CN111995396A - 一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法 - Google Patents

一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法 Download PDF

Info

Publication number
CN111995396A
CN111995396A CN202010698050.7A CN202010698050A CN111995396A CN 111995396 A CN111995396 A CN 111995396A CN 202010698050 A CN202010698050 A CN 202010698050A CN 111995396 A CN111995396 A CN 111995396A
Authority
CN
China
Prior art keywords
oxygen ion
ion conductivity
sodium niobate
magnesium
utilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010698050.7A
Other languages
English (en)
Inventor
刘智勇
徐帅昌
张安
卢金山
谢兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN202010698050.7A priority Critical patent/CN111995396A/zh
Publication of CN111995396A publication Critical patent/CN111995396A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法其是由传统固相烧结工艺制备而成,利用低价镁离子置换铌酸钠中的铌离子使材料产生氧空位缺陷,从而诱导产生氧离子电导性能。由于镁离子半径比铌离子半径大,增大了氧离子迁移路径中的间隙rc,有利于氧离子的迁移,从而降低活化温度,在中温(600℃)获得高电导率的氧离子电导陶瓷(σ=2.0×10 3S/cm)。本发明提出的铌酸钠基钙钛矿陶瓷在中温区域表现出良好的氧离子电导性能,并且制备工艺简单,经济合理,适合工业化生产,在新能源材料领域具有广阔的应用前景。

Description

一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法
技术领域
本发明涉及新能源材料技术领域,具体涉及一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法。
背景技术
燃料电池因其不受卡诺循环限制,故其能量转化效率能达到40%-80%,并且它可以不间断的直接将燃料中的化学能转化为电能,在转化过程中基本上不产生有害产物,是一种高效、清洁的能量转化装置。固体氧化物燃料电池(简称SOFC)作为继磷酸盐燃料电池、熔融碳酸盐燃料电池之后的第三代燃料电池,它可使用H2、CO、汽油、石油、天然气等碳氢化合物作为燃料气体,大大拓宽了燃料气体的适用性。并且SOFC在使用时不需要贵金属催化剂,降低了成本。因其全固态结构,易于模块化组装。在大型集中供电、中型分电和小型家用热电联供等民用领域作为固定电站,以及作为船舶动力电源、交通车辆动力电源等移动电源,都有广阔的应用前景(仙存妮,固体氧化物燃料电池技术发展概述及应用分析[J].电器工业,2019,3:70-74.)。
SOFC主要由阳极、固体电解质、阴极和联结材料4部分组成。其中固体电解质是SOFC的核心单元,是影响固体氧化物燃料电池性能的关键因素。传统电解质材料为钇稳定氧化锆(YSZ),该材料在还原条件下仍具有较好的稳定性及高的离子电导率,广泛应用在SOFC中。但其具有一个明显的缺点—工作温度过高(>1000℃),这常常导致电解质、电极、联结材料之间由于热膨胀系数差异产生变形和界面间发生化学反应,从而大大降低SOFC的使用寿命(S.Anirban,A.Dutta,An insight on structure,conductivity and iondynamics of Sr-Sm co-doped ceria oxygen ion conductors:Effect of defectinteraction[J].Solid State Sciences,2018,86:69-76.),严重限制了制备SOFC的材料选用。因此,开发中低温高氧离子电导率的电解质材料不仅可以降低SOFC的制作成本,更拓宽了其应用范围。
钙钛矿结构NaNbO3是典型的无铅反铁电材料,近年来其反铁电储能性能被广泛的研究。NaNbO3陶瓷具有良好的结构稳定性,通过在A、B位掺杂或者A/B共掺杂低价阳离子,可以诱导产生大量的氧离子空位,提高材料氧离子电导率。另外,根据钙钛矿结构容差因子(0.9<t<1.1),可以选择很多元素进行A位、B位掺杂改性,对钙钛矿结构和电导性能进行优化。
本发明使用2价的Mg离子替代NaNbO3的B位的Nb离子,在相同掺杂量的情况下,可形成更多的氧空位,从而提高其氧离子电导率。另一方面,Mg相较Ti、Sm、Gd等元素更加的廉价,可以进一步降低电解质材料的生产成本。
发明内容
本发明所要解决的问题是:提供一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法,采用固相反应法,获得颗粒微细、粒径均匀原粉;采用高温烧结工艺,制备出高性能氧离子导体。
本发明为解决上述问题所提供的技术方案为:一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法,所述方法包括以下步骤,
1)、称量一定比例的Na2CO3、Nb2O5和MgO,用于制备NaNb1-xMgxO3-1.5x,其中,x=0.005-0.2;
2)、将混合后的粉料放入球磨罐中进行湿法球磨、干燥、过筛并将其压成坯体预烧;
3)、将预烧后的坯体碾碎后再次球磨、干燥、过筛;
4)、将粉体造粒后用模具压成圆片;
5)、将圆片排胶后进行烧结;
6)、对烧结样品进行测试分析。
优选的,所述步骤2)和步骤3)中湿法球磨中粉、球磨球和球磨介质的质量比例为1:0.8:2,球磨转速360r/min,球磨时间为4h,干燥温度为80℃,干燥时间为6h。
优选的,所述步骤2)中预烧工艺为升温速率为3℃/min,预烧温度为850℃,保温时间为2h。
优选的,所述步骤4)中造粒工艺为粉体和PVA溶液质量比为1:0.05,PVA溶液浓度为5wt%。
优选的,所述步骤4)中压片成型条件为:压力为300Mpa,保压5min。
优选的,所述步骤5)中排胶工艺:升温速率为1.5℃/min,排胶温度为550℃,排胶时间为2h。
优选的,所述步骤5)中烧结工艺:升温速率为3℃/min,烧结温度为1050℃~1200℃,烧结时间为2h。
与现有技术相比,本发明的优点是:
(1)使用2价的Mg离子替代NaNbO3的B位的5价Nb离子,在相同掺杂量的情况下,可形成更多的氧空位,提高其氧离子电导率。
(2)并且镁离子半径比铌离子半径大,增大了氧离子迁移路径中的间隙rc,有利于氧离子的迁移,从而进一步提高铌酸钠陶瓷的氧离子的电导率。
(3)预烧过程使原料中的碳酸盐得到有效分解,使粉体在烧结过程中结合的更好,便于获得纯相。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为600℃时不同气氛下实施例2的复阻抗图。
图2为不同镁掺杂量的铌酸钠陶瓷的XRD图。
具体实施方式
以下将配合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
实施例1:
取10g Na2CO3、23.8217g Nb2O5、0.1901g MgO放入球磨罐中,在360r/min的转速下湿法球磨4h,球磨后的粉液在80℃的干燥箱中干燥6h然后200目筛网过筛,将粉体压成坯体在850℃下保温2h。将预烧后的坯体碾碎后再次球磨、干燥、过筛。然后向粉体中加入5wt%的PVA溶液(粉体与PVA溶液质量比为1:0.05),不断碾磨使其均匀混合,随后将粉体用模具压成圆片。以1.5℃/min的升温速率加热至550℃并保温2h,随后以3℃/min的升温速率加热至1150℃/min并保温2h,烧结后样品有明显的尺寸收缩。将样品表面磨平后被金电极,使用电化学工作站对其进行阻抗测试,测试结果表明:600℃时样品氧离子电导率为1.6×10-3S/cm。
实施例2:
取10g Na2CO3、22.5679g Nb2O5、0.3802g MgO放入球磨罐中,在360r/min的转速下湿法球磨4h,球磨后的粉液在80℃的干燥箱中干燥6h然后200目筛网过筛,将粉体压成坯体在850℃下保温2h。将预烧后的坯体碾碎后再次球磨、干燥、过筛。然后向粉体中加入5wt%的PVA溶液(粉体与PVA溶液质量比为1:0.05),不断碾磨使其均匀混合,随后将粉体用模具压成圆片。以1.5℃/min的升温速率加热至550℃并保温2h,随后以3℃/min的升温速率加热至1100℃/min并保温2h,烧结后样品有明显的尺寸收缩。将样品表面磨平后被金电极,使用电化学工作站对其进行阻抗测试,测试结果表明:600℃时样品氧离子电导率为2×10-3S/cm。
实施例3:
取10g Na2CO3、21.3142g Nb2O5、0.5703g MgO放入球磨罐中,在360r/min的转速下湿法球磨4h,球磨后的粉液在80℃的干燥箱中干燥6h然后200目筛网过筛,将粉体压成坯体在850℃下保温2h。将预烧后的坯体碾碎后再次球磨、干燥、过筛。然后向粉体中加入5wt%的PVA溶液(粉体与PVA溶液质量比为1:0.05),不断碾磨使其均匀混合,随后将粉体用模具压成圆片。以1.5℃/min的升温速率加热至550℃并保温2h,随后以3℃/min的升温速率加热至1090℃/min并保温2h,烧结后样品有明显的尺寸收缩。将样品表面磨平后被金电极,使用电化学工作站对其进行阻抗测试,测试结果表明:600℃时样品氧离子电导率为1.2×10-3S/cm。
以上仅就本发明的最佳实施例作了说明,但不能理解为是对权利要求的限制。本发明不仅局限于以上实施例,其具体结构允许有变化。凡在本发明独立权利要求的保护范围内所作的各种变化均在本发明保护范围内。

Claims (7)

1.一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法,其特征在于:所述方法包括以下步骤,
1)、称量一定比例的Na2CO3、Nb2O5和MgO,用于制备NaNb1-xMgxO3-1.5x,其中,x=0.005-0.2;
2)、将混合后的粉料放入球磨罐中进行湿法球磨、干燥、过筛并将其压成坯体预烧;
3)、将预烧后的坯体碾碎后再次球磨、干燥、过筛;
4)、将粉体造粒后用模具压成圆片;
5)、将圆片排胶后进行烧结;
6)、对烧结样品进行测试分析。
2.根据权利要求1所述的一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法,其特征在于:所述步骤2)和步骤3)中湿法球磨中粉、球磨球和球磨介质的质量比例为1:0.8:2,球磨转速360r/min,球磨时间为4h,干燥温度为80℃,干燥时间为6h。
3.根据权利要求1所述的一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法,其特征在于:所述步骤2)中预烧工艺为升温速率为3℃/min,预烧温度为850℃,保温时间为2h。
4.根据权利要求1所述的一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法,其特征在于:所述步骤4)中造粒工艺为粉体和PVA溶液质量比为1:0.05,PVA溶液浓度为5wt%。
5.根据权利要求1所述的一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法,其特征在于:所述步骤4)中压片成型条件为:压力为300Mpa,保压5min。
6.根据权利要求1所述的一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法,其特征在于:所述步骤5)中排胶工艺:升温速率为1.5℃/min,排胶温度为550℃,排胶时间为2h。
7.根据权利要求1所述的一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法,其特征在于:所述步骤5)中烧结工艺:升温速率为3℃/min,烧结温度为1050℃~1200℃,烧结时间为2h。
CN202010698050.7A 2020-07-20 2020-07-20 一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法 Pending CN111995396A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010698050.7A CN111995396A (zh) 2020-07-20 2020-07-20 一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010698050.7A CN111995396A (zh) 2020-07-20 2020-07-20 一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法

Publications (1)

Publication Number Publication Date
CN111995396A true CN111995396A (zh) 2020-11-27

Family

ID=73468184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010698050.7A Pending CN111995396A (zh) 2020-07-20 2020-07-20 一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法

Country Status (1)

Country Link
CN (1) CN111995396A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062968A1 (en) * 2002-09-24 2004-04-01 Corning Incorporated Electrolytic perovskites
JP2004327212A (ja) * 2003-04-24 2004-11-18 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
CN101066868A (zh) * 2007-06-14 2007-11-07 北京科技大学 一种低温合成镁掺杂铌酸钾钠基无铅压电陶瓷及制备方法
WO2012126903A1 (de) * 2011-03-21 2012-09-27 Rheinisch-Westfälische Technische Hochschule Aachen Verfahren zur herstellung metalloxidischer nanopartikel und zur herstellung metalloxidischer keramikschichten und -pulver
WO2013162099A1 (ko) * 2012-04-25 2013-10-31 주식회사케이세라셀 고체산화물 연료전지용 전해질 재료 및 이를 이용한 고체산화물 연료전지용 전해질의 제조방법
WO2013165953A1 (en) * 2012-04-30 2013-11-07 Brookhaven Science Associates, Llc Cubic ionic conductor ceramics for alkali ion batteries
US20180026300A1 (en) * 2015-03-31 2018-01-25 Sony Corporation Lithium ion conductor, solid electrolyte layer, electrode, battery, and electronic device
JP2018088524A (ja) * 2016-11-22 2018-06-07 日本特殊陶業株式会社 無鉛圧電磁器組成物及び圧電素子
WO2018139657A1 (ja) * 2017-01-30 2018-08-02 セントラル硝子株式会社 電極積層体及び全固体リチウム電池
JP2019057496A (ja) * 2017-09-20 2019-04-11 日本電気硝子株式会社 固体電解質シート及びその製造方法、並びに全固体二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062968A1 (en) * 2002-09-24 2004-04-01 Corning Incorporated Electrolytic perovskites
JP2004327212A (ja) * 2003-04-24 2004-11-18 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
CN101066868A (zh) * 2007-06-14 2007-11-07 北京科技大学 一种低温合成镁掺杂铌酸钾钠基无铅压电陶瓷及制备方法
WO2012126903A1 (de) * 2011-03-21 2012-09-27 Rheinisch-Westfälische Technische Hochschule Aachen Verfahren zur herstellung metalloxidischer nanopartikel und zur herstellung metalloxidischer keramikschichten und -pulver
WO2013162099A1 (ko) * 2012-04-25 2013-10-31 주식회사케이세라셀 고체산화물 연료전지용 전해질 재료 및 이를 이용한 고체산화물 연료전지용 전해질의 제조방법
WO2013165953A1 (en) * 2012-04-30 2013-11-07 Brookhaven Science Associates, Llc Cubic ionic conductor ceramics for alkali ion batteries
US20180026300A1 (en) * 2015-03-31 2018-01-25 Sony Corporation Lithium ion conductor, solid electrolyte layer, electrode, battery, and electronic device
JP2018088524A (ja) * 2016-11-22 2018-06-07 日本特殊陶業株式会社 無鉛圧電磁器組成物及び圧電素子
WO2018139657A1 (ja) * 2017-01-30 2018-08-02 セントラル硝子株式会社 電極積層体及び全固体リチウム電池
JP2019057496A (ja) * 2017-09-20 2019-04-11 日本電気硝子株式会社 固体電解質シート及びその製造方法、並びに全固体二次電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MACUTKEVIC, J等: "Dielectric Properties of NaNbO3 Ceramics", 《FERROELECTRICS》 *
SUMIT K. ROY等: "Structural,FTIR and ac conductivity studies of NaMeO3 (Me≡Nb, Ta) ceramics", 《ADVANCES IN MATERIAL RESEARCH》 *
ZHANG, A等: "Ultrasonic vibration driven piezocatalytic activity of lead-free K0.5Na0.5NbO3 materials", 《CERAMICS INTERNATIONAL》 *
向军等: "KNb_(0.9)Mg_(0.1)O_(3-a)固体电解质的合成及其离子导电性", 《材料科学与工程学报》 *

Similar Documents

Publication Publication Date Title
Liu et al. Improving the performance of the Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for proton-conducting SOFCs by microwave sintering
Shi et al. Building Ruddlesden–Popper and Single Perovskite Nanocomposites: A New Strategy to Develop High‐Performance Cathode for Protonic Ceramic Fuel Cells
KR101300157B1 (ko) 고체 산화물 연료 전지용 복합 세라믹 접촉재 및 그 제조방법
CN110165236A (zh) 一种双层氧化物固态电解质的制备方法及其应用
CN103390739A (zh) 一种固体氧化物燃料电池氧化铈基电解质隔层及其制备
Hu et al. Visiting the roles of Sr‐or Ca‐doping on the oxygen reduction reaction activity and stability of a perovskite cathode for proton conducting solid oxide fuel cells
Gan et al. A scandium-doped manganate anode for a proton-conducting solid oxide steam electrolyzer
JP3565696B2 (ja) 固体電解質型燃料電池の電極の製造方法
CN103887548B (zh) 一种具有择优取向的氧化铈基电解质薄膜及其制备和应用
CN110423114B (zh) 一种陶瓷电解质材料及其制备方法
JP6625855B2 (ja) 水蒸気電解用セルおよびその製造方法
CN111995396A (zh) 一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法
CN115692806A (zh) 一种高熵钙钛矿电解质及其制备方法与应用、电池
CN115275228A (zh) 一种钇钨离子共掺杂的锶钴基钙钛矿固体氧化物燃料电池阴极材料、制备方法与应用
CN111244515B (zh) 含钙钛矿型LaNiO3的复合电解质、燃料电池及其制备方法
JP6625856B2 (ja) 水蒸気電解用セル
CN115101761A (zh) 一种质子陶瓷燃料电池阴极材料及其制法与应用
Feng et al. Evolution and effect on electrolysis performance of pores in YSZ electrolyte films prepared by screen-printing
KR101627270B1 (ko) 스피넬계 전도성 산화막이 코팅된 고체산화물 재생 연료전지용 금속 분리판, 이의 제조방법 및 이를 포함하는 고체산화물 재생 연료전지
CN110078503B (zh) 一种低温烧结8ysz电解质的方法
CN1395332A (zh) 一种LiCo O2型阴极材料及其制备方法
CN107946618B (zh) 基于Ag-SrTiO3电极的对称SOFC及制备方法
Raza et al. Microwave Sintered Nanocomposite Electrodes for Solid Oxide Fuel Cells
CN115224285A (zh) 中温固体氧化物燃料电池阴极材料及其制备方法、应用
Ding et al. Methane-Fueled Proton-Conducting Ceramic Fuel Cell Stacks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination