CN112014807A - 一种频率捷变雷达的自适应杂波抑制方法 - Google Patents

一种频率捷变雷达的自适应杂波抑制方法 Download PDF

Info

Publication number
CN112014807A
CN112014807A CN202010824214.6A CN202010824214A CN112014807A CN 112014807 A CN112014807 A CN 112014807A CN 202010824214 A CN202010824214 A CN 202010824214A CN 112014807 A CN112014807 A CN 112014807A
Authority
CN
China
Prior art keywords
clutter
target
clu
doppler
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010824214.6A
Other languages
English (en)
Other versions
CN112014807B (zh
Inventor
曹运合
刘帅
王徐华
吴春林
罗运华
卢毅
王从思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202010824214.6A priority Critical patent/CN112014807B/zh
Publication of CN112014807A publication Critical patent/CN112014807A/zh
Application granted granted Critical
Publication of CN112014807B publication Critical patent/CN112014807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种频率捷变雷达的自适应杂波抑制方法,包括步骤:建立频率捷变信号模型,构造频率捷变雷达的回波数据模型,获取目标所在距离门的采样信号作为待处理输入信号;设计广义多普勒窗函数;设计对应于杂波多普勒通道的距离匹配滤波器组;计算所述待处理输入信号在杂波多普勒通道上的高分辨一维距离像;构造杂波加噪声协方差矩阵;设计对应于目标多普勒通道的杂波抑制滤波器组;并利用该杂波抑制滤波器组对待处理输入信号进行杂波抑制和一维距离像生成。本发明可利用频率捷变雷达一次CPI内发射的所有脉冲实现杂波抑制和相参处理,并且具有较强的适应性,即适用于杂波功率谱展宽的情况和不同的杂波起伏情况。

Description

一种频率捷变雷达的自适应杂波抑制方法
技术领域
本发明涉及雷达信号处理技术领域,具体涉及一种频率捷变雷达的自适应杂波抑制方法。适用于杂波环境下,频率捷变雷达的目标一维成像和检测。
背景技术
雷达对抗是电子对抗的一个重要组成部分,频率捷变技术是雷达实现主动抗干扰的有效措施;在频率捷变信号中,各个发射脉冲的载频以随机或者预定的方式在较宽的频带内作较大范围捷变,具备低截获概率的特性,可以有效抑制瞄准式、压制式、欺骗式等多种主幅瓣干扰形式。
频率捷变雷达由于其优异的抗干扰和距离维高分辨能力而受到广泛关注。但由于各个脉冲发射载频的不一致,频率捷变雷达与传统的雷达动目标检测(MTD)技术不兼容,使得杂波抑制问题成为频率捷变雷达用于实际工程的一大阻碍。
目前适用于频率捷变雷达在杂波环境下的相参处理算法有两种。一种是先利用一次相参处理时间内的同频脉冲信号实现杂波抑制,然后再利用异频脉冲回波实现带宽合成,输出经过杂波抑制后的目标高分辨一维距离像;这种方法的缺陷在于,杂波抑制时无法利用所有脉冲提供的自由度,因此其杂波抑制性能受到限制,若要保持足够高的杂波处理增益,需要雷达发射多组同频脉冲,由此又会增加发射波形的规律性,降低频率捷变雷达的抗干扰性能。另一种方法是利用频率捷变雷达一次CPI内发射的所有脉冲实现杂波抑制和带宽合成处理,这种算法实现了异频杂波抑制,可以使用一次CPI内的所有脉冲提供的自由度实现杂波抑制,目前唯一的例子是瑞典国防研究所的S.R.J.Axelsson于2007年在IEEETrans on GRS期刊发表了subtraction算法,该算法是频率捷变雷达杂波抑制的一大进步,标志着异频杂波抑制的可行性,但该算法仅能对完全静止的杂波起到良好的抑制作用,而通常由于风速的影响,杂波的功率谱具有一定的谱宽,即杂波散射体不会是完全静止的,因此该算法在实际工程中的应用大为受限。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种频率捷变雷达的自适应杂波抑制方法,可利用频率捷变雷达一次CPI内发射的所有脉冲实现杂波抑制和相参处理,并且具有较强的适应性,即适用于杂波功率谱展宽的情况和不同的杂波起伏情况。
为了达到上述目的,本发明采用以下技术方案予以实现。
一种频率捷变雷达的自适应杂波抑制方法,包括以下步骤:
步骤1,建立频率捷变信号模型,构造频率捷变雷达在杂波背景下的回波数据模型,并对频率捷变雷达的回波数据依次进行下变频、低通滤波、脉冲压缩和目标采样,得到目标所在距离门的采样信号作为待处理输入信号;
步骤2,根据频率捷变信号模型设计广义多普勒窗函数,用于在步骤3中扩展杂波多普勒通道的多普勒覆盖范围;
步骤3,根据频率捷变雷达模型设计对应于杂波多普勒通道的距离匹配滤波器组;通过该距离匹配滤波器组和所述广义多普勒窗函数,计算所述待处理输入信号在杂波多普勒通道上的高分辨一维距离像,并据此估计强杂波散射点的距离和幅度信息;
步骤4,根据所述强杂波散射点的距离和幅度信息构造杂波加噪声协方差矩阵R;
步骤5,根据频率捷变信号模型、杂波协方差矩阵R和目标的跟踪速度,设计对应于目标多普勒通道的杂波抑制滤波器组;并利用该杂波抑制滤波器组对待处理输入信号进行杂波抑制,得到杂波抑制后的目标高分辨一维距离像,完成频率捷变雷达的自适应杂波抑制。
与现有技术相比,本发明的有益效果为:
(1)相对于利用一次相参处理时间内的同频脉冲信号实现杂波抑制的方法,本发明方法可使用所有脉冲提供的自由度来实现杂波抑制,因此具备更好的杂波抑制理论性能;由于本发明方法实现了异频杂波抑制,不需要一次相参处理时间内发射多个同频脉冲,可以保证发射信号有强随机性来降低截获概;此外,异频杂波抑制还意味着雷达可以保持在较大范围内随机捷变,不损失频率捷变雷达的高距离分辨性能。
(2)与Subtraction算法相比,本发明设计了广义多普勒窗函数和杂波抑制滤波器的多普勒域展宽方法,使得本发明方法可适用于实际的杂波环境,即在杂波功率谱具有一定谱宽的情况下依然有效。
附图说明
下面结合附图和具体实施例对本发明做进一步详细说明。
图1是本发明的实现流程图;
图2(a)是本发明设计的广义多普勒窗函数的速度响应与普通矩形窗处理结果的对比图;
图2(b)是图2(a)中3dB主瓣的局部放大图;
图3(a)是本发明中使用广义多普勒窗函数生成的对应于杂波多普勒通道的高分辨一维距离像结果图;
图3(b)是使用普通矩形窗函数得到的对应于杂波多普勒通道的高分辨一维距离像结果图;
图4(a)是本发明设计的杂波抑制滤波器的距离-多普勒二维响应结果图;
图4(b)是图4(a)结果中阻带的局部放大图;
图4(c)是图4(a)结果中通带的局部放大图;
图5(a)是本发明设计的杂波抑制滤波器在杂波多普勒通道的距离响应结果图;
图5(b)本发明实施例在通带所在距离单元的多普勒响应结果图;
图6(a)是使用距离匹配滤波器组得到的目标高分辨一维距离像结果图;
图6(b)是使用本发明的杂波抑制滤波器组得到的目标高分辨一维距离像结果图;
图7(a)是本发明方法和subtraction算法随参数σc和v变化时的杂波抑制性能曲线对比图;
图7(b)本发明方法和subtraction算法随输入信杂噪比和参数v变化时的杂波抑制性能曲线对比图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域的技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。
参考图1,本发明提供的一种频率捷变雷达的自适应杂波抑制方法,包括以下步骤:
步骤1,建立频率捷变信号模型,构造频率捷变雷达在杂波背景下的回波数据模型,并对频率捷变雷达的回波数据依次进行下变频、低通滤波、脉冲压缩和目标采样,得到目标所在距离门的采样信号作为待处理输入信号;
建立频率捷变信号模型:设一次相参处理时间(CPI)内发射N个独立的线性调频脉冲,脉冲重复间隔为Tr,各个脉冲的时宽和带宽分别为Tp和Bp,频率捷变间隔为Δf,fc为初始载频,则各个脉冲的载频可分别写为fc+niΔf,其中,i=0,1,…,N-1,ni为第i个随机频率调制编码。设M为可选频点个数,则有fc+niΔf∈[fc,fc+MΔf]。那么,第i个发射脉冲信号可以写为:
Figure BDA0002635557960000051
其中,t为时间,μ=Bp/Tp为调频斜率,rect(·)是矩形窗函数,
Figure BDA0002635557960000052
构造频率捷变雷达在杂波背景下的回波数据模型:设一个径向速度为Vtar的目标被雷达捕获并跟踪,该目标由K个散射点组成,各个目标散射点与雷达之间的初始距离分别为:Rtar(1),Rtar(2),…,Rtar(K);那么,在t时刻第k个散射点相对于雷达的距离为rtar(t,k)=Rtar(k)-Vtart。
同理,设目标所在距离门内有L个杂波散射点,各个杂波散射点与雷达之间的初始距离分别为:Rclu(1),Rclu(2),…,Rclu(L),各个杂波散射点的速度分别为:Vclu(1),Vclu(2),…,Vclu(L),那么,在t时刻第l个杂波散射点相对于雷达的距离为rclu(t,l)=Rclu(l)-Vclu(l)t。那么,对应于该距离门的接收信号可写为:
Figure BDA0002635557960000053
其中,w(t)是功率为σw 2的接收机噪声,γtar(k)和γclu(l)分别是第k个目标散射点和第l个杂波散射点的散射系数。
以上接收信号经过完整的线性调频信号处理流程,即下变频,低通滤波、脉冲压缩后再进行采样处理,得到第i个回波脉冲在目标所在距离门的采样信号写为:
s(i)=star(i)+sclu(i)+w(i)
其中
Figure BDA0002635557960000061
Figure BDA0002635557960000062
定义接收信号向量为s∈C1×N,s=[s(0),s(1),…,s(N-1)],有
s=star+sclu+w
其中,star=[star(0),star(1),…,star(N-1)]表示目标的采样向量,sclu=[sclu(0),sclu(1),…,sclu(N-1)]表示杂波的采样向量,w=[w(0),w(1),…,w(N-1)]表示噪声的采样向量。则向量s作为待处理输入信号。
步骤2,根据频率捷变信号模型设计广义多普勒窗函数,用于在步骤3中扩展杂波多普勒通道的多普勒覆盖范围;
广义多普勒窗函数用于展宽零多普勒通道的多普勒覆盖范围,根据频率捷变雷达回波模型中的目标采样数据的多普勒相位项,设计广义多普勒窗函数。由目标采样数据(star(i)的公式),设计一个速度为V0的杂波散射点对应的多普勒相位向量:
Figure BDA0002635557960000063
同时,设计一个速度为V1的参考向量:
Figure BDA0002635557960000064
设广义多普勒窗函数为ω=[ω(0),ω(1),…,ω(N-1)],在使用该广义多普勒窗函数的基础上将杂波多普勒相位向量与参考向量进行互相关,得到两者的相关函数:
Figure BDA0002635557960000071
其中,ΔV=V0-V1,⊙表示Hadamard积,[·]H表示共轭转置。
根据相关函数表示形式,基于传统窗函数设计广义多普勒窗函数。
由于广义多普勒窗函数用于展宽零多普勒通道的多普勒覆盖范围,该函数适宜基于大主瓣宽度窗函数进行设计,例如Blackman窗、Kaiser窗等等。示例性地,原始布莱克曼窗函数(Blackman窗)为:
Figure BDA0002635557960000072
基于Blackman窗设计的广义多普勒窗函数可写为:
Figure BDA0002635557960000073
步骤3,根据频率捷变信号模型设计对应于杂波多普勒通道的距离匹配滤波器组;通过该距离匹配滤波器组和所述广义多普勒窗函数,计算所述待处理输入信号在杂波多普勒通道上的高分辨一维距离像,并据此估计强杂波散射点的距离和幅度信息;
本发明通过生成对应于杂波多普勒通道的高分辨一维距离像来估计强杂波散射点的距离和幅度信息,以实现自适应杂波抑制。
具体地,定义对应于中心速度为V的多普勒通道的距离匹配滤波器矩阵为ΦV∈CN ×M,其中
Figure BDA0002635557960000074
Figure BDA0002635557960000075
根据匹配滤波原理可知,距离匹配滤波器矩阵中的元素为:
Figure BDA0002635557960000081
由于杂波功率谱通常服从0均值高斯分布,定义Φ0为对应于杂波多普勒通道的距离匹配滤波器矩阵,其对应的中心速度为0m/s;接收信号向量s在该多普勒通道上生成的复高分辨一维距离像按如下公式计算:
Figure BDA0002635557960000082
则yclu对应的高分辨一维距离像为
Figure BDA00026355579600000810
|·|为取模操作。
对高分辨一维距离像
Figure BDA0002635557960000083
进行门限检测,超过预设检测门限的杂波散射点为强杂波散射点,得到H个强杂波散射点,则第h个强杂波散射点的距离和散射系数估计值分别为
Figure BDA0002635557960000084
Figure BDA0002635557960000085
h=1,2,…,H,H>1。
步骤4,根据所述强杂波散射点的距离和幅度信息构造杂波加噪声协方差矩阵R;
杂波加噪声协方差矩阵用于使得杂波抑制滤波器在强杂波散射点位置处形成零陷,考虑到杂波功率谱扩展以及强杂波散射点距离信息估计误差,本发明在速度-距离二维同时进行零陷展宽以保持杂波抑制的稳健性。
具体地,根据雷达当前的工作环境,设定杂波抑制滤波器的零陷在速度维的展宽程度为DV,在距离维的展宽程度为DR;其中DV大于杂波谱宽度σc,DR大于频率捷变雷达的距离分辨率c/2MΔf;设第h个强杂波散射点的距离参数
Figure BDA0002635557960000086
速度参数Vclu(h)~N(0,DV 2),那么,定义Rclu(h)和Vclu(h)的概率密度函数分别为
Figure BDA0002635557960000087
Figure BDA0002635557960000088
有:
Figure BDA0002635557960000089
Figure BDA0002635557960000091
定义对应于第h个强杂波散射点的杂波协方差矩阵为Rh∈CN×N,其第α行第β列元素为[Rh]α,β,则:
当α=β时,
[Rh]α,β=1
当α≠β时,
Figure BDA0002635557960000092
其中,nα为第α个随机频率调制编码,nβ为第β个随机频率调制编码;
由于Rclu(h)和Vclu(h)彼此间具有独立性,上式可重写为:
Figure BDA0002635557960000093
基于上式可求得第h个强杂波散射点的杂波协方差矩阵Rh的每个元素。
那么,定义杂波加噪声协方差矩阵为R∈CN×N,有:
Figure BDA0002635557960000094
其中,
Figure BDA0002635557960000095
为第h个强杂波散射点的距离估计值,I∈CN×N是单位矩阵。
步骤5,根据频率捷变信号模型、杂波协方差矩阵R和目标的跟踪速度,设计对应于目标多普勒通道的杂波抑制滤波器组;并利用该杂波抑制滤波器组对待处理输入信号进行杂波抑制,得到杂波抑制后的目标高分辨一维距离像,完成频率捷变雷达的自适应杂波抑制。
设目标的跟踪速度为
Figure BDA0002635557960000101
该估计值由雷达目标跟踪模块给出。对应于目标所在的多普勒通道的距离匹配滤波器矩阵为
Figure BDA0002635557960000102
Figure BDA0002635557960000103
可由步骤3中公式(I)计算得到。
设该多普勒通道对应的杂波抑制滤波器矩阵为
Figure BDA0002635557960000104
Figure BDA0002635557960000105
Figure BDA0002635557960000106
通过下式计算得到:
Figure BDA0002635557960000107
Figure BDA0002635557960000108
由拉格朗日乘子法可知:
Figure BDA0002635557960000109
利用杂波抑制滤波器矩阵
Figure BDA00026355579600001010
对待处理输入信号s进行杂波抑制,得到杂波抑制后的目标复高分辨一维距离像:
Figure BDA00026355579600001011
对其中的各个元素取模值即可得到频率捷变雷达杂波抑制后的目标高分辨一维距离像:
Figure BDA00026355579600001012
本发明为实现频率捷变雷达的自适应杂波抑制,首先利用频率捷变信号回波做出对应于杂波多普勒通道的高分辨一维距离像,用于估计强杂波散射点的距离和幅度信息;考虑到实际杂波的功率谱是扩展的,即杂波径向速度在以0为中心的小范围内随机变化,本发明方法设计了广义多普勒窗函数用于在杂波距离像成像过程中扩展杂波多普勒通道的覆盖范围。其次是根据强杂波散射点的距离和幅度估计信息设计杂波加噪声协方差矩阵,并以此计算具有距离-多普勒二维特性的杂波抑制滤波器组;该协方差矩阵用于使得杂波抑制滤波器在强杂波散射点位置处(距离-多普勒二维)形成零陷,考虑到强杂波散射点距离估计误差以及功率谱扩展情况,本发明方法可通过对协方差矩阵的调整使得杂波抑制滤波器的零陷在距离和速度维进行同时展宽,以增强方法的稳健性。最后,利用杂波抑制滤波器组取代距离匹配滤波器组以得到杂波抑制后的目标高分辨一维距离像。
本发明方法能够利用频率捷变雷达一次CPI发射的所有脉冲实现杂波抑制,并在杂波功率谱展宽的情况下依旧适用,在实现异频杂波抑制并考虑实际杂波特性的基础上解决了频率捷变与杂波抑制的兼容问题。
仿真实验
为了证明本发明的有效性,采用以下仿真对比试验进一步说明。
(1)仿真条件:
频率捷变信号的波形参数设置如下:初始频率fc=8GHz,一次CPI的发射脉冲个数N=256,可选频点个数M=128,脉冲重复间隔Tr=100us,脉冲宽度Tp=100us,脉冲带宽Bp=10MHz,频率捷变间隔Δf=10MHz,接收机噪声功率σw 2=0dB,载频调制编码ni(i=0,1,…,M-1)服从{0,1,…,M-1}上的离散均匀分布且彼此独立。在仿真2~4中,给定了一个固定的目标场景,其中目标速度为40m/s,该目标由三个散射点组成,其距离参数分别为Rtar(1)=1508m,Rtar(2)=1509m,Rtar(3)=1510m,它们的散射系数分别为γtar(1)=1dB,γtar(2)=3dB,γtar(3)=2dB。目标所在距离门中有三个强杂波散射点和若干弱杂波散射点,弱杂波回波总功率与目标回波功率一致,三个强杂波散射点的距离参数分别为Rclu(1)=1503m,Rclu(2)=1507m,Rclu(3)=1509m,其散射系数分别为γclu(1)=20dB,γclu(2)=22dB,γclu(3)=19dB,为了模拟杂波功率谱扩展情况,设置三个强杂波散射点的速度参数分别为Vclu(1)=0.169m/s,Vclu(2)=-0.028m/s,Vclu(3)=0.483m/s,在仿真5中,目标场景根据不同的场景参数随机设置。
(2)仿真内容及结果:
仿真1,仿真本发明方法步骤2中的广义多普勒窗函数的特性,并将结果与普通矩形窗函数进行对比,两种窗函数的多普勒响应结果如图2(a)所示,图2(b)为图2(a)中3dB主瓣的局部放大图;从图2(a)中可以看出,广义多普勒窗函数可显著增大杂波多普勒通道的速度覆盖范围,从图2(b)中可以看出,矩形窗的3dB多普勒主瓣宽度为0.60m/s,而广义多普勒窗函数则为1.04m/s。
仿真2,仿真本发明方法步骤3生成的对应于杂波多普勒通道的高分辨一维距离像,并将结果与使用普通矩形窗函数时进行对比;仿真结果如图3所示,其中图3(a)是使用广义多普勒窗函数得到的结果,图3(b)是使用普通矩形窗函数得到的结果。从图3(a)中可以看出,当不使用广义多普勒窗函数时,第三个强杂波散射点无法从杂波一维距离像中被检测并估计信息,继而该强杂波散射点无法有效抑制;从图3(b)中可以看出,当使用广义多普勒窗函数时,三个强杂波散射点均可被检测,其距离参数估计分别为:
Figure BDA0002635557960000121
Figure BDA0002635557960000122
散射系数估计分别为
Figure BDA0002635557960000123
Figure BDA0002635557960000124
仿真3,仿真本发明方法步骤5产生的杂波抑制滤波器的距离-多普勒二维响应,仿真结果如图4(a)所示,其中,图4(b)是图4(a)结果中阻带的局部放大图,图4(c)是图4(a)结果中通带的局部放大图;从图4(a)、4(b)、4(c)中可以看出,本发明方法设计的杂波抑制滤波器具备二维特性,该杂波抑制滤波器在目标所在的多普勒通道上形成通带,在杂波所在多普勒通道上形成零陷,且零陷位置对应于各强波散射点。该杂波抑制滤波器的在杂波多普勒通道的距离响应以及在通带所在距离单元的多普勒响应结果分别如图5(a)和5(b)所示;从图5(a)、5(b)中可以看出,零陷在距离和速度维是同时展宽的,在距离维的展宽可以降低强杂波散射点距离信息估计误差引发的杂波抑制性能下降,而速度维的展宽可以应对杂波功率谱扩展带来的影响。
仿真4,仿真本发明方法步骤5产生杂波抑制后的目标高分辨一维距离像,并与普通相参处理结果进行对比,仿真结果如图6所示,其中图6(a)是使用距离匹配滤波器组得到的结果,图6(b)是使用本发明的杂波抑制滤波器组得到的结果。从图6(a)中可以看出,在传统相参处理得到的一维距离像中,目标被杂波所形成的噪底所淹没;从图6(b)中可以看出,利用本发明方法设计的杂波抑制滤波器得到的一维距离像中,目标的三个散射点形成的尖峰均可见,且尖峰位置正确对应于三个目标散射点的距离参数。
仿真5,仿真本发明方法在不同输入信杂噪比、不同的杂波谱宽度以及不同的杂波起伏模型下的性能,并将结果与subtraction算法进行对比;其中输入信杂比从-30dB到-10dB变化,杂波功率谱服从谱宽σc(标准差)从0到0.5m/s变化的高斯分布,不同杂波起伏模型服从尺度参数α=1,形状参数v分别为1、2、4的K分布;在各种情况下进行10000次蒙特卡洛实验,仿真结果如图7所示,在图7(a)中仿真了本发明方法随参数σc和v变化时的情况,输入信杂噪比固定为-20dB;在图7(b)仿真了本发明方法随输入信杂噪比和参数v变化时的情况,设置杂波功率谱宽度σc固定为0.22m/s。从图7(a)中可以看出,由于没有考虑杂波谱扩展的情况,Subtraction算法的性能随着杂波功率谱谱宽的增大而下降严重;而在本发明方法中,由于广义多普勒窗函数的使用,以及杂波抑制滤波器零陷在多普勒维的展宽,该方法在杂波功率谱展宽的情况下依然适用;对比图7(a)和7(b)中可以看出,不同的杂波起伏模型对算法性能也会带来一定影响,但影响很小,这是因为本发明方法采用自适应杂波抑制体制,对不同的杂波起伏模型具有适应性。
虽然,本说明书中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (8)

1.一种频率捷变雷达的自适应杂波抑制方法,其特征在于,包括以下步骤:
步骤1,建立频率捷变信号模型,构造频率捷变雷达在杂波背景下的回波数据模型,并对频率捷变雷达的回波数据依次进行下变频、低通滤波、脉冲压缩和目标采样,得到目标所在距离门的采样信号作为待处理输入信号;
步骤2,根据频率捷变信号模型设计广义多普勒窗函数,用于在步骤3中扩展杂波多普勒通道的多普勒覆盖范围;
步骤3,根据频率捷变雷达模型设计对应于杂波多普勒通道的距离匹配滤波器组;通过该距离匹配滤波器组和所述广义多普勒窗函数,计算所述待处理输入信号在杂波多普勒通道上的高分辨一维距离像,并据此估计强杂波散射点的距离和幅度信息;
步骤4,根据所述强杂波散射点的距离和幅度信息构造杂波加噪声协方差矩阵R;
步骤5,根据频率捷变信号模型、杂波协方差矩阵R和目标的跟踪速度,设计对应于目标多普勒通道的杂波抑制滤波器组;并利用该杂波抑制滤波器组对待处理输入信号进行杂波抑制,得到杂波抑制后的目标高分辨一维距离像,完成频率捷变雷达的自适应杂波抑制。
2.根据权利要求1所述的一种频率捷变雷达的自适应杂波抑制方法,其特征在于,所述建立频率捷变信号模型,具体为:设一次相参处理时间内发射N个独立的线性调频脉冲,脉冲重复间隔为Tr,各个脉冲的时宽和带宽分别为Tp和Bp,频率捷变间隔为Δf,fc为初始载频,则各个脉冲的载频分别为fc+niΔf,其中,i=0,1,...,N-1,ni为第i个随机频率调制编码;
设M为可选频点个数,则有fc+niΔf∈[fc,fc+MΔf],则第i个发射脉冲信号为:
Figure FDA0002635557950000021
其中,t为时间,μ=Bp/Tp为调频斜率,rect(·)是矩形窗函数,
Figure FDA0002635557950000022
3.根据权利要求2所述的一种频率捷变雷达的自适应杂波抑制方法,其特征在于,所述构造在杂波背景下频率捷变雷达的回波数据模型具体为:
首先,设一个径向速度为Vtar的目标被雷达捕获并跟踪,该目标由K个散射点组成,各个目标散射点与雷达之间的初始距离分别为:Rtar(1),Rtar(2),...,Rtar(K);那么,在t时刻第k个散射点相对于雷达的距离为rtar(t,k)=Rtar(k)-Vtart;
其次,设目标所在距离门内有上个杂波散射点,各个杂波散射点与雷达之间的初始距离分别为:Rclu(1),Rclu(2),...,Rclu(L),各个杂波散射点的速度分别为:Vclu(1),Vclu(2),...,Vclu(L),那么,在t时刻第l个杂波散射点相对于雷达的距离为rclu(t,l)=Rclu(l)-Vclu(l)t;
最后,对应于目标所在距离门的接收信号为:
Figure FDA0002635557950000023
其中,w(t)是功率为σw 2的接收机噪声,γtar(k)和γclu(l)分别是第k个目标散射点和第l个杂波散射点的散射系数;
则第i个回波脉冲在目标所在距离门的采样信号为:
s(i)=star(i)+sclu(i)+w(i)
其中
Figure FDA0002635557950000031
Figure FDA0002635557950000032
则总的目标采样信号,即待处理输入信号为:
s=star+sclu+w
其中,star=[star(0),star(1),...,star(N-1)]表示目标的采样向量,sclu=[sclu(0),sclu(1),...,sclu(N-1)]表示杂波的采样向量,w=[w(0),w(1),...,w(N-1)]表示噪声的采样向量。
4.根据权利要求2所述的一种频率捷变雷达的自适应杂波抑制方法,其特征在于,所述根据频率捷变信号模型设计广义多普勒窗函数,具体为:
2.1,由目标采样数据表达式的多普勒相位项,设计一个速度为V0的杂波散射点对应的多普勒相位向量:
Figure FDA0002635557950000033
同时,设计一个速度为V1的参考向量:
Figure FDA0002635557950000034
2.2,广义多普勒窗函数为ω=[ω(0),ω(1),...,ω(N-1)],在使用该广义多普勒窗函数的基础上,将杂波多普勒相位向量与参考向量进行互相关,得到两者的相关函数:
Figure FDA0002635557950000035
其中,ΔV=V0-V1,⊙表示Hadamard积,[·]H表示共轭转置;
2.3,根据相关函数表示形式,基于传统窗函数设计广义多普勒窗函数;
其中,传统窗函数为Blackman窗函数或Kaiser窗函数。
5.根据权利要求4所述的一种频率捷变雷达的自适应杂波抑制方法,其特征在于,所述设计杂波多普勒通道的距离匹配滤波器组,具体为:
定义对应于中心速度为V的多普勒通道的距离匹配滤波器矩阵为ΦV∈CN×M,其中
Figure FDA0002635557950000041
Figure FDA0002635557950000042
根据匹配滤波原理可知,距离匹配滤波器矩阵中的元素为:
Figure FDA0002635557950000043
6.根据权利要求5所述的一种频率捷变雷达的自适应杂波抑制方法,其特征在于,所述计算所述待处理输入信号在杂波多普勒通道上的高分辨一维距离像,并据此估计强杂波散射点的距离和幅度信息,具体为:
首先,由于杂波功率谱通常服从0均值高斯分布,定义Φ0为对应于杂波多普勒通道的距离匹配滤波器矩阵,其对应的中心速度为0m/s;目标采样数据s在该杂波多普勒通道上生成的复高分辨一维距离像按下式计算:
Figure FDA0002635557950000044
则yclu对应的高分辨一维距离像为
Figure FDA0002635557950000045
|·|为取模操作;
然后,对高分辨一维距离像
Figure FDA0002635557950000046
进行门限检测,超过预设检测门限的杂波散射点为强杂波散射点,得到H个强杂波散射点,则第h个强杂波散射点的距离和散射系数估计值分别为
Figure FDA0002635557950000047
Figure FDA0002635557950000048
7.根据权利要求1所述的一种频率捷变雷达的自适应杂波抑制方法,其特征在于,所述根据所述强杂波散射点的距离和幅度信息构造杂波加噪声协方差矩阵,具体步骤为:
4.1,设定杂波抑制滤波器的零陷在速度维的展宽程度为DV,在距离维的展宽程度为DR;其中DV大于杂波谱宽度σc,DR大于频率捷变雷达的距离分辨率c/2MΔf;设第h个强杂波散射点的距离参数
Figure FDA0002635557950000051
速度参数Vclu(h)~N(0,DV 2),那么,定义Rclu(h)和Vclu(h)的概率密度函数分别为
Figure FDA0002635557950000052
Figure FDA0002635557950000053
有:
Figure FDA0002635557950000054
Figure FDA0002635557950000055
其中,Δf为频率捷变间隔,fc为初始载频,M为可选频点个数;
4.2,定义对应于第h个强杂波散射点的杂波协方差矩阵为Rh∈CN×N,其第α行第β列元素为[Rh]α,β,则:
当α=β时,
[Rh]α,β=1;
当α≠β时,
Figure FDA0002635557950000056
其中,nα为第α个随机频率调制编码,nβ为第β个随机频率调制编码;
由于Rclu(h)和Vclu(h)彼此间具有独立性,上式可重写为:
Figure FDA0002635557950000061
基于上式可求得第h个强杂波散射点的杂波协方差矩阵Rh的每个元素;
4.3,定义杂波加噪声协方差矩阵为R∈CN×N,有:
Figure FDA0002635557950000062
其中,
Figure FDA0002635557950000063
为第h个强杂波散射点的距离估计值,I∈CN×N是单位矩阵,σw 2为接收机的噪声功率。
8.根据权利要求5所述的一种频率捷变雷达的自适应杂波抑制方法,其特征在于,步骤5包含以子步骤:
5.1,设目标的跟踪速度为
Figure FDA0002635557950000064
对应于目标所在的多普勒通道的距离匹配滤波器矩阵为
Figure FDA0002635557950000065
Figure FDA0002635557950000066
可由步骤3中对应于中心速度为V的多普勒通道的距离匹配滤波器矩阵中元素的计算公式得到;
5.2,设目标所在的多普勒通道对应的杂波抑制滤波器矩阵为
Figure FDA0002635557950000067
Figure FDA0002635557950000068
Figure FDA0002635557950000069
通过下式计算得到:
Figure FDA00026355579500000610
Figure FDA00026355579500000611
由拉格朗日乘子法可得:
Figure FDA00026355579500000612
5.3,利用杂波抑制滤波器矩阵
Figure FDA00026355579500000613
对待处理输入信号s进行杂波抑制,得到杂波抑制后的目标复高分辨一维距离像:
Figure FDA0002635557950000071
对θtar中的各个元素取模值即可得到频率捷变雷达杂波抑制后的目标高分辨一维距离像:
Figure FDA0002635557950000072
CN202010824214.6A 2020-08-17 2020-08-17 一种频率捷变雷达的自适应杂波抑制方法 Active CN112014807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010824214.6A CN112014807B (zh) 2020-08-17 2020-08-17 一种频率捷变雷达的自适应杂波抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010824214.6A CN112014807B (zh) 2020-08-17 2020-08-17 一种频率捷变雷达的自适应杂波抑制方法

Publications (2)

Publication Number Publication Date
CN112014807A true CN112014807A (zh) 2020-12-01
CN112014807B CN112014807B (zh) 2024-03-26

Family

ID=73504766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010824214.6A Active CN112014807B (zh) 2020-08-17 2020-08-17 一种频率捷变雷达的自适应杂波抑制方法

Country Status (1)

Country Link
CN (1) CN112014807B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731301A (zh) * 2020-12-29 2021-04-30 北京环境特性研究所 一种圆盘形杂波模拟测量的干扰抑制方法及装置
CN112965069A (zh) * 2021-03-21 2021-06-15 南京大学 双偏振雷达频域地物抑制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727311B2 (ja) * 2005-06-15 2011-07-20 三菱電機株式会社 レーダ装置
CN104931938B (zh) * 2015-05-07 2017-07-28 清华大学 相参捷变频雷达杂波抑制方法及***
CN109061589B (zh) * 2018-07-06 2022-08-26 西安电子科技大学 随机跳频雷达的目标运动参数估计方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731301A (zh) * 2020-12-29 2021-04-30 北京环境特性研究所 一种圆盘形杂波模拟测量的干扰抑制方法及装置
CN112731301B (zh) * 2020-12-29 2023-06-09 北京环境特性研究所 一种圆盘形杂波模拟测量的干扰抑制方法及装置
CN112965069A (zh) * 2021-03-21 2021-06-15 南京大学 双偏振雷达频域地物抑制方法

Also Published As

Publication number Publication date
CN112014807B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
CN106546965B (zh) 基于雷达幅度和多普勒频率估计的空时自适应处理方法
CN105929371B (zh) 一种基于协方差矩阵估计的机载雷达杂波抑制方法
CN107561508B (zh) 一种用于匀加速运动目标的相参积累检测方法
CN111880171B (zh) 一种消除雷达目标盲速的脉冲分段编码方法
CN111693983B (zh) 互补波形构建方法及模块、认知雷达***及波形发射方法
CN104977571B (zh) 基于俯仰频率分集stap的距离模糊杂波抑制方法
CN113376601B (zh) 基于clean算法的捷变频雷达旁瓣抑制方法
CN106772253B (zh) 一种非均匀杂波环境下的雷达杂波抑制方法
CN108037494B (zh) 一种脉冲噪声环境下的雷达目标参数估计方法
CN109709552B (zh) 一种低信噪比isar成像运动补偿方法
CN107367715B (zh) 基于稀疏表示的杂波抑制方法
Fang et al. Radar maneuvering target detection based on two steps scaling and fractional Fourier transform
CN113721216B (zh) 一种捷变相参雷达的目标检测波形优化与处理方法
CN112014807B (zh) 一种频率捷变雷达的自适应杂波抑制方法
CN105445703B (zh) 一种机载雷达空时回波数据的两级空时自适应处理方法
Kulpa et al. Filter-based design of noise radar waveform with reduced sidelobes
CN112346030A (zh) 无人机群的超分辨波达方向估计方法
CN113884992A (zh) 一种频率捷变雷达的自适应抗干扰方法
CN113835068A (zh) 一种基于独立成分分析的盲源分离实时抗主瓣干扰方法
CN113238211A (zh) 一种干扰条件下参数化自适应阵列信号检测方法与***
Sun et al. Folded clutter suppression for pulse-Doppler radar based on pulse-agile waveforms
Lu et al. An efficient method for single-channel SAR target reconstruction under severe deceptive jamming
CN116593982A (zh) 一种基于music-ap的雷达目标高分辨估计和距离模糊抑制方法
CN113567978B (zh) 一种多基分布式雷达协同成像方法
CN105954729B (zh) 雷达抗距离-速度联合欺骗干扰的自适应迭代滤波方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant