型催化剂及制备方法
CN101367528A (zh) * 2008-07-15 2009-02-18 上海应用技术学院 双金属原子改性mcm-41介孔分子筛及其制备方法
CN101992105A (zh) * 2010-11-12 2011-03-30 大连理工大学 催化氧化挥发性有机污染物的银基双金属催化剂、制备方法及其应用
CN102198948A (zh) * 2010-03-26 2011-09-28 北京化工大学 一种高铁含量介孔分子筛Fe-MCM-41的制备方法
CN109772444A (zh) * 2019-01-30 2019-05-21 绍兴文理学院 一种MCM-41负载CuO-CeO2纳米晶催化剂的制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028216A (ko) * 1999-09-20 2001-04-06 주덕영 휘발성유기화합물 제거용 촉매 및 이의 제조방법
US6887815B2 (en) * 2001-09-28 2005-05-03 Volvo Technology Corporation Porous material, method and arrangement for catalytic conversion of exhaust gases
CN1736597A (zh) * 2005-06-11 2006-02-22 太原理工大学 固相负载型催化剂及制备方法
CN101367528A (zh) * 2008-07-15 2009-02-18 上海应用技术学院 双金属原子改性mcm-41介孔分子筛及其制备方法
CN102198948A (zh) * 2010-03-26 2011-09-28 北京化工大学 一种高铁含量介孔分子筛Fe-MCM-41的制备方法
CN101992105A (zh) * 2010-11-12 2011-03-30 大连理工大学 催化氧化挥发性有机污染物的银基双金属催化剂、制备方法及其应用
CN109772444A (zh) * 2019-01-30 2019-05-21 绍兴文理学院 一种MCM-41负载CuO-CeO2纳米晶催化剂的制备方法及应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
安群力等: "室温下介孔分子筛MCM-41的合成与表征", 《化工新型材料》 *
李垚、赵九蓬编著: "《新型功能材料制备原理与工艺》", 31 August 2017, 哈尔滨工业大学出版社 *
柳云骐等主编: "《材料化学》", 28 February 2013, 中国石油大学出版社 *
童志权主编: "《工业废气净化与利用》", 31 May 2001, 化学工业出版社 *
胡满成、汤发有主编: "《大学综合化学实验》", 30 June 2009, 陕西师范大学出版社 *
赵波等: "Co掺杂对Ce_MCM-41和Ce_SBA-15催化剂催化氧化甲苯性能的影响", 《工业催化》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602534A (zh) * 2022-03-27 2022-06-10 山东亮剑环保新材料有限公司 一种改性分子筛催化氧化co催化剂的制备方法

Similar Documents

Publication Publication Date Title
Ri et al. Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation
Cao et al. Continuous solvent-free synthesis of imines over uip-γ-Al2O3-CeO2 catalyst in a fixed bed reactor
CN105833901B (zh) 一种PrOx-MnOx/SAPO-34低温SCR烟气脱硝催化剂及其制备方法与应用
Ma et al. Effect of Fe doping on the catalytic performance of CuO–CeO 2 for low temperature CO oxidation
Habimana et al. Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas
CN108514881A (zh) 一种用于NH3催化氧化的纳米棒状结构的Cu-Ce催化剂、制备方法以及应用
Guo et al. Bifunctional catalyst of CuMn-HZSM-5 for selective catalytic reduction of NO and CO oxidation under oxygen atmosphere
Ren et al. Investigation of RuOx doping stimulated the high catalytic activity of CeOx-MnOx/TiO2 catalysts in the NH3-SCR reaction: Structure-activity relationship and reaction mechanism
CN112023976A (zh) 双金属改性mcm-41分子筛催化剂及制备方法和应用
Han et al. Sm-doped manganese-based Zr–Fe polymeric pillared interlayered montmorillonite for low temperature selective catalytic reduction of NO x by NH 3 in metallurgical sintering flue gas
CN110433854B (zh) 一种室温降解甲醛的复合催化剂及其制备方法与应用
CN114195097B (zh) 一种重整制氢的方法、纳米氧化亚铜-氧化锌复合催化剂及其制备方法和循环再生方法
Wu et al. Direct oxidation of methane to methanol using CuMoO 4
CN114433073B (zh) 锰基催化剂及其制备方法和应用
CN113996303B (zh) 一种双活性界面负载型催化剂及制备方法和应用
Li et al. CuCeO x/VMT powder and monolithic catalyst for CO-selective catalytic reduction of NO with CO
CN113546622B (zh) 一种低温高活性催化氧化甲苯催化剂及其制备方法和应用
CN114618484A (zh) 一种负载型铱基催化剂及其制备方法
CN114950439A (zh) 一种高效光解水产氢MOF TiO2-NiO材料及其制备方法和应用
CN106582638A (zh) 一种应用于NO+CO反应的(Au,Rh)‑Cex/Al2O3的制备方法
CN109985520B (zh) 一种消除甲苯的多孔氧化铜/铁酸铜催化剂的制备方法及应用
CN106362727A (zh) 一种提高铈基脱硝催化剂催化性能的方法及应用
CN110833827B (zh) 高氮气选择性钒基氧化物催化剂及其制备方法
CN108435237B (zh) 一种中低温nh3-scr催化剂及其制备方法与应用
CN115445622B (zh) 多孔吸附与催化双功能材料、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201204