CN112010726B - 一种催化纤维素选择性制备小分子烷烃的方法 - Google Patents

一种催化纤维素选择性制备小分子烷烃的方法 Download PDF

Info

Publication number
CN112010726B
CN112010726B CN202010843495.XA CN202010843495A CN112010726B CN 112010726 B CN112010726 B CN 112010726B CN 202010843495 A CN202010843495 A CN 202010843495A CN 112010726 B CN112010726 B CN 112010726B
Authority
CN
China
Prior art keywords
moo
alkane
cellulose
catalyst
zrp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010843495.XA
Other languages
English (en)
Other versions
CN112010726A (zh
Inventor
刘琪英
朱长辉
王海永
辛浩升
王晨光
马隆龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN202010843495.XA priority Critical patent/CN112010726B/zh
Publication of CN112010726A publication Critical patent/CN112010726A/zh
Application granted granted Critical
Publication of CN112010726B publication Critical patent/CN112010726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • C10G1/065Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/083Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tatalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/652Chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0966Hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种催化纤维素选择性制备小分子烷烃的方法,在水和C10以上的烷烃组成的双相体系中,首次通过酸性脱水催化剂α‑ZrP和加氢脱氧催化剂(Ru‑MoOx/C)协同作用,将纤维素解聚产单糖反应和后续单糖的加氢脱氧反应耦合,一步法产C1‑C6烷烃和CO燃料,解决了现有技术步骤繁琐、催化剂循环性能差的问题。

Description

一种催化纤维素选择性制备小分子烷烃的方法
技术领域:
本发明涉及一种催化纤维素选择性制备小分子烷烃的方法。
背景技术:
在生物质中,纤维素是自然界中最丰富的生物质资源,其主要来源于植物和农林废弃物。可通过化学或生物手段应用于生产液体和气态燃料/汽油添加剂。其中,作为小分子烷烃燃料主要包含3种类型的烷烃,包括天然气(NG,C1-C2烷烃),液化石油气(LPG,C3-C4烷烃)和汽油主要成分(GAS,C5-C6烷烃)。其中,C5-C6烷烃在常温常压下均为液态,这两种简单饱和烃在提高汽油辛烷值和调节汽油蒸汽压等方面不可缺。此外,纤维素在转化到小分子烷烃的过程中,还可以产生水煤气的主要成分,CO。现有绝大多数技术以HZSM-5分子筛耦合双金属催化剂对纤维素进行降解产小分子烷烃,存在液化石油气LPG产率较低、催化剂循环性能差以及转化路径不清楚等问题。
发明内容:
本发明的目的是提供一种催化纤维素选择性制备小分子烷烃的方法,在水和C10以上的烷烃组成的双相体系中,首次通过酸性脱水催化剂α-ZrP和加氢脱氧催化剂(Ru-MoOx/C)协同作用,将纤维素解聚产单糖反应和后续单糖的加氢脱氧反应耦合,一步法产C1-C6烷烃和CO燃料,解决了现有技术步骤繁琐、催化剂循环性能差的问题,并且为从生物质资源转化LPG提供了初步的借鉴思路。
本发明是通过以下技术方案予以实现的:
一种催化纤维素选择性制备小分子烷烃的方法,在水和C10以上的烷烃组成的双相体系中,加入酸性脱水催化剂α-ZrP和Ru-MoOx/C和纤维素,充入氢气,压力为5-7Mpa,反应温度为200-240℃,一步法产C1-C6烷烃和CO燃料。
优选地,α-ZrP和Ru-MoOx/C的质量比为0.05:0.2-0.15:0.2。
Ru-MoOx/C中,Ru和Mo负载量分别为3-5wt.%和10-20wt.%。
本发明的有益效果如下:首次运用酸性脱水催化剂α-ZrP耦合加氢脱氧催化剂(Ru-MoOx/C)协同催化纤维素产小分子烷烃,将纤维素解聚产单糖反应和后续单糖的加氢脱氧反应耦合,一步法产C1-C6烷烃和CO燃料,解决了现有技术步骤繁琐、催化剂循环性能差的问题,并且为从生物质资源生产液化石油气C3-C4烷烃提供初步探究思路。
附图说明:
图1是催化剂的SEM和TEM图;
其中,(a)为α-ZrP催化剂的SEM图,(b)-(c)为新鲜还原的5%Ru-10%MoOx/C催化剂的TEM图。
图2是催化剂的X射线衍射图:
其中(a)为α-ZrP催化剂,(b)为新鲜还原5%Ru-10%MoOx/C催化剂。
图3是新鲜还原的5%Ru-10%MoOx/C催化剂X射线光电子能谱(XPS)图;
其中(a)Ru物种,(b)Mo物种。
图4是新鲜还原的5%Ru-10%MoOx/C催化剂的Py-FTIR光谱图。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:催化剂的制备及表征
将4.0gZrOCl2·8H2O与40.0mL(浓度为3.0M)H3PO4溶液混合,密封在装有内衬的水热釜中,在200℃下加热24h。反应结束后,混合物用去离子水通过0.22μmMillipore滤头过滤,直至滤液为中性。将固体产物在60℃下干燥过夜,获得2.4gα-ZrP。其SEM图参见图1(a),可以看到α-ZrP六方纳米片的平均粒径和厚度分别为约288nm和20nm,代表α-ZrP的整体外观。α-ZrP的BET比表面积和孔径分布数据在图2(a)所示,在图2(a)中α-ZrP的氮气吸附-脱附等温曲线下凹,且没有拐点。吸附气体量随相对压力(P/P0)增加而上升,属于III型等温线。α-ZrP的BET比表面积为22.5m2/g,孔容为0.2cm3/g。就其孔径分布而言,原始α-ZrP的孔径为26.4nm,属于介孔(表1,目录1)。
表1 BET测量获得的催化剂的性能参数
Figure BDA0002642264610000031
a:Barret-Joyner-Halenda孔径分布
b:t-曲线微孔容,Horvath-Kawazoe中值孔径
采用分步浸渍法制备Ru-MoOx/C催化剂。具体实验步骤为,首先将活性炭在110℃下用HNO3溶液(0.6mol·L-1)预处理5h,然后室温下过滤直至中性,并在100℃烘箱中干燥过夜。将RuCl3·3H2O溶解于去离子水中,并根据Ru的负载量(wt.%)中加入一定量的活性炭,并在室温下搅拌4h。将固体在100℃干燥过夜,并在流动的氮气气氛(35mL·min-1)中,400℃煅烧4h。在制备Ru/C催化剂好后,用(NH4)6Mo7O24溶液,通过与上述相同的方法进行第二次浸渍,制备含有不同Ru和Mo负载量的Ru-MoOx/C催化剂(标记为3%Ru-20%MoOx/C,5%Ru-10%MoOx/C)。在实验之前,将煅烧过样品在350℃的流动氢气(35mL·min-1)中还原4h。5%Ru-10%Mox/C的TEM图参见图1中(b)-(c),在图1(b)的TEM图中,通过FFT法计算可知其晶面间距d约为1nm的MoO2颗粒。在图1(c)的TEM中,可发现催化剂表面存在两种类型颗粒,对比可知粒径较大者为MoOx,而粒径较小者则为Ru0颗粒,并且在该视界内的MoOx颗粒通过FFT法计算可知,其为晶面间距d为0.6nm的MoO3颗粒。通过以上TEM分析,得知Ru-MoOx/C组分包括负载于活性碳上的Ru0,MoO2以及MoO3(MoO2和MoO3为MoOx组分)。
5%Ru-10%Mox/C的BET比表面积和孔径分布数据的分别在图2(b)所示。图2(b)中显示Ru-MoOx/C样品的氮气吸附-脱附等温曲线,在较低的P/P0下显示较高的氮气吸收量,该等温线属于I型等温线。Ru-MoOx/C催化剂的孔径属于杂多孔类型,包含微孔(<2nm)和中孔(2-15nm)。比表面积为784.4m2/g,孔容为0.27cm3/g,孔径为0.61nm(参见表1,目录2)。
新鲜还原的5%Ru-10%MoOx/C催化剂X射线光电子能谱(XPS)图参见图3。在图3(a)关于Ru物种的XPS谱图中,由于Ru3d和C1s结合能区域之间的重叠严重,因此很难通过Ru3d区域的结合能分析Ru的状态。但是,结合能在约483.7和461.2eV处分别表示金属Ru0的Ru3p3/2和Ru3p1/2峰。通过以上分析说明,钌钼碳催化剂中Ru都已完全被还原为金属状态。在图3(b)关于Mo物种的XPS谱图中,纯净MoO3的XPS光谱显示在结合能232.5eV(Mo3d5/2)和235.6eV(Mo3d3/2)处存在两条分辨较好的谱线,而纯净的MoO2由232.6eV(Mo3d3/2)和229.8eV(Mo3d5/2)两条谱线组成。氧空位可以来源于MoO2和MoO3,并且氧空位缺陷作为电子受体可以产生Lewis酸位点。因此,Ru-MoOx/C上的MoOx组分是该催化剂Lewis酸位点的来源。
图4是5%Ru-10%Mox/C催化剂的Py-FTIR光谱:波长位于1450、1576和1600cm-1处的谱带,分别对应于吡啶在强Lewis酸,弱Lewis酸以及强Lewis酸上的吸附位点,而1489cm-1附近的波段则归因于
Figure BDA0002642264610000052
酸位点和Lewis酸位点的重叠峰。通过分析计算得到该催化剂的Lewis酸总量为22.6μmol/g。说明Ru-MoOx/C酸性主要以Lewis酸性形式存在。
实施例2:α-ZrP耦合Ru-MoOx/C用于催化纤维素制备小分子烷烃
在水和正癸烷(n-decane)组成的双相体系中,加入实施例1制备的酸性脱水催化剂α-ZrP和Ru-MoOx/C,加入纤维素,充入氢气,压力为6Mpa,反应温度为200-240℃,一步法产C1-C6烷烃和CO燃料。具体反应参数及结果参见表2。
表2α-ZrP耦合Ru-MoOx/C用于催化纤维素制备小分子烃烷
Figure BDA0002642264610000051
反应条件:
a:0.1gα-ZrP,0.2g5%Ru-10%MoOx/C,0.25g纤维素,T=200℃,p(H2)=6Mpa,t=18h
b:0.1gα-ZrP,0.2g3%Ru-20%MoOx/C,0.25g纤维素,T=240℃,p(H2)=6Mpa,t=18h
c:0.1gα-ZrP,0.2g3%Ru-20%MoOx/C,0.25g纤维素,T=240℃,p(H2)=6Mpa,t=18h
液相产物中主要产物为葡萄糖Glu,山梨糖醇Sor,甘油Sor,乙二醇EG,1,2-丙二醇PDO,异丙醇ISP,丙醇Pro,乙醇Eth以及甲醇Met。从表2中得知:在m纤维素=0.25g,mα-ZrP=0.1g,mRu-MoOx/C=0.2g情况下,当水和n-decane的体积比VA/VO=9/18时,在T=200℃,p(H2)=6Mpa,t=18h作用下,在5%Ru-10%MoOx/C作用下气相中CO和C1-C4烷烃(包括NG和LPG,下同)产率分别为1.3%和34%,有机相中C5-C6烷烃产率分别为46.3%;在T=240℃,p(H2)=6Mpa,t=18h作用下,在3%Ru-20%MoOx/C作用下气相中CO和C1-C4烷烃产率分别为4.1%和22.8%,有机相中C5-C6烷烃产率分别为30.9%。当水和n-decane的体积比VA/VO=15/12时,在T=200℃,p(H2)=6Mpa,t=18h作用下,在3%Ru-20%MoOx/C作用下气相中CO和C1-C4烷烃产率分别为2.3%和28.6%(其中LPG获得较高水平的25.2%产率),有机相中C5-C6烷烃产率分别为46.5%。当水和n-decane的体积比VA/VO=0/27时,在T=240℃,p(H2)=6Mpa,t=18h作用下,在3%Ru-20%MoOx/C作用下气相中C1-C4烷烃产率分别为56.1%,有机相中C5-C6烷烃产率分别为43.8%。
实施例3:
参考实施例2,采用0.1gα-ZrP,0.2g3%Ru-20%MoOx/C,0.25g纤维素,T=200℃,p(H2)=6Mpa,t=18h,水和n-decane的体积比VA/VO=15/12进行催化实验时,第一次循环主要产物C5-C6烷烃产率为48.1%,循环3次后,仍可保留38%的产率(见表3)。
表3α-ZrP耦合3%Ru-20%MoOx/C用于催化纤维素制备小分子烃烷
Figure BDA0002642264610000071
反应条件:0.1gα-ZrP,0.2g3%Ru-20%MoOx/C,0.25g纤维素,T=200℃,p(H2)=6Mpa,t=18h,15mL水,12mLn-decane。
对比例1:
参考实施例2,不同之处在于没有添加3%Ru-20%MoOx/C催化剂,采用0.1gα-ZrP,0.25g纤维素,T=200℃,p(H2)=6Mpa,t=18h,水和n-decane的体积比VA/VO=15/12时,产物主要为水相中水解产物Glu,其产率为63.8%,催化剂回收循环3次后,仍可保持49%的Glu产率(参见表4)。
表4
Figure BDA0002642264610000081
反应条件:0.1gα-ZrP,0.25g纤维素,T=200℃,p(H2)=6Mpa,t=18h,15mL水,12mLn-decane
对比例2:
参考实施例2,不同之处在于没有添加磷酸锆(α-ZrP),采用0.2g3%Ru-20%MoOx/C,0.25g纤维素,T=200℃,p(H2)=6Mpa,t=18h,水和n-decane的体积比VA/VO=15/12时,有少量的CO(8.7%)C1-C2烷烃(5.4%),C3-C4烷烃(2.1%)生成,无C5-C6烷烃生成,循环3次后,仍无C5-C6烷烃生成(参见表5)。
表53%Ru-20%MoOx/C用于催化纤维素制备小分子烃烷
Figure BDA0002642264610000091
反应条件:0.2g3%Ru-20%MoOx/C,0.25g纤维素,T=200℃,p(H2)=6Mpa,t=18h,15mL水,12mLn-decane
通过对比例1和2,说明α-ZrP耦合Ru-MoOx/C对于生产C5-C6烷烃起重要作用。

Claims (1)

1.一种催化纤维素选择性制备小分子烷烃的方法,其特征在于,在水和C10以上的烷烃组成的双相体系中,加入酸性脱水催化剂α-ZrP、Ru-MoOx/C和纤维素,充入氢气,压力为5-7Mpa,反应温度为200-240℃,一步法产C1-C6烷烃和CO燃料;α-ZrP和Ru-MoOx/C的质量比为0.05:0.2-0.15:0.2;Ru-MoOx/C中,Ru和Mo负载量分别为3-5wt.%和10-20wt.%。
CN202010843495.XA 2020-08-20 2020-08-20 一种催化纤维素选择性制备小分子烷烃的方法 Active CN112010726B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010843495.XA CN112010726B (zh) 2020-08-20 2020-08-20 一种催化纤维素选择性制备小分子烷烃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010843495.XA CN112010726B (zh) 2020-08-20 2020-08-20 一种催化纤维素选择性制备小分子烷烃的方法

Publications (2)

Publication Number Publication Date
CN112010726A CN112010726A (zh) 2020-12-01
CN112010726B true CN112010726B (zh) 2023-02-24

Family

ID=73505267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010843495.XA Active CN112010726B (zh) 2020-08-20 2020-08-20 一种催化纤维素选择性制备小分子烷烃的方法

Country Status (1)

Country Link
CN (1) CN112010726B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896703A (zh) * 2014-03-21 2014-07-02 中国科学院广州能源研究所 一步法催化转化木质纤维素制取c5、c6烷烃的方法
CN104888775A (zh) * 2015-05-19 2015-09-09 中国科学院广州能源研究所 一种用于糖或糖醇水相氢解制c5或c6烷烃的催化剂
CN105289601A (zh) * 2015-12-07 2016-02-03 中国科学院广州能源研究所 一种山梨醇水相加氢制取直链c5/c6烷烃催化剂及其制备方法
CN105597752A (zh) * 2015-12-22 2016-05-25 中国科学院广州能源研究所 一种糖醇选择性加氢脱氧制取c5,c6烷烃的负载型碳材料催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896703A (zh) * 2014-03-21 2014-07-02 中国科学院广州能源研究所 一步法催化转化木质纤维素制取c5、c6烷烃的方法
CN104888775A (zh) * 2015-05-19 2015-09-09 中国科学院广州能源研究所 一种用于糖或糖醇水相氢解制c5或c6烷烃的催化剂
CN105289601A (zh) * 2015-12-07 2016-02-03 中国科学院广州能源研究所 一种山梨醇水相加氢制取直链c5/c6烷烃催化剂及其制备方法
CN105597752A (zh) * 2015-12-22 2016-05-25 中国科学院广州能源研究所 一种糖醇选择性加氢脱氧制取c5,c6烷烃的负载型碳材料催化剂及其制备方法

Also Published As

Publication number Publication date
CN112010726A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
Zhang et al. Palladium nanoparticles incorporated within sulfonic acid-functionalized MIL-101 (Cr) for efficient catalytic conversion of vanillin
Liu et al. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon
Yao et al. Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@ C catalysts
Soghrati et al. Zeolite–supported nickel phyllosilicate catalyst for CO hydrogenolysis of cyclic ethers and polyols
Ramli et al. Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance
Mentzel et al. Conversion of methanol to hydrocarbons over conventional and mesoporous H-ZSM-5 and H-Ga-MFI: Major differences in deactivation behavior
US8889585B2 (en) Mesoporous carbon supported tungsten carbide catalysts, preparation and applications thereof
US11123725B2 (en) Methods for producing mesoporous zeolite multifunctional catalysts for upgrading pyrolysis oil
Lin et al. Cascade catalytic hydrogenation–cyclization of methyl levulinate to form γ-valerolactone over Ru nanoparticles supported on a sulfonic acid-functionalized UiO-66 catalyst
Guan et al. Catalytic combustion of volatile organic compounds (VOCs) over structured Co3O4 nano-flowers on silicalite-1/SiC foam catalysts
Chaihad et al. Preparation of various hierarchical HZSM-5 based catalysts for in-situ fast upgrading of bio-oil
CN110639604B (zh) 一种黑液木质素氢解催化剂及其制备方法与应用
CN114588910A (zh) 一种用于木质素解聚的Ni-Zn负载型催化剂的制备方法和应用
Li et al. Catalytic deoxygenation of C 18 fatty acid over supported metal Ni catalysts promoted by the basic sites of ZnAl 2 O 4 spinel phase
CN105195188A (zh) 镍-碳化钨/多孔碳纳米纤维复合催化剂及中间体与制备
Hou et al. Activated carbon aerogel supported copper catalysts for the hydrogenation of methyl acetate to ethanol: effect of KOH activation
Yang et al. Effect of postsynthesis preparation methods on catalytic performance of Ti-Beta zeolite in ketonization of propionic acid
Lin et al. Potassium-assisted activation strategy regulating metal-support interaction to promote hydrothermal hydrogenation/deoxygenation of palmitic acid
CN112010726B (zh) 一种催化纤维素选择性制备小分子烷烃的方法
Grams et al. Enhanced activity of NiZrBEA catalyst for upgrading of biomass pyrolysis vapors to H2-rich gas
Wang et al. Bifunctional heterogeneous catalysts derived from the coordination of adenosine monophosphate to Sn (iv) for effective conversion of sucrose to 5-hydroxymethylfurfural
CN102441388B (zh) 一种高稳定性钴基费托合成催化剂的制备方法
CN103769101B (zh) 一种钴基费托合成催化剂及其制备方法和应用
Septiyaningrum et al. Synthesis of SO4/ZrO2 catalyst and its application on the conversion of ethanol to dimethyl ether
Liu et al. Synthesis of mesoporous Pt@ SAPO-11 via in situ encapsulation for the decarboxylation of oleic acid to prepare C8–C17 alkanes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant