CN111918003B - 图像传感器及其信号采集方法和电路、存储介质、终端 - Google Patents

图像传感器及其信号采集方法和电路、存储介质、终端 Download PDF

Info

Publication number
CN111918003B
CN111918003B CN201910380238.4A CN201910380238A CN111918003B CN 111918003 B CN111918003 B CN 111918003B CN 201910380238 A CN201910380238 A CN 201910380238A CN 111918003 B CN111918003 B CN 111918003B
Authority
CN
China
Prior art keywords
pixel
signal
pixel unit
unit
connection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910380238.4A
Other languages
English (en)
Other versions
CN111918003A (zh
Inventor
戴亚翔
黄品儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Harvest Intelligence Tech Co Ltd
Original Assignee
Shanghai Harvest Intelligence Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Harvest Intelligence Tech Co Ltd filed Critical Shanghai Harvest Intelligence Tech Co Ltd
Priority to CN201910380238.4A priority Critical patent/CN111918003B/zh
Priority to TW109115237A priority patent/TWI734467B/zh
Priority to US16/869,234 priority patent/US11190722B2/en
Publication of CN111918003A publication Critical patent/CN111918003A/zh
Application granted granted Critical
Publication of CN111918003B publication Critical patent/CN111918003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/766Addressed sensors, e.g. MOS or CMOS sensors comprising control or output lines used for a plurality of functions, e.g. for pixel output, driving, reset or power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种图像传感器及其信号采集方法和电路、存储介质、终端,所述图像传感器包括多个像素模块,每一像素模块包括:n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;其中,相邻两个像素模块之间共用同一像素单元以及该像素单元的第一端和第二端连接的信号读出端。本发明方案提供一种改进的图像传感器及其信号采集方法和电路,能够在单个信号采集周期内独立地读取差模信号和共模信号,利于获取像素单元的完整信号。

Description

图像传感器及其信号采集方法和电路、存储介质、终端
技术领域
本发明涉及图像传感器技术领域,具体地涉及一种图像传感器及其信号采集方法和电路、存储介质、终端。
背景技术
图像传感器(image sensor)是一种利用感光元件的光电转换功能,将感光面上的光像转换为与光像成相应比例关系的电信号的传感器件。
以光学指纹传感器为例,通常由像素阵列构成,像素阵列中的每一像素均具有感光元件,以实现光信号到电信号的转换。
目前,图像传感器正朝向大尺寸、高分辨率、高成像质量及低成本等方向持续发展。并且,近几年间,因人工智能的蓬勃发展使得影像所获取的信息显得更加重要,这就对图像传感器的分辨率和成像质量提出了更高要求。
然而,现有图像传感器通常只是单纯地收集所有像素单元产生的信号并直接传输至外部读取***进行读取与计算。
这样的信号读取的方式往往会造成更细微的讯号遗失,如差模讯号,进而导致图像传感器可收集的信息产生缺漏。
而这种缺漏将会进一步造成影像撷取和判读的效率降低,以及特征值遗失等问题。
发明内容
本发明解决的技术问题是提供一种改进的图像传感器及其信号采集方法和电路,以在单个信号采集周期内独立地读取差模信号和共模信号,从而有效获取像素单元的完整信号。
为解决上述技术问题,本发明实施例提供一种图像传感器,包括多个像素模块,每一像素模块包括:n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;其中,相邻两个像素模块之间共用同一像素单元以及所述同一像素单元的第一端和第二端连接的信号读出端。
可选的,所述图像传感器还包括:多条控制线,同一像素模块中,不同的像素开关的控制端连接至不同的控制线;多条数据线,各个信号读出端连接至对应的数据线;多条扫描线,各个感光元件连接至对应的扫描线。
可选的,所述图像传感器还包括:部分像素模块之间共用扫描线,部分像素模块之间共用数据线,部分像素模块之间共用控制线。
可选的,所述多个像素模块形成于玻璃基板上。
为解决上述技术问题,本发明实施例还提供一种图像传感器的信号采集方法,所述图像传感器包括多个像素模块,每一像素模块包括:n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;其中,相邻两个像素模块之间共用同一像素单元以及所述同一像素单元的第一端和第二端连接的信号读出端;所述信号采集方法包括:对于每一像素模块,在单个信号采集周期内,依次对所述n个信号读出端进行信号采集,其中,所述信号采集周期包括n个子周期,其中每一子周期对应至少一个信号读出端;在第i子周期内,控制第一像素单元和第二像素单元各自的像素开关导通,控制电流流过所述第一像素单元和第二像素单元,并采集第i个信号读出端的第一电信号,其中,所述第一像素单元和第二像素单元为所述n个信号读出端中与所述第i个信号读出端连接的两个像素单元,1≤i≤n。
可选的,所述第一电信号为所述第一像素单元和第二像素单元的差模信号。
可选的,所述信号采集方法还包括:在所述第i子周期内,采集所述第一像素单元与第三像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第三像素单元为所述n个像素单元中除所述第二像素单元之外的像素单元;和/或,采集所述第二像素单元与第四像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第四像素单元为所述n个像素单元中除所述第一像素单元之外的像素单元。
可选的,所述第二电信号为所述第一像素单元和第二像素单元的共模信号。
可选的,当每一子周期对应x个信号读出端时,其中,2≤x<n,在第i子周期内,控制所述n个像素单元中串联的x+1个像素单元各自的像素开关导通,控制电流流过所述x+1个像素单元,并分别采集x个信号读出端的第一电信号,其中,所述x+1个像素单元相互之间的串联连接点分别连接所述x个信号读出端。
可选的,所述信号采集方法还包括:在所述第i子周期内,采集所述x+1个像素单元中首个像素单元与第三像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第三像素单元为所述n个像素单元中除所述x+1个像素单元之外的像素单元;和/或,采集所述x+1个像素单元中末个像素单元与第四像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第四像素单元为所述n个像素单元中除所述x+1个像素单元之外的像素单元。
为解决上述技术问题,本发明实施例还提供一种图像传感器的信号采集电路,所述图像传感器包括多个像素模块,每一像素模块包括:n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;其中,相邻两个像素模块之间共用同一像素单元以及所述同一像素单元的第一端和第二端连接的信号读出端;对于每一像素模块,所述信号采集电路在单个信号采集周期内依次对所述n个信号读出端进行信号采集,其中,所述信号采集周期包括n个子周期,其中每一子周期对应至少一个信号读出端;所述信号采集电路包括:像素开关控制单元,在第i子周期内,控制第一像素单元和第二像素单元各自的像素开关导通,其中,所述第一像素单元和第二像素单元为所述n个信号读出端中与第i个信号读出端连接的两个像素单元,1≤i≤n;扫描线控制单元,在所述第i子周期内,控制电流流过所述第一像素单元和第二像素单元;信号读出单元,在所述第i子周期内,采集所述第i个信号读出端的第一电信号。
可选的,所述像素开关控制单元与多条控制线耦接,同一像素模块中,不同的像素开关的控制端连接至不同的控制线;所述信号读出单元与多条数据线耦接,各个信号读出端连接至对应的数据线;所述扫描线控制单元与多条扫描线耦接,各个感光元件连接至对应的扫描线。
可选的,所述第一电信号为所述第一像素单元和第二像素单元的差模信号。
可选的,在所述第i子周期内,所述信号读出单元还采集所述第一像素单元与第三像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第三像素单元为所述n个像素单元中除所述第二像素单元之外的像素单元;和/或,所述信号读出单元还采集所述第二像素单元与第四像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第四像素单元为所述n个像素单元中除所述第一像素单元之外的像素单元。
可选的,所述第二电信号为所述第一像素单元和第二像素单元的共模信号。
可选的,当每一子周期对应x个信号读出端时,其中,2≤x<n,在第i子周期内,所述像素开关控制单元控制所述n个像素单元中串联的x+1个像素单元各自的像素开关导通;所述扫描线控制单元控制电流流过所述x+1个像素单元;所述信号读出单元分别采集x个信号读出端的第一电信号,其中,所述x+1个像素单元相互之间的串联连接点分别连接所述x个信号读出端。
可选的,在所述第i子周期内,所述信号读出单元还采集所述x+1个像素单元中首个像素单元与第三像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第三像素单元为所述n个像素单元中除所述x+1个像素单元之外的像素单元;和/或,所述信号读出单元还采集所述x+1个像素单元中末个像素单元与第四像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第四像素单元为所述n个像素单元中除所述x+1个像素单元之外的像素单元。
为解决上述技术问题,本发明实施例还提供一种存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述方法的步骤。
为解决上述技术问题,本发明实施例还提供一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例提供一种图像传感器,包括多个像素模块,每一像素模块包括:n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;其中,相邻两个像素模块之间共用同一像素单元以及所述同一像素单元的第一端和第二端连接的信号读出端。
较之现有图像传感器中所有的像素单元都是并联连接的器件设计方式,本实施例的方案利用制程上的相容性,使得多个像素单元能够串联连接,从而能够在单个信号采集周期内独立地读取差模信号和共模信号,利于获取像素单元的完整信号。具体而言,每一串联连接点均连接一信号读出端,以使所述信号读出端能够读取通过对应串联连接点串联的两个像素单元之间的差模信号,同时,通过这两个像素单元与除了对方外的其他像素单元的串联连接点所连接的信号读出端,能够读取这两个像素单元的共模信号。进一步,闭环结构的设计使得n个像素单元中每一像素单元的差模信号均能自完整的信号中被提取出来以得到独立采集。进一步,相邻两个像素模块之间共用同一像素单元以及该像素单元的第一端和第二端连接的信号读出端,利于获得较紧凑的器件排布,达到降低成本的效果。进一步,这样的器件排布方式还利于最少化控制线、数据线和扫描线的数量,降低图像传感器内的布线复杂度。
进一步,本发明实施例还提供一种图像传感器的信号采集方法,所述图像传感器包括多个像素模块,每一像素模块包括:n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;其中,相邻两个像素模块之间共用同一像素单元以及该像素单元的第一端和第二端连接的信号读出端;所述信号采集方法包括:对于每一像素模块,在单个信号采集周期内,依次对所述n个信号读出端进行信号采集,其中,所述信号采集周期包括n个子周期,其中每一子周期对应至少一个信号读出端;在第i子周期内,控制第一像素单元和第二像素单元各自的像素开关导通,控制电流流过所述第一像素单元和第二像素单元,并采集所述第i个信号读出端的第一电信号,其中,所述第一像素单元和第二像素单元为所述n个信号读出端中与所述第i个信号读出端连接的两个像素单元,1≤i≤n。采用本实施例的方案,能够将微弱的差模信号自完整的信号中分离提取,极大地改进图像传感器的成像质量。
进一步,本发明实施例还提供一种图像传感器的信号采集电路,所述图像传感器包括多个像素模块,每一像素模块包括:n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;其中,相邻两个像素模块之间共用同一像素单元以及该像素单元的第一端和第二端连接的信号读出端;对于每一像素模块,所述信号采集电路在单个信号采集周期内依次对所述n个信号读出端进行信号采集,其中,所述信号采集周期包括n个子周期,其中每一子周期对应至少一个信号读出端;所述信号采集电路包括:像素开关控制单元,在第i子周期内,控制第一像素单元和第二像素单元各自的像素开关导通,其中,所述第一像素单元和第二像素单元为所述n个信号读出端中与所述第i个信号读出端连接的两个像素单元,1≤i≤n;扫描线控制单元,在所述第i子周期内,控制电流流过所述第一像素单元和第二像素单元;信号读出单元,在所述第i子周期内,采集所述第i个信号读出端的第一电信号。采用本实施例的方案,能够通过信号采集电路将微弱的差模信号自完整的信号中分离提取。进一步,由于所述信号采集电路具备分别读取差模信号和共模信号的功能,利于获取完整信号,从而极大地改进图像传感器的成像质量。
附图说明
图1是一种图像传感器的示意图;
图2是采用图1所示图像传感器采集得到的信号的示意图;
图3是本发明第一实施例的一种图像传感器的示意图;
图4是图3所示实施例中单个像素模块的示意图;
图5是图3所示实施例中多个像素模块的线路连接示意图;
图6是本发明第一实施例的一种图像传感器的信号采集方法的流程图;
图7是本发明第一实施例的一种图像传感器的信号采集电路的示意图;
图8是图7中像素开关控制单元在单个信号采集周期内的时序图;
图9是本发明第二实施例的一种图像传感器的示意图;
图10是图9所示实施例中单个像素模块的示意图;
图11是图9所示实施例中多个像素模块的线路连接示意图;
图12是图9所示实施例中像素开关控制单元在单个完整扫描过程内的时序图;
图13是图9所示实施例中多个像素模块的电源线连接示意图;
图14是本发明第三实施例的一种图像传感器的线路连接示意图;
图15是图14所示实施例中像素开关控制单元在单个完整扫描过程内的时序图;
图16是图14所示实施例中多个像素模块的电源线连接示意图;
图17是本发明第四实施例的一种图像传感器的线路连接示意图。
具体实施方式
如背景技术所言,现有图像传感器中像素阵列的排布方式,以及信号采集电路的读取方式存在诸多缺陷。
具体而言,参考图1,图像传感器100由多个阵列排布的像素单元110组成,为简便,图1中仅示出其中的一列像素单元110。进一步地,每一像素单元110包括感光元件112、像素开关111和电容113。
对于每一像素单元110,其中的感光元件112的一端(如阴极)分别连接至公共电极(如接地),所述感光元件112的另一端(如阳极)分别连接各自单元的像素开关110,所述像素开关110连接同一数据线,所述像素开关110的控制端连接一扫描线(图未示)。
在图像采集过程中,对于每一像素单元110,所述感光元件112经光照产生漏电流,形成电荷存储于对应的电容113,再经由扫描线按特定开启顺序逐一读取至外部采集模块120。所述外部采集模块120包括外部放大器121和模数转换器122,实现将图像从光信号至电信号再至数字信号的转换和读取。
基于图像传感器100的信号采集方案的缺点在于:
其一,在外部读取讯号时需要进行两次的讯号读取过程:第一次为背景信息读取,第二次为实际获得的信号读取,两次的信号再进行运算得到差异值。这样的运算方式比较费时,而且需要外部运算才能得到差模讯号。
其二,参见图1可知,由于所有的像素单元110的阴极和阳极都是分别并联的,导致最终每个像素单元110读取得到的信号只有包括共模信号和差模信号的总信号,差模信号需要再经由模数转换器122数字化后才能计算得到。然而,在经由模数转换器122数字化后往往会造成差模信号由于过于微小而被忽视,进而导致更细致的特征值信号的丢失。
例如,参考图2,对于多个像素单元110,传感得到的光信号经过模数转换处理后,由两个包括共模信号和差模信号的总信号所计算出的差模信号部分因数据过于微弱而会被忽视,导致最终得到的数字信号基本上仅包括原始输入的共模信号部分,难以得到精确的差模信号。
这样的信号丢失虽然看似不会对最终成像的大致轮廓造成较大影响,但是,势必会对细节上的成像质量造成影响,导致成像质量低,局部细节确实,分辨率低。
为解决上述技术问题,本发明实施例提供一种图像传感器,包括多个像素模块,每一像素模块包括:n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;其中,相邻两个像素模块之间共用同一像素单元以及该像素单元的第一端和第二端连接的信号读出端。
在一些实施例中, 所述n个像素单元串联形成闭环结构包括:所述n个像素单元依次首尾连接形成闭环结构。
本实施例的方案利用制程上的相容性,使得多个像素单元能够串联连接,从而能够在单个信号采集周期内独立地读取差模信号和共模信号,利于获取像素单元的完整信号。具体而言,每一串联连接点均连接一信号读出端,以使所述信号读出端能够读取通过对应串联连接点串联的两个像素单元之间的差模信号,同时,通过这两个像素单元与除了对方外的其他像素单元的串联连接点所连接的信号读出端,能够读取这两个像素单元的共模信号。进一步,闭环结构的设计使得n个像素单元中每一像素单元的差模信号均能自完整的信号中被提取出来以得到独立采集。进一步,相邻两个像素模块之间共用同一像素单元以及该像素单元的第一端和第二端连接的信号读出端,利于获得较紧凑的器件排布,达到降低成本的效果。进一步,这样的器件排布方式还利于最少化控制线、数据线和扫描线的数量,降低图像传感器内的布线复杂度。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图3是本发明第一实施例的一种图像传感器的示意图;图4是图3所示实施例中单个像素模块的示意图;图4是图3所示实施例中单个像素模块的示意图;图5是图3所示实施例中多个像素模块的线路连接示意图。
本实施例所述图像传感器可以应用于图像采集场景,如应用于光学指纹采集场景。例如,所述图像传感器可以为光学指纹传感器。
为更清楚地展示图3所示图像传感器200的结构,图3中未示出像素模块210内的具体结构,也未示出外部放大器230,仅保留串联连接点A、B和C以示出多个像素模块210之间的连接方式。
为更清楚的展示本实施例中所述图像传感器200内部的走线设计,图5仅示例性的示出图3中点划线所框出的6个相邻像素模块210的一种较优的线路连接方式,以通过最少化的控制信号数来读取每一信号读出端220的差模信号和共模信号。
具体地,结合图3和图4,图像传感器200可以包括多个像素模块210,每一像素模块210可以包括:n个像素单元211,所述n个像素单元211串联形成闭环结构,n≥3,所述像素单元211具有第一端211a和第二端211b,每一像素单元211包括串联连接的感光元件212和像素开关213;n个信号读出端220,每一像素单元211与其他像素单元211的串联连接点(图中以A、B和C标记)分别与对应的信号读出端220连接;其中,相邻两个像素模块210之间共用同一像素单元211以及该像素单元211的第一端211a和第二端211b连接的信号读出端220。
在一些实施例中,所述n个像素单元211串联形成闭环结构包括:所述n个像素单元211首尾依次连接形成闭环结构。
更为具体地,每一信号读出端220适于连接一外部放大器230,以采集对应的像素单元211采集到的信号。
在具体实施中,n=3,每一像素模块210可以构成如图4所示的三角形结构。
在一个变化例中,n可以为大于等于3的任意正整数,由此,所述像素模块210可以构成n边形结构,其中,所述n边形结构的每一条边上设置有一像素单元211。
在具体实施中,对于每一像素单元211,所述像素单元211中的感光元件212的阳极与像素开关213的源极(或漏极)耦接。
在图4所示示例中,将像素单元211中感光元件212的阴极记作所述像素单元211的第一端211a,将所述像素开关213的漏极(或源极)记作所述像素单元211的第二端211b。在实际应用中,本领域技术人员可以根据需要调整所述像素单元211的第一端211a和第二端211b,如将所述像素开关213的漏极(或源极)记作所述像素单元211的第一端211a,将所述感光元件212的阴极记作所述像素单元211的第二端211b。
在具体实施中,其中,所述像素开关213通常为薄膜晶体管(Thin FilmTransistor,简称TFT)器件,感光元件212用于收集外部输入的光信号并转化为电信号,然后存储在对应的像素单元211中。
例如,所述像素单元211还可以包括电容(图未示),所述电容适于存储对应的感光元件212所转化得到的电信号。
在具体实施中,所述感光元件212可以为光电二极管。所述光电二极管可以包括PIN结非晶硅光电二极管,PN结非晶硅光电二极管,PIN结低温多晶硅光电二极管,PN结低温多晶硅光电二极管,PIN结有机物光电二极管,或PN结有机物光电二极管等。
在实际应用中,所述感光元件212还可以为其他能够形成于玻璃基板上的光电转换器件。
在具体实施中,所述信号读出端220与对应的串联连接点(如图4示出的A、B和C)可以通过导线耦接。
或者,所述信号读出端220与对应的串联连接点(如图4示出的A、B和C)可以为同一个点。
在具体实施中,对于串联的两个像素单元211,其中之一像素单元211的第一端211a(或第二端211b)与其中之另一像素单元211的第二端211b(或第一端211a)的耦接处即为这两个像素单元211的串联连接点(如图4示出的A、B和C)。
例如,参考图4,位于三角形上边沿的像素单元211的第一端211a,与位于三角形右边沿的像素单元211的第二端211b耦接形成串联连接点A;位于三角形上边沿的像素单元211的第二端211b,与位于三角形左边沿的像素单元211的第一端211a耦接形成串联连接点B;位于三角形右边沿的像素单元211的第一端211a,与位于三角形左边沿的像素单元211的第二端211b耦接形成串联连接点C。
其中,串联连接点A、B和C各自连接一信号读出端220,以各自连接外部放大器230。
以图3中用虚线框出的两个相邻的像素模块210为例,这两个相邻的像素模块210之间共用同一像素单元211,即位于C-B这条邻边的像素单元211。进一步地,这两个相邻的像素模块210还共用连接至串联连接点C的信号读出端220和连接至串联连接点B的信号读出端220。由此,利于获得较紧凑的器件排布,达到降低成本的效果。
在具体实施中,所述像素模块210的数量可以为22个,如图3所示。在实际应用中,本领域技术人员还可以根据需要调整所述像素模块210的具体数量。
为更清楚的表述图5中的连线设计,参考图3和图5,接下来将图5示出的6个像素模块210自左上角开始沿顺时针方向依次编号为像素模块210-1至像素模块210-6。
在具体实施中,参考图4和图5,所述图像传感器200还可以包括:多条控制线(图中以a-i标记),同一像素模块210中,不同的像素开关213的控制端(图4中以Ta、Tb和Tc标记)连接至不同的控制线,以确保单个信号采集周期内这三个像素开关213不会同时导通。
以像素模块210-1为例,参考图5,所述像素模块210-1包括串联形成三角形的3个像素单元211,三角形的3个顶点分别为相邻两个串联连接的像素单元211的串联连接点A、B和C。其中,位于串联连接点B和串联连接点C连成的边沿上的像素开关213的控制端(对应图4示出的控制端Ta)连接控制线h;位于串联连接点B和串联连接点A连成的边沿上的像素开关213的控制端(对应图4示出的控制端Tc)连接控制线d;位于串联连接点A和串联连接点C连成的边沿上的像素开关213的控制端(对应图4示出的控制端Tb)连接控制线c。
以像素模块210-2为例,像素模块210-2与所述像素模块210-1共用串联连接点B和串联连接点A,以及位于串联连接点B和串联连接点A连成的边沿上的像素单元211。进一步地,位于所述像素模块210-2的串联连接点B和串联连接点C连成的边沿上的像素开关213的控制端连接控制线b;位于所述像素模块210-2的串联连接点C和串联连接点A连成的边沿上的像素开关213的控制端连接控制线i。
以像素模块210-3为例,像素模块210-3与所述像素模块210-2共用串联连接点A和串联连接点C,以及位于串联连接点A和串联连接点C连成的边沿上的像素单元211。进一步地,所述像素模块210-3的串联连接点C和串联连接点B连成的边沿上的像素开关213的控制端连接控制线e;位于所述像素模块210-3的串联连接点B和串联连接点A连成的边沿上的像素开关213的控制端连接控制线a。
以像素模块210-4为例,像素模块210-4与所述像素模块210-3共用串联连接点A和串联连接点B,以及位于串联连接点A和串联连接点B连成的边沿上的像素单元211。进一步地,所述像素模块210-4的串联连接点C和串联连接点B连成的边沿上的像素开关213的控制端连接控制线h;位于所述像素模块210-4的串联连接点C和串联连接点A连成的边沿上的像素开关213的控制端连接控制线f。
以像素模块210-5为例,像素模块210-5与所述像素模块210-4共用串联连接点A和串联连接点C,以及位于串联连接点A和串联连接点C连成的边沿上的像素单元211。进一步地,所述像素模块210-5的串联连接点C和串联连接点B连成的边沿上的像素开关213的控制端连接控制线b;位于所述像素模块210-5的串联连接点B和串联连接点A连成的边沿上的像素开关213的控制端连接控制线g。
以像素模块210-6为例,像素模块210-6与所述像素模块210-5共用串联连接点A和串联连接点B,以及位于串联连接点A和串联连接点B连成的边沿上的像素单元211。并且,所述像素模块210-6与所述像素模块210-1共用串联连接A和串联连接点C,以及位于串联连接点A和串联连接点C连成的边沿上的像素单元211。进一步地,所述像素模块210-6的串联连接点C和串联连接点B连成的边沿上的像素开关213的控制端连接控制线e。
换言之,在n=3的应用场景中,以像素模块210的任一串联连接点为中心点,可以得到图5所示的最紧凑的排布结构,该排布结构是由6个像素模块210构成的六边形结构,其中所有像素模块210共用一个串联连接点,其中任一像素模块210的剩余两个串联连接点分别与左右相邻的两个像素模块210共用。
为确保能够准确测得每一串联连接点的差模信号,参见图5可知,在以串联连接点A为所有像素模块210的公共串联连接点时,任一C-A-B连成的边沿上的两个像素开关213分别连接至不同的控制线。进一步地,任一C-A-C,或者任一B-A-B连成的边沿上的两个像素开关213也分别连接至不同的控制线。也即,共用串联连接点的多个像素单元211各自的像素开关213分别连接至不同的控制线。
进一步地,为最少化控制线的数量,部分像素模块210之间可以共用控制线。
在具体实施中,未共用串联连接点的多个像素单元211各自的像素开关213可以连接至同一控制线。
进一步地,当n=3时,所处边沿相平行的多个像素单元211各自的像素开关213可以连接至同一控制线。
例如,参考图5,像素模块210-3的位于串联连接点C和串联连接点B所连成的边沿的像素开关213的控制端,与像素模块210-6的位于串联连接点C和串联连接点B所连成的边沿的像素开关213,均可以连接至控制线e。
为更清楚的展示线路连接细节,图5中在这两个控制端分别连接了控制线e,在实际应用中,这两根控制线e可以为独立的两根控制线但连接至同一扫描线控制单元,且时序设计完全相同;或者,在实际布线中,这两个控制线e可以为同一根控制线。
类似的,像素模块210-2的位于串联连接点C和串联连接点B所连成的边沿的像素开关213的控制端,与像素模块210-5的位于串联连接点C和串联连接点B所连成的边沿的像素开关213,均可以连接至控制线b。
类似的,像素模块210-1的位于串联连接点C和串联连接点B所连成的边沿的像素开关213的控制端,与像素模块210-4的位于串联连接点C和串联连接点B所连成的边沿的像素开关213,均可以连接至控制线h。
在具体实施中,参考图4和图5,所述图像传感器200还可以包括:多条数据线,各个信号读出端220连接至对应的数据线(图中以x、y和z标记)。
进一步地,各数据线连接至对应的外部放大器230,以读取对应的信号读出端220的输出信号。
在n=3的应用场景中,同一像素模块210的三个串联连接点各自连接的信号读出端220至少连接至两根数据线。
以像素模块210-1为例,参考图5,所述像素模块210-1的串联连接点A和串联连接点B各自连接的信号读出端220均连接至数据线y;所述像素模块210-1的串联连接点C连接的信号读出端220连接至数据线x。
以像素模块210-2为例,像素模块210-2与所述像素模块210-1共用串联连接点B和串联连接点A。进一步地,所述像素模块210-2的串联连接点C连接的信号读出端220连接至数据线z。
以像素模块210-3为例,像素模块210-3与所述像素模块210-2共用串联连接点C和串联连接点A。进一步地,所述像素模块210-3的串联连接点B连接的信号读出端220连接至数据线z。
以像素模块210-4为例,像素模块210-4与所述像素模块210-3共用串联连接点B和串联连接点A。进一步地,所述像素模块210-4的串联连接点C连接的信号读出端220连接至数据线y。
以像素模块210-5为例,像素模块210-5与所述像素模块210-4共用串联连接点C和串联连接点A。进一步地,所述像素模块210-5的串联连接点B连接的信号读出端220连接至数据线x。
以像素模块210-6为例,像素模块210-6与所述像素模块210-5共用串联连接点B和串联连接点A。进一步地,所述像素模块210-2的串联连接点C连接的信号读出端220连接至数据线x。
在一个变化例中,参考图4,对于同一像素模块210,不同的信号读出端220可以连接不同的数据线,以确保每一信号读出端220的信号均能被准确、及时地读取。
在具体实施中,为节省布线数量,部分像素模块210之间可以共用数据线。
进一步地,对于每一数据线,以平行于所述数据线的直线为基准,所有位于同一所述直线上的串联连接点连接的信号读出端220连接至同一数据线。
例如,参考图5,像素模块210-1和像素模块210-6共用的串联连接点C,与像素模块210-6的串联连接点B各自连接的信号读出端220均连接至所述数据线x。
又例如,像素模块210-1和像素模块210-2共用的串联连接点A和B,以及像素模块210-5和像素模块210-4共用的串联连接点C各自连接的信号读出端220均连接至所述数据线y。
再例如,像素模块210-2和像素模块210-3共用的串联连接点C,与像素模块210-3和像素模块210-4共用的串联连接点B各自连接的信号读出端220均连接至所述数据线z。
在具体实施中,对于每一信号读出端220,所述信号读出端220通过一开关模块214连接至对应的数据线。
例如,所述开关模块214可以为TFT器件。
进一步地,所述开关模块214的控制端(如栅极)可以连接至一对应的扫描线,所述开关模块214的源极和漏极分别连接对应的数据线和信号读出端220。
在具体实施中,参考图4和图5,所述图像传感器200还可以包括:多条扫描线(图中以A、B和C标记),各个感光元件212连接至对应的扫描线。
在n=3的应用场景中,同一像素模块210的三个感光元件212可以分别连接至不同的扫描线。由此,可以通过三根扫描线独立控制各感光元件212所在边沿的电流导通或断开,并且,通过各扫描线的协同控制,可以在单个信号采集周期内依次控制像素模块210中的至少两个感光元件212所在边沿上有电流流过,以得到这两个感光元件212所在像素单元211的共模信号和差模信号。
进一步地,所述感光元件212的阴极(对应图4所示像素单元211的第一端211a)连接的串联连接点连接至对应的开关模块214的源极(或漏极),所述开关模块214的漏极(或源极)连接至对应的数据线,所述开关模块214的栅极连接至对应的扫描线。其中,所述开关模块214与扫描线和数据线是一一对应的关系。
在进行信号采集时,对应的开关模块214导通,通过所述扫描线向对应的感光元件212施加反向偏压,
当被施加反向偏压的感光元件212连接的像素开关213在耦接的控制线的控制下导通时,反向偏压状态下的所述感光元件212中的电信号可以传导到该感光元件212所在边沿两端的串联连接点,进而传输至所述串联连接点连接的数据线上,最终通过数据线传输至对应的外部放大器230实现信号采集。
当共用一串联连接点的两个像素单元211各自的感光元件212同时被施加反向偏压,且这两个感光元件212各自连接的像素开关213在耦接的控制线的控制下导通时,电流依次流经这两个像素单元211。此时,自这两个像素单元211共用的串联连接点流出的电信号即为这两个像素单元211的差模信号,该差模信号可以经由该串联连接点所连接的数据线传输至对应的外部放大器230。进一步地,自这两个像素单元211非共用的串联连接点流出的电信号即为这两个像素单元211各自的共模信号,该共模信号可以经由对应的串联连接点所连接的数据线传输至对应的外部放大器230。
以像素模块210-1为例,参考图5,位于所述像素模块210-1的串联连接点B和串联连接点C所连成的边沿上的感光元件212经由串联连接点B连接至扫描线B,位于所述像素模块210-1的串联连接点B和串联连接点A所连成的边沿上的感光元件212经由串联连接点A连接至扫描线A,位于所述像素模块210-1的串联连接点C和串联连接点A所连成的边沿上的感光元件212经由串联连接点C连接至扫描线C。
以像素模块210-2为例,像素模块210-2与所述像素模块210-1共用串联连接点B和串联连接点A,以及位于所述串联连接点B和A所连成边沿上的像素单元211。进一步地,位于所述像素模块210-2的串联连接点C和B所连成边沿上的感光元件212经由串联连接点B连接至扫描线B;位于所述像素模块210-2的串联连接点C和A所连成边沿上的感光元件212经由串联连接点C连接至扫描线C。
以像素模块210-3为例,像素模块210-3与所述像素模块210-2共用串联连接点C和串联连接点A,以及位于所述串联连接点C和A所连成边沿上的像素单元211。进一步地,位于所述像素模块210-3的串联连接点C和B所连成边沿上的感光元件212经由串联连接点B连接至扫描线B;位于所述像素模块210-3的串联连接点B和A所连成边沿上的感光元件212经由串联连接点A连接至扫描线A。
以像素模块210-4为例,像素模块210-4与所述像素模块210-3共用串联连接点B和串联连接点A,以及位于所述串联连接点B和A所连成边沿上的像素单元211。进一步地,位于所述像素模块210-4的串联连接点C和B所连成边沿上的感光元件212经由串联连接点B连接至扫描线B;位于所述像素模块210-4的串联连接点C和A所连成边沿上的感光元件212经由串联连接点C连接至扫描线C。
以像素模块210-5为例,像素模块210-5与所述像素模块210-4共用串联连接点C和串联连接点A,以及位于所述串联连接点C和A所连成边沿上的像素单元211。进一步地,位于所述像素模块210-5的串联连接点C和B所连成边沿上的感光元件212经由串联连接点B连接至扫描线B;位于所述像素模块210-2的串联连接点B和A所连成边沿上的感光元件212经由串联连接点A连接至扫描线A。
以像素模块210-6为例,像素模块210-6与所述像素模块210-5共用串联连接点B和串联连接点A,以及位于所述串联连接点B和A所连成边沿上的像素单元211。进一步地,位于所述像素模块210-6的串联连接点C和B所连成边沿上的感光元件212经由串联连接点B连接至扫描线B;位于所述像素模块210-2的串联连接点C和A所连成边沿上的感光元件212经由串联连接点C连接至扫描线C。
在具体实施中,为节省布线数量,部分像素模块210之间可以共用扫描线。
进一步地,对于每一扫描线,以平行于所述扫描线的直线为基准,所有位于同一所述直线上的、连接感光元件212的阴极的串联连接点连接至同一扫描线。
例如,参考图5,像素模块210-1和像素模块210-2共用的串联连接点B连接至所述扫描线B;像素模块210-1至210-6共用的串联连接点A连接至所述扫描线A;像素模块210-4和像素模块210-5共用的串联连接点C连接至所述扫描线C。
又例如,像素模块210-1和像素模块210-6共用的串联连接点C,与像素模块210-2和像素模块210-3共用的串联连接点C均连接至所述扫描线C。
再例如,像素模块210-3和像素模块210-4共用的串联连接点B,与像素模块210-5和像素模块210-6共用的串联连接点B均连接至所述扫描线B。
为更清楚的展示线路连接细节,图5中示出了多条扫描线B和多条扫描线C,在实际应用中,所述多条扫描线B可以为独立的多根扫描线但连接至同一扫描线控制单元,且时序设计完全相同。类似的,所述多条扫描线C可以为独立的多根扫描线但连接至同一扫描线控制单元,且时序设计完全相同。或者,在实际布线中,所述多条扫描线B可以为同一根扫描线。类似的,所述多条扫描线C可以为同一根扫描线。
在具体实施中,所述多个像素模块210可以形成于玻璃基板上。由此,基于玻璃基板自身不导电的特性,可以使得形成于其上的每一像素单元211是相互独立的,从而可以利用制程上的相容性,通过电路设计实现像素单元211之间的串联连接。
在具体实施中,对所述图像传感器200进行的信号采集方法可以包括:对于每一像素模块210,在单个信号采集周期内,依次对所述n个信号读出端220进行信号采集,其中,所述信号采集周期可以包括n个子周期,其中每一子周期可以对应至少一个信号读出端220。
在具体实施中,子周期与信号读出端220可以是一一对应的。
具体地,参考图6,所述信号采集方法可以包括如下步骤:
步骤S101,在第i子周期内,控制第一像素单元和第二像素单元各自的像素开关导通,1≤i≤n;
步骤S102,控制电流流过所述第一像素单元和第二像素单元;
步骤S103,采集所述第i个信号读出端220的第一电信号。
其中,所述第一像素单元和第二像素单元为所述n个信号读出端220中与所述第i个信号读出端220连接的两个像素单元211。
仍以图5示出的像素模块210-1为例,在n=3的应用场景中,1≤i≤3,假设所述像素模块210-1的串联连接点A连接的信号读出端220为第1个信号读出端220,所述像素模块210-1的串联连接点B连接的信号读出端220为第2个信号读出端220,所述像素模块210-1的串联连接点C连接的信号读出端220为第3个信号读出端220。
当采集所述第1个信号读出端220的第一电信号时,所述第一像素单元和第二像素单元为所述像素模块210-1中共用所述串联连接点A的两个像素单元211,也即,所述第一像素单元可以为位于串联连接点C和A所连成边沿上的像素单元211,所述第二像素单元可以为位于串联连接点B和A所连成边沿上的像素单元211,反之亦可。
当采集所述第2个信号读出端220的第一电信号时,所述第一像素单元和第二像素单元为所述像素模块210-1中共用所述串联连接点B的两个像素单元211,也即,所述第一像素单元可以为位于串联连接点B和A所连成边沿上的像素单元211,所述第二像素单元可以为位于串联连接点B和C所连成边沿上的像素单元211,反之亦可。
当采集所述第3个信号读出端220的第一电信号时,所述第一像素单元和第二像素单元为所述像素模块210-1中共用所述串联连接点C的两个像素单元211,也即,所述第一像素单元可以为位于串联连接点C和A所连成边沿上的像素单元211,所述第二像素单元可以为位于串联连接点C和B所连成边沿上的像素单元211,反之亦可。
进一步地,所述第一电信号可以为所述第一像素单元和第二像素单元的差模信号。
换言之,在本实施例中,通过控制电流在所述三角形的任意两条邻边上流通,可以通过这两条邻边的连接点采集位于这两条邻边上的像素单元211之间的差模信号。
在具体实施中,所述信号采集周期可以包括3个子周期,在每一子周期内,采集一串联连接点处的第一电信号。
参考图3,假设第1个子周期适于读取串联连接点A的差模信号。具体地,可以通过扫描线控制串联连接点的电压值关系为C>A>B,并利用所述像素开关213控制顺偏的BC段断开。由此,可以使得电流(图中以I标记)自串联连接点B依次流经串联连接点A和C。
进一步地,假设第2个子周期适于读取串联连接点B的差模信号。具体地,可以通过扫描线控制串联连接点的电压值关系为A>B>C,并利用所述像素开关213控制顺偏的AC段断开。由此,可以使得电流自串联连接点A依次流经串联连接点B和C。
进一步地,假设第3个子周期适于读取串联连接点C的差模信号。具体地,可以通过扫描线控制串联连接点的电压值关系为B>C>A,并利用所述像素开关213控制顺偏的AB段断开。由此,可以使得电流自串联连接点B依次流经串联连接点C和A。
经过前述3个子周期后,针对该像素模块210的画面扫描过程结束。
进一步地,在执行所述步骤S103的之前/之后/同时,所述信号采集方法还可以包括步骤:在所述第i子周期内,采集所述第一像素单元与第三像素单元的串联连接点连接的信号读出端220的第二电信号,其中,所述第三像素单元为所述n个像素单元211中除所述第二像素单元之外的像素单元211;采集所述第二像素单元与第四像素单元的串联连接点连接的信号读出端220的第二电信号,其中,所述第四像素单元为所述n个像素单元211中除所述第一像素单元之外的像素单元211。
仍以图5示出的像素模块210-1为例,在n=3的应用场景中,1≤i≤3,假设所述像素模块210-1的串联连接点A连接的信号读出端220为第1个信号读出端220,所述像素模块210-1的串联连接点B连接的信号读出端220为第2个信号读出端220,所述像素模块210-1的串联连接点C连接的信号读出端220为第3个信号读出端220。
当采集所述第1个信号读出端220的第一电信号时,假设所述第一像素单元为位于串联连接点C和A所连成边沿上的像素单元211,所述第二像素单元为位于串联连接点B和A所连成边沿上的像素单元211。相应的所述第三像素单元和第四像素单元可以为同一像素单元211,所述第三像素单元与第一像素单元的串联连接点C,以及所述第四像素单元和第二像素单元的串联连接点B均适于读取所述第二电信号。
类似的,当采集所述第2个信号读出端220的第一电信号时,假设所述第一像素单元为位于串联连接点B和A所连成边沿上的像素单元211,所述第二像素单元为位于串联连接点B和C所连成边沿上的像素单元211。相应的,所述第三像素单元和第四像素单元均为位于串联连接点A和C所连成边沿上的像素单元211,所述串联连接点A和串联连接点C适于读取所述第二电信号。
类似的,当采集所述第3个信号读出端220的第一电信号时,假设所述第一像素单元为位于串联连接点C和A所连成边沿上的像素单元211,所述第二像素单元为位于串联连接点C和B所连成边沿上的像素单元211。相应的,所述第三像素单元和第四像素单元均为位于串联连接点A和B所连成边沿上的像素单元211,所述串联连接点A和串联连接点B适于读取所述第二电信号。
进一步地,所述第二电信号可以为所述第一像素单元和第二像素单元的共模信号。
换言之,在本实施例中,通过控制电流在所述三角形的任意两条邻边上流通,可以通过这条邻边的非连接点分别采集位于这两条邻边上的像素单元211的共模信号。
在具体实施中,所述信号采集周期可以包括3个子周期,在每一子周期内,采集两个串联连接的像素单元211的共模信号。
参考图3,在第1个子周期内,除读取串联连接点A的差模信号之外,还可以读取串联连接点B和C的共模信号。
进一步地,在第2个子周期内,除读取串联连接点B的差模信号之外,还可以读取串联连接点A和C的共模信号。
进一步地,在第3个子周期内,除读取串联连接点C的差模信号之外,还可以读取串联连接点A和B的共模信号。
经过前述3个子周期后,针对该像素模块210的画面扫描过程结束。
在一个变化例中,前述两个第二电信号可以择一采集,另一个第二电信号可以根据采集得到的第一电信号和第二电信号计算获得。
以所述第2个子周期为例,通过扫描线A、B和C分别向对应的串联连接点A、B和C施加合适的电压,以使三个串联连接点的电压值关系为A>B>C,通过对应的控制线控制位于串联连接点A和B所连成边沿的像素开关213导通,位于串联连接点B和C所连成边沿的像素开关213导通,位于串联连接点A和C所连成边沿的像素开关213关断,以使电流沿A至B至C的顺序流经AB段和BC段上的感光元件212。
由于差模信号为串联连接点A处的电信号与串联连接点C处的电信号之差,因而,在本示例中,可以仅读取串联连接点B的第一电信号,以及串联连接点C处的第二电信号,并通过后期计算的方式得到所述串联连接点A处的第二电信号。
在具体实施中,参考图7,图6所示对图像传感器200进行的信号采集方法可以基于图7示出的信号采集电路执行。
具体地,对于图2至图5示出的每一像素模块210,所述信号采集电路在单个信号采集周期内依次对所述n个信号读出端220进行信号采集,其中,所述信号采集周期可以包括n个子周期,其中每一子周期可以对应至少一个信号读出端。
进一步地,所述信号采集电路可以包括:像素开关控制单元241,在第i子周期内,控制第一像素单元和第二像素单元各自的像素开关213导通,其中,所述第一像素单元和第二像素单元为所述n个信号读出端220中与所述第i个信号读出端220连接的两个像素单元211,1≤i≤n。
在具体实施中,所述像素开关控制单元241与所述多条控制线(如图7示出的控制线a至i)耦接,以通过所述多条控制线在每一子周期内控制第一像素单元和第二像素单元导通。
进一步地,所述信号采集电路还可以包括:扫描线控制单元242,在所述第i子周期内,控制电流流过所述第一像素单元和第二像素单元。
在具体实施中,所述扫描线控制单元242与所述多条数据线(如图7示出的扫描线A至C)耦接,以通过所述多条扫描线在每一子周期内控制电流流过所述第一像素单元和第二像素单元。
进一步地,所述信号采集电路还可以包括:信号读出单元243,在所述第i子周期内,采集所述第i个信号读出端220的第一电信号。
在具体实施中,所述信号读出单元243可以与多条数据线(如图7示出的数据线x至z)耦接,以通过所述多条数据线读取在每一子周期内输出的第一电信号。
进一步地,在所述第i子周期内,所述信号读出单元243还可以采集所述第一像素单元与第三像素单元的串联连接点连接的信号读出端220的第二电信号,其中,所述第三像素单元可以为所述n个像素单元211中除所述第二像素单元之外的像素单元211。
进一步地,所述信号读出单元243还可以采集所述第二像素单元与第四像素单元的串联连接点连接的信号读出端220的第二电信号,其中,所述第四像素单元可以为所述n个像素单元211中除所述第二像素单元和/或所述第一像素单元之外的像素单元211。
在具体实施中,对于每一串联连接点,所述串联连接点通过一开关模块(图未示)连接至对应的电源线(图未示),其中,所述电源线适于向连接的串联连接点施加合适的电压,以控制电流在导通的像素单元211上的流向。
在一个典型的应用场景中,参考图2至图8,对图5和图7示出的6个像素模块210的完整扫描过程可以包括三个阶段,分别记作阶段1,适于读取串联连接点A的差模信号;阶段2,适于读取串联连接点B的差模信号;以及,阶段3,适于读取串联串联连接C的差模信号。
对于每一阶段,所述阶段可以包括6个子阶段(图8中以p1至p6标记),所述6个子阶段适于读取所有共用同一串联连接点的所有像素模块210各自在该串联连接点的差模信号,以进一步减低扫描线控制单元242和信号读出单元243的信号控制复杂度。
换言之,对于同一像素模块210,图8示出的阶段1、阶段2和阶段3中的每一子阶段分别对应一子周期,阶段1的p1、阶段2的p1和阶段3的p1可以对应前述单个信号采集周期。
在具体实施中,每一阶段包括的子阶段的数量,可以与该阶段需要读取差模信号的串联连接点所连接的像素模块210的数量相关联。
以阶段1为例,在阶段1需要读取图7示出的串联连接点A的差模信号,由于n=3时所述串联连接点A最多可以为6个像素模块210共用,因而,所述阶段1包括的子阶段的数量为6个。
在阶段1的子阶段p1中,控制线c和控制线d施加高电位,其余控制线处于低电位。在扫描线A、B和C和电源线的配合下,像素模块210-1的AC段和AB段导通,且电流沿像素模块210-1的串联连接点C到A到B的顺序流动。此时,通过控制合适的扫描线开启,能够通过数据线y读取像素模块210-1的位于AC段的像素单元211和位于AB段的像素单元11在所述串联连接点A处的差模信号。
进一步地,在所述子阶段p1中,还可以通过数据线y分时读取所述像素模块210-1的位于AC段的像素单元211和位于AB段的像素单元11在所述串联连接点B处的共模信号。
进一步地,在所述子阶段p1中,还可以通过数据线x读取所述像素模块210-1的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点C处的共模信号。
在阶段1的子阶段p2中,控制线d和控制线i施加高电位,其余控制线处于低电位。在扫描线A、B和C的配合下,像素模块210-2的AC段和AB段导通,且电流沿像素模块210-2的串联连接点C到A到B的顺序流动。此时,通过数据线y读取像素模块210-2的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点A处的差模信号。
进一步地,在所述子阶段p2中,还可以通过数据线y分时读取所述像素模块210-2的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点B处的共模信号。
进一步地,在所述子阶段p2中,还可以通过数据线z读取所述像素模块210-2的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点C处的共模信号。
在阶段1的子阶段p3中,控制线a和控制线i施加高电位,其余控制线处于低电位。在扫描线A、B和C的配合下,像素模块210-3的AC段和AB段导通,且电流沿像素模块210-3的串联连接点C到A到B的顺序流动。此时,通过数据线y读取像素模块210-3的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点A处的差模信号。
进一步地,在所述子阶段p3中,还可以通过数据线z读取所述像素模块210-3的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点B处的共模信号。
进一步地,在所述子阶段p3中,还可以通过数据线z分时读取所述像素模块210-3的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点C处的共模信号。
在阶段1的子阶段p4中,控制线a和控制线f施加高电位,其余控制线处于低电位。在扫描线A、B和C的配合下,像素模块210-4的AC段和AB段导通,且电流沿像素模块210-4的串联连接点C到A到B的顺序流动。此时,通过数据线y读取像素模块210-4的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点A处的差模信号。
进一步地,在所述子阶段p4中,还可以通过数据线z读取所述像素模块210-4的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点B处的共模信号。
进一步地,在所述子阶段p4中,还可以通过数据线y分时读取所述像素模块210-4的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点C处的共模信号。
在阶段1的子阶段p5中,控制线f和控制线g施加高电位,其余控制线处于低电位。在扫描线A、B和C的配合下,像素模块210-5的AC段和AB段导通,且电流沿像素模块210-5的串联连接点C到A到B的顺序流动。此时,通过数据线y读取像素模块210-5的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点A处的差模信号。
进一步地,在所述子阶段p5中,还可以通过数据线x读取所述像素模块210-5的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点B处的共模信号。
进一步地,在所述子阶段p5中,还可以通过数据线y分时读取所述像素模块210-5的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点C处的共模信号。
在阶段1的子阶段p6中,控制线g和控制线c施加高电位,其余控制线处于低电位。在扫描线A、B和C的配合下,像素模块210-6的AC段和AB段导通,且电流沿像素模块210-6的串联连接点C到A到B的顺序流动。此时,通过数据线y读取像素模块210-6的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点A处的差模信号。
进一步地,在所述子阶段p6中,还可以通过数据线x读取所述像素模块210-6的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点B处的共模信号。
进一步地,在所述子阶段p6中,还可以通过数据线x分时读取所述像素模块210-6的位于AC段的像素单元211和位于AB段的像素单元211在所述串联连接点C处的共模信号。
相应的,对于位于所述图像传感器200边缘的像素模块210,该像素模块210的串联连接点可能最多为3个像素模块210共用。此时,对应的阶段可以包括3个子阶段。
由上,采用本实施例的方案,利用制程上的相容性,使得多个像素单元211能够串联连接,从而能够在单个信号采集周期内独立地读取差模信号和共模信号,利于获取像素单元211的完整信号。
具体而言,每一串联连接点均连接一信号读出端220,以使所述信号读出端220能够读取通过对应串联连接点串联的两个像素单元211之间的差模信号,同时,通过这两个像素单元211与除了对方外的其他像素单元211的串联连接点所连接的信号读出端220,能够读取这两个像素单元211的共模信号。
进一步,闭环结构的设计使得n个像素单元211中每一像素单元211的差模信号均能自完整的信号中被提取出来以得到独立采集。
进一步,相邻两个像素模块210之间共用同一像素单元211以及该像素单元211的第一端211a和第二端211b连接的信号读出端220,利于获得较紧凑的器件排布,达到降低成本的效果。
进一步,这样的器件排布方式还利于最少化控制线、数据线和扫描线的数量,降低图像传感器200内的布线复杂度。
图9是本发明第二实施例的一种图像传感器的示意图;图10是图9所示实施例中单个像素模块的示意图;图11是图9所示实施例中多个像素模块的线路连接示意图;图12是图9所示实施例中像素开关控制单元在单个完整扫描过程内的时序图;图13是图9所示实施例中多个像素模块的电源线连接示意图。
接下来仅针对第二实施例与上述图3至图8所示第一实施例的不同之处进行详细阐述。
具体地,在本实施例中,图像传感器300可以包括多个像素模块310,每一像素模块310可以包括:4个像素单元311,所述4个像素单元311串联形成闭环结构,所述像素单元311具有第一端311a和第二端311b,每一像素单元311包括串联连接的感光元件312和像素开关313;4个信号读出端320,每一像素单元311与其他像素单元311的串联连接点(图中以A、B、C和D标记)分别与对应的信号读出端320连接;其中,相邻两个像素模块310之间共用同一像素单元311以及该像素单元311的第一端311a和第二端311b连接的信号读出端320。
更为具体地,每一信号读出端320适于连接一外部放大器330,以采集对应的像素单元311采集到的信号。
在本实施例中,n=4,每一像素模块310可以构成如图9所示的四边形结构。
在具体实施中,所述像素模块310的数量可以为16个,如图9所示。在实际应用中,本领域技术人员还可以根据需要调整所述像素模块310的具体数量。
为更清楚的表述图11中的连线设计,参考图9和图11,接下来将图9示出的4个像素模块310自左上角开始沿顺时针方向依次编号为像素模块310-1至像素模块310-4。
在具体实施中,参考图11,所述图像传感器300还可以包括:多条控制线(图中以a-h标记),同一像素模块310中,不同的像素开关313的控制端(图4中以Ta、Tb、Tc和Td标记)连接至不同的控制线,以确保单个信号采集周期内这四个像素开关313不会同时导通。
以像素模块310-1为例,参考图11,所述像素模块310-1包括串联形成四边形的4个像素单元311,四边形的4个顶点分别为相邻两个串联连接的像素单元411的串联连接点A、B、C和D。其中,位于串联连接点B和串联连接点C连成的边沿上的像素开关313的控制端(对应图10示出的控制端Tb)连接控制线e;位于串联连接点B和串联连接点A连成的边沿上的像素开关313的控制端(对应图10示出的控制端Ta)连接控制线a;位于串联连接点A和串联连接点D连成的边沿上的像素开关313的控制端(对应图10示出的控制端Td)连接控制线g;位于串联连接点D和C连成的边沿上的像素开关313的控制端(对应图10示出的控制端Tc)连接控制线c。
以像素模块310-2为例,像素模块310-2与像素模块310-1共用串联连接点B和A,以及位于串联连接点B和串联连接点A连成的边沿上的像素单元311。进一步地,位于所述像素模块310-2的串联连接点B和C连成的边沿上的像素开关313的控制端连接控制线f;位于所述像素模块310-2的串联连接点C和D连成的边沿上的像素开关313的控制端连接控制线c;位于所述像素模块310-2的串联连接点A和D连成的边沿上的像素开关313的控制端连接控制线h。
以像素模块310-3为例,像素模块310-3与像素模块310-2共用串联连接点D和A,以及位于串联连接点D和串联连接点A连成的边沿上的像素单元311。进一步地,位于所述像素模块310-3的串联连接点D和C连成的边沿上的像素开关313的控制端连接控制线d;位于所述像素模块310-3的串联连接点C和B连成的边沿上的像素开关313的控制端连接控制线f;位于所述像素模块310-3的串联连接点B和A连成的边沿上的像素开关313的控制端连接控制线b。
以像素模块310-4为例,像素模块310-4与像素模块310-3共用串联连接点B和A,以及位于串联连接点B和串联连接点A连成的边沿上的像素单元311。进一步地,位于所述像素模块310-4的串联连接点B和C连成的边沿上的像素开关313的控制端连接控制线e;位于所述像素模块310-4的串联连接点C和D连成的边沿上的像素开关313的控制端连接控制线d;位于所述像素模块310-4的串联连接点A和D连成的边沿上的像素开关313的控制端连接控制线g。
换言之,在n=4的应用场景中,以像素模块310的任一串联连接点为中心点,可以得到图11所示的最紧凑的排布结构,该排布结构是由4个像素模块310构成的四边形结构,其中所有像素模块310共用一个串联连接点,其中任一像素模块310的剩余三个串联连接点分别与其他三个像素模块310共用。
为确保能够准确测得每一串联连接点的差模信号,参见图11可知,按图示角度,任一行或任一列上的相邻像素单元311各自的像素开关313分别连接至不同的控制线。其中,行和列分别平行于所述四边形的相垂直的两条边沿。
进一步地,为最少化控制线的数量,部分像素模块310之间可以共用控制线。
在具体实施中,相间隔的行或列上的像素单元311各自的像素开关313可以连接至同一控制线。
例如,参考图11,像素模块310-2的BC段上的像素开关313与像素模块310-3的BC段上的像素开关313可以共用所述控制线f;像素模块310-1的BC段上的像素开关313与像素模块310-4的BC段上的像素开关313可以共用所述控制线e;像素模块310-2的CD段上的像素开关313与像素模块310-1的CD段上的像素开关313可以共用所述控制线C;像素模块310-3的CD段上的像素开关313与像素模块310-4的CD段上的像素开关313可以共用所述控制线D。
在具体实施中,同一像素模块310的四个串联连接点各自连接的信号读出端320至少连接至两根数据线。
以像素模块310-1为例,参考图11,所述像素模块310-1的串联连接点C和D各自连接的信号读出端320均连接至数据线x;所述像素模块310-1的串联连接点B和A各自连接的信号读出端320均连接至数据线y。
以像素模块310-2为例,参考图11,所述像素模块310-2的串联连接点C和D各自连接的信号读出端320均连接至数据线z。
以像素模块310-3为例,参考图11,所述像素模块310-3的串联连接点C连接的信号读出端320连接至数据线z;所述像素模块310-3的串联连接点B连接的信号读出端320连接至数据线y。
以像素模块310-4为例,参考图11,所述像素模块310-4的串联连接点C连接的信号读出端320连接至数据线x。
在具体实施中,为节省布线数量,部分像素模块310之间可以共用数据线。
例如,参考图11,位于同一列上的串联连接点可以连接至同一数据线。
在具体实施中,对于每一信号读出端320,所述信号读出端320通过一开关模块314连接至对应的数据线。
在具体实施中,参考图11,位于同一行上的串联连接点可以连接至同一扫描线(图中以1、2和3标记)。
在具体实施中,所述控制线a至控制线h也可以连接至一像素开关控制单元;所述扫描线1至扫描线3也可以连接至一扫描线控制单元;所述数据线x至数据线z也可以连接至一信号读出单元243。
在具体实施中,对于每一串联连接点,所述串联连接点通过一开关模块315连接至对应的电源线(图中以u、v、w标记)及电压源(图中以0v、2.5v和5v示例),其中,所述电源线和电压源适于向连接的串联连接点施加合适的电压,以控制电流在导通的像素单元311上的流向。
在一个典型的应用场景中,参考图12,对图9至图11示出的四个像素模块310的完整扫描过程可以包括四个阶段,分别记作阶段1,适于读取串联连接点B的差模信号;阶段2,适于读取串联连接点C的差模信号;阶段3,适于读取串联串联连接D的差模信号;以及阶段4,适于读取串联串联连接A的差模信号。
对于每一阶段,所述阶段可以包括4个子阶段(图12中以p1至p4标记),所述4个子阶段适于读取所有共用同一串联连接点的所有像素模块310各自在该串联连接点的差模信号。
换言之,对于同一像素模块310,图12示出的阶段1、阶段2、阶段3和阶段4中的每一子阶段分别对应一子周期,阶段1的p1、阶段2的p1、阶段3的p1和阶段4的p1可以对应前述单个信号采集周期。
以阶段1为例,在阶段1需要读取图11示出的串联连接点B的差模信号。
在阶段1的子阶段p1中,结合图13,在电源线u至w和在扫描线1至3的配合下,像素模块310-1的四个串联连接点的电压值排序为A>B>C=D,其中,串联连接点C和D被施加0v电压,串联连接点B被施加2.5v电压,串联连接点A被施加5v电压。进一步地,所述控制线a和控制线e施加高电位,其余控制线处于低电位,使得顺偏的AD段和在此阶段不需要导通的CD段处于断开状态。此时,所述像素模块310-1的BC段和AB段导通,且电流沿像素模块310-1的串联连接点A到B到C的顺序流动。此时,通过数据线y读取像素模块310-1的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点B处的差模信号。
进一步地,在所述子阶段p1中,还可以通过数据线x读取所述像素模块310-1的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点C处的共模信号。
进一步地,在所述子阶段p1中,还可以通过数据线y分时读取所述像素模块310-1的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点A处的共模信号。
进一步地,在每一子阶段内,可以逐条开启所有扫描线中的一半数量的扫描线,且被开启的所述一半数量的扫描线是隔列开启的,所述一半数量的扫描线都被开启完毕后即可进入下一子阶段重复。
例如,在所述子阶段p1中,首先开启扫描线1,以读取像素模块310-1的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点B处的差模信号,以及像素模块310-1的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点C处的共模信号。
然后,开启扫描线3以及合适的电源线,以读取排布于像素模块310-3下一行且同一列的像素模块310的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点B处的差模信号,以及两者在串联连接点C处的共模信号。
也即,在图12示出的连线方式中,在所述子阶段p1内,仅奇数行的扫描线被开启以读取对应的信号。
在阶段1的子阶段p2中,控制线a和控制线f施加高电位,其余控制线处于低电位。在扫描线1至3和电源线u至w的配合下,像素模块310-2的BC段和AB段导通,且电流沿像素模块310-2的串联连接点A到B到C的顺序流动。此时,通过数据线y读取像素模块310-2的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点B处的差模信号。
进一步地,在所述子阶段p2中,还可以通过数据线z读取所述像素模块310-2的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点C处的共模信号。
进一步地,在所述子阶段p2中,还可以通过数据线y分时读取所述像素模块310-2的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点A处的共模信号。
在阶段1的子阶段p3中,控制线b和控制线f施加高电位,其余控制线处于低电位。在电源线u至w和扫描线1至3的配合下,像素模块310-3的BC段和AB段导通,且电流沿像素模块310-3的串联连接点A到B到C的顺序流动。此时,通过数据线y读取像素模块310-3的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点B处的差模信号。
进一步地,在所述子阶段p3中,还可以通过数据线z读取所述像素模块310-3的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点C处的共模信号。
进一步地,在所述子阶段p3中,还可以通过数据线y分时读取所述像素模块310-3的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点A处的共模信号。
在阶段1的子阶段p4中,控制线b和控制线e施加高电位,其余控制线处于低电位。在电源线u至w和扫描线1至3的配合下,像素模块310-4的BC段和AB段导通,且电流沿像素模块310-4的串联连接点A到B到C的顺序流动。此时,通过数据线y读取像素模块310-4的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点B处的差模信号。
进一步地,在所述子阶段p4中,还可以通过数据线x读取所述像素模块310-4的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点C处的共模信号。
进一步地,在所述子阶段p4中,还可以通过数据线y分时读取所述像素模块310-4的位于BC段的像素单元311与位于AB段的像素单元311在所述串联连接点A处的共模信号。
相应的,对于位于所述图像传感器300边缘的像素模块310,该像素模块310的串联连接点可能最多为2个像素模块310共用。此时,对应的阶段可以包括2个子阶段。
在本实施例的一个变化例中,所述数据线x和数据线z可以连接至同一外部放大器330。
图14是本发明第三实施例的一种图像传感器的线路连接示意图;图15是图14所示实施例中像素开关控制单元在单个完整扫描过程内的时序图;图16是图14所示实施例中多个像素模块的电源线连接示意图。
接下来仅针对第三实施例与上述图9至图13所示第二实施例的不同之处进行详细阐述。
在本实施例中,每一子周期可以对应x个信号读出端320,且2≤x<n。
在n=4的应用场景中,x=2。
相应的,在第i子周期内,所述像素开关控制单元可以控制所述n个像素单元311中串联的x+1个像素单元311各自的像素开关313导通,所述扫描线控制单元可以控制电流流过所述x+1个像素单元311,所述信号读出单元243可以分别采集x个信号读出端320的第一电信号,其中,所述x+1个像素单元311相互之间的串联连接点分别连接所述x个信号读出端320。
进一步地,在所述第i子周期内,所述信号读出单元243还可以采集所述x+1个像素单元311中首个像素单元311与第三像素单元的串联连接点连接的信号读出端320的第二电信号,其中,所述第三像素单元为所述n个像素单元311中除所述x+1个像素单元311之外的像素单元311。
进一步地,在所述第i子周期内,所述信号读出单元243还可以采集所述x+1个像素单元311中末个像素单元311与第四像素单元的串联连接点连接的信号读出端320的第二电信号,其中,所述第四像素单元为所述n个像素单元311中除所述x+1个像素单元311之外的像素单元311。
在一个典型的应用场景中,参考图14,以平行于所述扫描线为基准,所处边沿相平行的、位于同一列的像素单元311各自的像素开关313相间隔地连接至同一控制线(图中以i至n标记),位于同一行的相邻的两个像素单元311各自的像素开关313连接至不同的控制线。
例如,位于像素模块310-1的BC段的像素开关313与位于像素模块310-4的BC段的像素开关313均连接至控制线k。
又例如,位于像素模块310-2的BC段的像素开关313与位于像素模块310-3的BC段的像素开关313均连接至控制线l。
进一步地,以平行于所述数据线为基准,所处边沿相平行的,位于同一行的多个像素单元311各自的像素开关313连接至同一控制线,位于同一列的相邻的两个像素开关311各自的像素开关313连接至不同的控制线,
例如,位于像素模块310-1的CD段的像素开关313、位于像素模块310-1的AB段的像素开关313、位于像素模块310-2的CD段的像素开关313均连接至控制线i。
又例如,位于像素模块310-4的CD段的像素开关313、位于像素模块310-4的AB段的像素开关313、位于像素模块310-3的CD段的像素开关313均连接至控制线j。
进一步地,同一像素模块310的四个串联连接点各自的信号读出端320分别连接至不同的数据线(图中以x、y、z和z’标记)。
进一步地,多个像素模块310的部分串联连接点可以连接至同一数据线。
进一步地,所述数据线的数量与单个像素模块310包括的串联连接点的数量相对应。
例如,像素模块310-1至像素模块310-4中所有的串联连接点C均可以连接至数据线x;像素模块310-1至像素模块310-4中所有的串联连接点D均可以连接至数据线y;像素模块310-1至像素模块310-4中所有的串联连接点A均可以连接至数据线z’;像素模块310-1至像素模块310-4中所有的串联连接点B均可以连接至数据线z。
在本场景中,结合图15,对于图14示出的4个像素模块310的完整扫描过程可以包括两个阶段,分别记作阶段1,适于读取串联连接点B和C各自的差模信号;阶段2,适于读取串联连接点A和D各自的差模信号。
对于每一阶段,所述阶段可以包括4个子阶段(图中以p1至p4标记)。
以阶段1为例,结合图16,在阶段1的子阶段p1中,控制线i和k施加高电位,其他控制线处于低电位。在扫描线1至3和电源线u至w的配合下,串联连接点A被施加7.5v电压,串联连接点B被施加5v电压,串联连接点C被施加2.5v电压,串联连接点D被施加0v电压。
此时,像素模块310-1的AB段、BC段和CD段导通,且电流沿像素模块310-1的串联连接点A到B到C到D的顺序流动。此时,通过数据线z读取像素模块310-1的位于AB段的像素单元311和位于BC段的像素单元311在所述串联连接点B处的差模信号,通过数据线x读取像素模块310-1的位于BC段的像素单元311和CD段的像素单元311在所述串联连接点C处的差模信号。
进一步地,在所述子阶段p1中,还可以通过数据线z’读取所述像素模块310-1的位于AB段的像素单元311和位于BC段的像素单元311在所述串联连接点A处的共模信号。
进一步地,在所述子阶段p1中,还可以通过数据线y读取所述像素模块310-1的位于BC段的像素单元311和位于CD段的像素单元311在所述串联连接点D处的共模信号。
进一步地,在每一子阶段内,可以同时开启相邻的两条扫描线,然后再同时开启下一组相邻的两条扫描线,以此类推。
例如,在所述子阶段p1中,首先开启扫描线1和扫描线2,以同时读取像素模块310-1的四个串联连接点的信号,其中,串联连接点B和C读取的是差模信号,串联连接点A和D读取的是共模信号。
然后,同时开启扫描线3和位于其下方的最近一条扫描线,以读取位于所述像素模块310-4的下一行、同一列的像素模块310的各串联连接点的信号。
在阶段1的子阶段p2中,控制线a和f施加高电位,其他控制线处于低电位。在电源线u至w和扫描线1至3的配合下,像素模块310-2的AB段、BC段和CD段导通,且电流沿像素模块310-2的串联连接点A到B到C到D的顺序流动。此时,通过数据线z读取像素模块310-2的位于AB段的像素单元311和位于BC段的像素单元311在所述串联连接点B处的差模信号,通过数据线z读取像素模块310-2的位于BC段的像素单元311和CD段的像素单元311在所述串联连接点C处的差模信号。
进一步地,在所述子阶段p2中,还可以通过数据线z’读取所述像素模块310-2的位于AB段的像素单元311和位于BC段的像素单元311在所述串联连接点A处的共模信号。
进一步地,在所述子阶段p2中,还可以通过数据线y读取所述像素模块310-2的位于BC段的像素单元311和位于CD段的像素单元311在所述串联连接点D处的共模信号。
在阶段1的子阶段p3中,控制线b和f施加高电位,其他控制线处于低电位。在电源线u至w和扫描线1至3的配合下,像素模块310-3的AB段、BC段和CD段导通,且电流沿像素模块310-3的串联连接点A到B到C到D的顺序流动。此时,通过数据线z读取像素模块310-3的位于AB段的像素单元311和位于BC段的像素单元311在所述串联连接点B处的差模信号,通过数据线z读取像素模块310-3的位于BC段的像素单元311和CD段的像素单元311在所述串联连接点C处的差模信号。
进一步地,在所述子阶段p3中,还可以通过数据线z’读取所述像素模块310-3的位于AB段的像素单元311和位于BC段的像素单元311在所述串联连接点A处的共模信号。
进一步地,在所述子阶段p3中,还可以通过数据线y读取所述像素模块310-3的位于BC段的像素单元311和位于CD段的像素单元311在所述串联连接点D处的共模信号。
在阶段1的子阶段p4中,控制线b和e施加高电位,其他控制线处于低电位。在电源线u至w和扫描线1至3的配合下,像素模块310-4的AB段、BC段和CD段导通,且电流沿像素模块310-4的串联连接点A到B到C到D的顺序流动。此时,通过数据线z读取像素模块310-4的位于AB段的像素单元311和位于BC段的像素单元311在所述串联连接点B处的差模信号,通过数据线x读取像素模块310-4的位于BC段的像素单元311和CD段的像素单元311在所述串联连接点C处的差模信号。
进一步地,在所述子阶段p4中,还可以通过数据线z’读取所述像素模块310-4的位于AB段的像素单元311和位于BC段的像素单元311在所述串联连接点A处的共模信号。
进一步地,在所述子阶段p4中,还可以通过数据线y读取所述像素模块310-4的位于BC段的像素单元311和位于CD段的像素单元311在所述串联连接点D处的共模信号。
由此,采用本实施例的方案,同一像素模块310的四个串联连接点的信号能够被同时读取且互不影响,利于提高图像传感器300的整体信号采集效率。
图17是本发明第四实施例的一种图像传感器的线路连接示意图。
接下来仅针对第四实施例与上述图14至图16所示第三实施例的不同之处进行详细阐述。
在本实施例中,位于同一列的像素单元311的串联连接点共用同一数据线(图中以x至z标记)。
例如,像素模块310-1的串联连接点C和D,以及像素模块310-4的串联连接点C共同连接至数据线x;像素模块310-1的串联连接点A和B,以及像素模块310-4的串联连接点B共同连接至数据线y;像素模块310-2的串联连接点C和D,以及像素模块310-3的串联连接点C共同连接至数据线z。
在本实施例中,像素开关控制单元在单个完整扫描过程内的时序图可以沿用图15示出的第三实施例中采用的时序图,所述多个像素模块310的电源线连接示意图可以沿用图16示出的第三实施例中采用的示意图。
本实施例与前述第三实施例的区别在于,在每一子阶段内,逐条开启所有的扫描线,当所有的扫描线均开启一轮后,进入下一子阶段进行重复。
例如,在所述子阶段p1内,电流依次流经像素模块310-1的串联连接点A至B至C至D,此时,串联连接点B和C适于读取差模信号,串联连接点A和D适于读取共模信号。
为顺利读取各串联连接点的信号,在本实施例中,首先控制扫描线1开启,以通过数据线x读取串联连接点C的差模信号,通过数据线y读取串联连接点B的差模信号。
然后,控制扫描线2开启,以通过数据线x分时读取串联连接点D的共模信号,通过数据线y分时读取串联连接点A的共模信号。
由此,共用数据线的方式分时读取各串联连接点的信号,能够达到精简布线的效果。
在上述第三实施例和第四实施例的一个共同实施例中,所述电源线u至w大多数时候都可以处于开启状态,以向连接的串联连接点施加合适的电压。对于每一电源线,当该电源线连接的像素单元311所在列将要进行信号读取时,该电源线关断。也即,连接至同一像素单元311的电源线与扫描线的开启/关断时序是互斥的。
本发明实施例还提供一种存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述图6所示方法的步骤。
进一步地,本发明实施例还公开一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述图6所示实施例中所述的方法技术方案。优选地,所述终端可以是手机、计算机等计算设备。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (19)

1.一种图像传感器,其特征在于,包括多个像素模块,每一像素模块包括:
n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;
n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;
其中,相邻两个像素模块之间共用同一像素单元以及所述同一像素单元的第一端和第二端连接的信号读出端。
2.根据权利要求1所述的图像传感器, 其特征在于,还包括:
多条控制线,同一像素模块中,不同的像素开关的控制端连接至不同的控制线;
多条数据线,各个信号读出端连接至对应的数据线;
多条扫描线,各个感光元件连接至对应的扫描线。
3.根据权利要求2所述的图像传感器,其特征在于,还包括:
部分像素模块之间共用扫描线,部分像素模块之间共用数据线,部分像素模块之间共用控制线。
4.根据权利要求1所述的图像传感器,其特征在于,所述多个像素模块形成于玻璃基板上。
5.一种图像传感器的信号采集方法,其特征在于,
所述图像传感器包括多个像素模块,每一像素模块包括:n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;其中,相邻两个像素模块之间共用同一像素单元以及所述同一像素单元的第一端和第二端连接的信号读出端;
所述信号采集方法包括:
对于每一像素模块,在单个信号采集周期内,依次对所述n个信号读出端进行信号采集,其中,
所述信号采集周期包括n个子周期,其中每一子周期对应至少一个信号读出端;
在第i子周期内,控制第一像素单元和第二像素单元各自的像素开关导通,控制电流流过所述第一像素单元和第二像素单元,并采集第i个信号读出端的第一电信号,其中,所述第一像素单元和第二像素单元为所述n个信号读出端中与所述第i个信号读出端连接的两个像素单元,1≤i≤n。
6.根据权利要求5所述的信号采集方法,其特征在于,所述第一电信号为所述第一像素单元和第二像素单元的差模信号。
7.根据权利要求5所述的信号采集方法,其特征在于,还包括:
在所述第i子周期内,采集所述第一像素单元与第三像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第三像素单元为所述n个像素单元中除所述第二像素单元之外的像素单元;和/或,
采集所述第二像素单元与第四像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第四像素单元为所述n个像素单元中除所述第一像素单元之外的像素单元。
8.根据权利要求7所述的信号采集方法,其特征在于,所述第二电信号为所述第一像素单元和第二像素单元的共模信号。
9.根据权利要求5所述的信号采集方法,其特征在于,当每一子周期对应x个信号读出端时,其中,2≤x<n,
在第i子周期内,控制所述n个像素单元中串联的x+1个像素单元各自的像素开关导通,控制电流流过所述x+1个像素单元,并分别采集x个信号读出端的第一电信号,其中,所述x+1个像素单元相互之间的串联连接点分别连接所述x个信号读出端。
10.根据权利要求9所述的信号采集方法,其特征在于,还包括:
在所述第i子周期内,采集所述x+1个像素单元中首个像素单元与第三像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第三像素单元为所述n个像素单元中除所述x+1个像素单元之外的像素单元;和/或,
采集所述x+1个像素单元中末个像素单元与第四像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第四像素单元为所述n个像素单元中除所述x+1个像素单元之外的像素单元。
11.一种图像传感器的信号采集电路,其特征在于,
所述图像传感器包括多个像素模块,每一像素模块包括:n个像素单元,所述n个像素单元串联形成闭环结构,n≥3,所述像素单元具有第一端和第二端,每一像素单元包括串联连接的感光元件和像素开关;n个信号读出端,每一像素单元与其他像素单元的串联连接点分别与对应的信号读出端连接;其中,相邻两个像素模块之间共用同一像素单元以及所述同一像素单元的第一端和第二端连接的信号读出端;
对于每一像素模块,所述信号采集电路在单个信号采集周期内依次对所述n个信号读出端进行信号采集,其中,所述信号采集周期包括n个子周期,其中每一子周期对应至少一个信号读出端;
所述信号采集电路包括:
像素开关控制单元,在第i子周期内,控制第一像素单元和第二像素单元各自的像素开关导通,其中,所述第一像素单元和第二像素单元为所述n个信号读出端中与第i个信号读出端连接的两个像素单元,1≤i≤n;
扫描线控制单元,在所述第i子周期内,控制电流流过所述第一像素单元和第二像素单元;
信号读出单元,在所述第i子周期内,采集所述第i个信号读出端的第一电信号。
12.根据权利要求11所述的信号采集电路,其特征在于,
所述像素开关控制单元与多条控制线耦接,同一像素模块中,不同的像素开关的控制端连接至不同的控制线;
所述信号读出单元与多条数据线耦接,各个信号读出端连接至对应的数据线;
所述扫描线控制单元与多条扫描线耦接,各个感光元件连接至对应的扫描线。
13.根据权利要求11所述的信号采集电路,其特征在于,所述第一电信号为所述第一像素单元和第二像素单元的差模信号。
14.根据权利要求11所述的信号采集电路,其特征在于,
在所述第i子周期内,所述信号读出单元还采集所述第一像素单元与第三像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第三像素单元为所述n个像素单元中除所述第二像素单元之外的像素单元;和/或,
所述信号读出单元还采集所述第二像素单元与第四像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第四像素单元为所述n个像素单元中除所述第一像素单元之外的像素单元。
15.根据权利要求14所述的信号采集电路,其特征在于,所述第二电信号为所述第一像素单元和第二像素单元的共模信号。
16.根据权利要求11所述的信号采集电路,其特征在于,当每一子周期对应x个信号读出端时,其中,2≤x<n,
在第i子周期内,所述像素开关控制单元控制所述n个像素单元中串联的x+1个像素单元各自的像素开关导通;
所述扫描线控制单元控制电流流过所述x+1个像素单元;
所述信号读出单元分别采集x个信号读出端的第一电信号,其中,所述x+1个像素单元相互之间的串联连接点分别连接所述x个信号读出端。
17.根据权利要求16所述的信号采集电路,其特征在于,
在所述第i子周期内,所述信号读出单元还采集所述x+1个像素单元中首个像素单元与第三像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第三像素单元为所述n个像素单元中除所述x+1个像素单元之外的像素单元;和/或,
所述信号读出单元还采集所述x+1个像素单元中末个像素单元与第四像素单元的串联连接点连接的信号读出端的第二电信号,其中,所述第四像素单元为所述n个像素单元中除所述x+1个像素单元之外的像素单元。
18.一种存储介质,其上存储有计算机指令,其特征在于,所述计算机指令被处理器运行时执行权利要求5至10任一项所述方法的步骤。
19.一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求5至10任一项所述方法的步骤。
CN201910380238.4A 2019-05-08 2019-05-08 图像传感器及其信号采集方法和电路、存储介质、终端 Active CN111918003B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910380238.4A CN111918003B (zh) 2019-05-08 2019-05-08 图像传感器及其信号采集方法和电路、存储介质、终端
TW109115237A TWI734467B (zh) 2019-05-08 2020-05-07 圖像傳感器及其信號取樣方法和電路、記憶媒體、終端
US16/869,234 US11190722B2 (en) 2019-05-08 2020-05-07 Image sensor, signal acquisition method and circuit of image sensor, storage medium and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910380238.4A CN111918003B (zh) 2019-05-08 2019-05-08 图像传感器及其信号采集方法和电路、存储介质、终端

Publications (2)

Publication Number Publication Date
CN111918003A CN111918003A (zh) 2020-11-10
CN111918003B true CN111918003B (zh) 2022-11-25

Family

ID=73045872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910380238.4A Active CN111918003B (zh) 2019-05-08 2019-05-08 图像传感器及其信号采集方法和电路、存储介质、终端

Country Status (3)

Country Link
US (1) US11190722B2 (zh)
CN (1) CN111918003B (zh)
TW (1) TWI734467B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101931A (ja) * 1998-09-17 2000-04-07 Sharp Corp 固体撮像装置のクランプ回路
US7265329B2 (en) * 2004-09-09 2007-09-04 Stmicroelectronics Ltd. Image sensors with distributed amplifiers and related methods
US7876974B2 (en) * 2003-08-29 2011-01-25 Vladimir Brajovic Method for improving digital images and an image sensor for sensing the same
CN103634538A (zh) * 2012-08-23 2014-03-12 佳能株式会社 图像感测装置
US9247164B1 (en) * 2014-10-21 2016-01-26 Pixart Imaging (Penang) Sdn. Bhd. Image pixel more robust to power supply noise, dark node for use in the image pixel, and control method thereof
CN106162000A (zh) * 2016-07-08 2016-11-23 华堂动芯科技有限公司 像素采集电路、图像传感器及图像采集***
KR101801821B1 (ko) * 2016-07-29 2017-11-27 연세대학교 산학협력단 4t 픽셀에 결합된 높은 선형성을 가지는 통합 개회로 증폭기
CN108288031A (zh) * 2017-12-30 2018-07-17 深圳信炜科技有限公司 感光驱动电路、感光装置及电子设备
CN109155830A (zh) * 2016-06-08 2019-01-04 索尼公司 固态成像元件、成像装置和固态成像元件的控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146902A1 (de) * 2000-09-25 2002-09-19 Sensovation Ag Bildsensor, Vorrichtung und Verfahren für optische Messungen
JP4231322B2 (ja) * 2003-04-08 2009-02-25 パナソニック株式会社 固体撮像装置及び撮像方法
US7046284B2 (en) * 2003-09-30 2006-05-16 Innovative Technology Licensing Llc CMOS imaging system with low fixed pattern noise
KR100760142B1 (ko) * 2005-07-27 2007-09-18 매그나칩 반도체 유한회사 고해상도 cmos 이미지 센서를 위한 스택형 픽셀
US20090091648A1 (en) * 2007-10-09 2009-04-09 Shengmin Lin Multi-resolution Image Sensor Array with High Image Quality Pixel Readout Circuitry
US20100084481A1 (en) * 2008-10-02 2010-04-08 Silverbrook Research Pty Ltd Coding pattern having merged data symbols
US9979918B2 (en) * 2014-01-30 2018-05-22 Shanghai Ic R&D Center Co., Ltd Image sensor and data tranmission method thereof
CN107770433B (zh) * 2016-08-15 2020-08-04 广州立景创新科技有限公司 影像获取装置及其影像平顺缩放方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101931A (ja) * 1998-09-17 2000-04-07 Sharp Corp 固体撮像装置のクランプ回路
US7876974B2 (en) * 2003-08-29 2011-01-25 Vladimir Brajovic Method for improving digital images and an image sensor for sensing the same
US7265329B2 (en) * 2004-09-09 2007-09-04 Stmicroelectronics Ltd. Image sensors with distributed amplifiers and related methods
CN103634538A (zh) * 2012-08-23 2014-03-12 佳能株式会社 图像感测装置
US9247164B1 (en) * 2014-10-21 2016-01-26 Pixart Imaging (Penang) Sdn. Bhd. Image pixel more robust to power supply noise, dark node for use in the image pixel, and control method thereof
CN109155830A (zh) * 2016-06-08 2019-01-04 索尼公司 固态成像元件、成像装置和固态成像元件的控制方法
CN106162000A (zh) * 2016-07-08 2016-11-23 华堂动芯科技有限公司 像素采集电路、图像传感器及图像采集***
KR101801821B1 (ko) * 2016-07-29 2017-11-27 연세대학교 산학협력단 4t 픽셀에 결합된 높은 선형성을 가지는 통합 개회로 증폭기
CN108288031A (zh) * 2017-12-30 2018-07-17 深圳信炜科技有限公司 感光驱动电路、感光装置及电子设备

Also Published As

Publication number Publication date
TWI734467B (zh) 2021-07-21
US20200358974A1 (en) 2020-11-12
US11190722B2 (en) 2021-11-30
CN111918003A (zh) 2020-11-10
TW202046703A (zh) 2020-12-16

Similar Documents

Publication Publication Date Title
CN109767714B (zh) 光电转换电路及其驱动方法、感光装置、显示装置
CN111179834B (zh) 一种光感驱动电路及其驱动方法、光感显示装置
CN112511769B (zh) 一种图像传感器像素电路以及图像传感阵列
CN102158663B (zh) Cmos图像传感器像素及其控制时序
CN107578026B (zh) 指纹检测电路、指纹检测电路的检测方法和指纹传感器
CN105373764A (zh) 可分区感测的像素感测装置及其操作方法
CN103686006B (zh) 一种基于压缩传感的全局式曝光cmos图像传感器
WO2020140601A1 (zh) 检测电路、纹路识别装置及驱动方法
WO2012124760A1 (ja) ゲイン可変方法、ゲイン可変光電変換素子、ゲイン可変光電変換セル、ゲイン可変光電変換アレイ、読み出し方法、および、回路
CN104219468A (zh) 高行频cmos-tdi图像传感器
US5917960A (en) Image correlator, an image processing apparatus using the same, and a signal adder used in the image correlator
JP6903637B2 (ja) 画素検知回路及びその駆動方法、画像センサ、電子機器
EP3227922A1 (en) Imaging system for simultaneous imaging and energy harvesting
CN110113548A (zh) 一种cmos图像传感器及其信号传输方法
CN111918003B (zh) 图像传感器及其信号采集方法和电路、存储介质、终端
CN112133258B (zh) 一种显示面板和显示面板的驱动方法
CN108802961A (zh) 焦点检测设备和成像***
Takami et al. An image pre-processing system employing neuromorphic 100/spl times/100 pixel silicon retina [robot vision applications]
CN104023186A (zh) 图像拾取装置及其驱动方法、图像拾取***及其驱动方法
CN114637423A (zh) 显示面板及其驱动方法、显示装置
JP2013138432A (ja) 複数の画素を有するアレイ及び画素情報転送方法
CN112462978A (zh) 感光面板和显示面板
CN112698755A (zh) 一种光感应信号的读取方法及光感应装置
JP2959279B2 (ja) 電荷積分型二次元アレイ光検出器用信号読み出し回路
CN109646030B (zh) 感光单元和x射线探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant