CN111884522A - 基于连续导通模式的反激式开关电源电路及控制方法 - Google Patents

基于连续导通模式的反激式开关电源电路及控制方法 Download PDF

Info

Publication number
CN111884522A
CN111884522A CN202010827437.8A CN202010827437A CN111884522A CN 111884522 A CN111884522 A CN 111884522A CN 202010827437 A CN202010827437 A CN 202010827437A CN 111884522 A CN111884522 A CN 111884522A
Authority
CN
China
Prior art keywords
signal
timing
current control
time
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010827437.8A
Other languages
English (en)
Inventor
张�杰
朱敏
王福龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Lii Semiconductor Co ltd
Original Assignee
Suzhou Lii Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Lii Semiconductor Co ltd filed Critical Suzhou Lii Semiconductor Co ltd
Priority to CN202010827437.8A priority Critical patent/CN111884522A/zh
Publication of CN111884522A publication Critical patent/CN111884522A/zh
Priority to US17/773,602 priority patent/US11984809B2/en
Priority to PCT/CN2020/138083 priority patent/WO2022036971A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请涉及一种基于连续导通模式的反激式开关电源电路及控制方法,包括恒流控制电路、采样电路及峰值电流控制电路,采样电路用以采样副边线圈的导通时间以得到导通时间占空比信号D_SEC,并将导通时间占空比信号D_SEC发送至恒流控制电路,恒流控制电路接收导通时间占空比信号D_SEC,使得导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号,恒流控制电路将CAC电压信号与峰值电流控制电路的峰值电流控制信号VCST转换成时间信号,并对时间信号作比对处理以输出调节信号CCOUT,调节信号CCOUT用以主动调节峰值电流控制信号VCST的值,以使得反激式开关电源电路输出恒流,其无需规定副边线圈导通的起始电流为定值,即可使得输出电流恒定,方便快捷。

Description

基于连续导通模式的反激式开关电源电路及控制方法
技术领域
本发明涉及一种基于连续导通模式的反激式开关电源电路及控制方法,属于反激式开关电源控制技术领域。
背景技术
目前反激式开关电源有两种工作模式,非连续导通模式(DCM)和连续导通模式(CCM)。当反激式开关电源工作在DCM模式下,恒流输出设计简单,方便实现,因为每个周期结束时线圈上的电流都会降为0,因此其平均电流输出公式为:
Figure BDA0002636726930000011
其中n为变压器的原边线圈与副边线圈匝数比,Ipk为原边线圈峰值电流,Tsec为副边二极管的导通时间,Tsw为电源开关周期,由公式可知,只需确定峰值电流以及副边线圈导通时间占空比,就能实现恒流输出;但是当反激式开关电源工作在CCM模式下,因为每个周期结束时,线圈上的电流都不为0,因此其平均电流输出公式为:
Figure BDA0002636726930000012
Figure BDA0002636726930000013
其中I1为副边线圈导通时的起始电流。由于I1在不同周期的值不同,因此较难控制CCM模式下的恒流输出。
发明内容
本发明的目的在于提供一种基于连续导通模式的反激式开关电源电路及控制方法,其无需规定副边线圈导通的起始电流为定值,即可使得输出电流恒定,方便快捷。
为达到上述目的,本发明提供如下技术方案:一种基于连续导通模式的反激式开关电源电路,包括恒流控制电路、采样电路及峰值电流控制电路,所述采样电路用以采样副边线圈的导通时间以得到导通时间占空比信号D_SEC,并将所述导通时间占空比信号D_SEC发送至所述恒流控制电路,所述恒流控制电路接收所述导通时间占空比信号D_SEC,使得所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号,所述恒流控制电路将所述CAC电压信号与所述峰值电流控制电路的峰值电流控制信号VCST转换成时间信号,并对所述时间信号作比对处理以输出调节信号CCOUT,所述调节信号CCOUT用以主动调节峰值电流控制信号VCST的值,以使得所述反激式开关电源电路输出恒流。
进一步地,原边线圈导通时,与所述原边线圈连接的电流检测电阻输出VCS信号,所述恒流控制电路包括:
信号生成模块,所述信号生成模块用以将所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;
第一计时模块,当所述VCS信号与CAC电压信号相等时,所述第一计时模块用以开始输出或停止输出第一时间信号t1;
第二计时模块,所述第二计时模块用以输出第二时间信号t2;
计时比较模块,所述计时比较模块用以将第一时间信号t1和第二时间信号t2作比对,并根据比对结果判断是否输出调节信号CCOUT以主动调节峰值电流控制信号VCST的值,以使得所述反激式开关电源电路输出恒流。
进一步地,所述恒流控制电路还包括延时模块,所述延时模块用以接收所述计时比较模块发送的调节信号CCOUT,判断所述调节信号CCOUT是否持续高电平,并根据判断结果以确定是否输出过载保护信号PRO,所述过载保护信号PRO用以控制所述反激式开关电源电路驱动信号关断。
本发明还提供了一种基于连续导通模式的反激式开关电源控制方法,采用如上所述的基于连续导通模式的反激式开关电源电路,所述方法包括:
采样电路用以采样副边线圈的导通时间以得到导通时间占空比信号D_SEC,并将所述导通时间占空比信号D_SEC发送至恒流控制电路;
所述恒流控制电路接收所述导通时间占空比信号D_SEC,并使得所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;
所述恒流控制电路再将所述CAC电压信号与所述峰值电流控制电路的峰值电流控制信号VCST转换成时间信号,并对所述时间信号做对比以输出调节信号CCOUT,所述调节信号CCOUT用以主动调节峰值电流控制信号VCST的值,以使得所述反激式开关电源电路输出恒流。
进一步地,原边线圈导通时,与所述原边线圈连接的电流检测电阻输出VCS信号,所述恒流控制电路包括信号生成模块、第一计时模块、第二计时模块、及计时比较模块;
所述信号生成模块用以将所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;
原边线圈导通时,所述第一计时模块和第二计时模块同时开始计时,并输出第一计时信号t1和第二计时信号t2,所述VCS信号上升;
所述VCS信号与所述CAC电压信号的电压相等时,所述第一计时模块停止计时;
原边线圈关断时,所述第二计时模块停止计时,所述计时比较模块将所述第一时间信号t1和第二时间信号t2作比对;
所述第二时间信号t2大于两倍的第一时间信号t1,所述计时比较模块输出调节信号CCOUT,所述调节信号CCOUT为高电平以控制峰值电流控制电路降低峰值电流控制信号VCST的值,继而使得所述基于连续导通模式的反激式开关电源电路输出恒定电流。
进一步地,原边线圈导通时,与所述原边线圈连接的电流检测电阻输出VCS信号,所述恒流控制电路包括信号生成模块、第一计时模块、第二计时模块、及计时比较模块;
所述信号生成模块用以将所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;
原边线圈导通时,所述第二计时模块开始计时以输出第二计时信号t2,所述VCS信号上升;
所述VCS信号与所述CAC电压信号的电压相等时,所述第一计时模块开始计时以输出第一计时信号t1;
原边线圈关断时,所述第一计时模块和第二计时模块停止计时,所述计时比较模块将所述第一时间信号t1和第二时间信号t2作比对;
所述第二时间信号t2小于两倍的第一时间信号t1,所述计时比较模块输出调节信号CCOUT,所述调节信号CCOUT为高电平以控制峰值电流控制电路降低峰值电流控制信号VCST的值,继而使得所述基于连续导通模式的反激式开关电源电路输出恒定电流。
进一步地,当所述第二时间信号t2等于两倍的第一时间信号t1时,所述基于连续导通模式的反激式开关电源电路输出的平均电流为:
Figure BDA0002636726930000041
其中,RCS为电流检测电阻的阻值,n为原边线圈和副边线圈的匝数比。
进一步地,所述恒流控制电路还包括延时模块,
所述延时模块接收所述计时比较模块发送的调节信号CCOUT,判断所述调节信号CCOUT是否持续高电平,并根据判断结果以确定是否输出过载保护信号PRO,所述过载保护信号PRO用以控制所述反激式开关电源电路驱动信号关断。
本发明的有益效果在于:通过设置有恒流控制电路,其接收采样电路对副边线圈采样而发送的导通时间占空比信号D_SEC,并将导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号,以使得恒流控制电路调节VCS信号的电压值,进而使得反激式开关电源电路输出恒流,方便快捷。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明的基于连续导通模式的反激式开关电源电路的电路图。
图2为图1中部分模块原理图。
图3为本发明的基于连续导通模式的反激式开关电源电路的信号波形图。
图4为本发明的基于连续导通模式的反激式开关电源电路的另一信号波形图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
请参见图1,本发明的一较佳实施例中的一种基于连续导通模式的反激式开关电源电路,包括电源电路(POWER)、与所述电源电路连接的变压器、对所述变压器的副边线圈进行采样的采样电路(SAMP)、与所述采样电路连接的恒流控制电路(CC)及驱动电路、及用以控制所述副边线圈导通或关断的功率管Q1,其中,所述变压器还包括原边线圈和辅助线圈,所述原边线圈、辅助线圈与所述副边线圈互感,所述副边线圈接入副边二极管D2,所述辅助线圈接入控制电路,所述原边线圈接入电流检测电阻RCS及功率管Q1的源极。
其中,所述驱动电路包括误差放大器(EA)、振荡模块(OSC)、峰值电流控制模块(CS)、比较器(CMP)、逻辑与门模块、D触发器(DRFF)及驱动模块,当PWM=1,功率管Q1打开,原边线圈导通,RCS电阻开始电流流过,该电流随时间增长而增大,进而使得VCS电压随时间上升;当VCS电压上升至VCST电压时,到达原边线圈的峰值电流,比较器CMP产生低电平信号到逻辑与门电路,逻辑与门电路输出低电平信号到D触发器使其复位,并输出PWM=0,功率管Q1关断,副边线圈导通,所述采样电路用以采样所述副边线圈的导通时间以得到导通时间占空比信号D_SEC,并将所述导通时间占空比信号D_SEC发送至所述恒流控制电路,所述恒流控制电路接收所述导通时间占空比信号D_SEC,使得所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号,所述恒流控制电路将所述CAC电压信号与所述峰值电流控制电路的峰值电流控制信号VCST转换成时间信号,并对所述时间信号作比对处理以输出调节信号CCOUT,所述调节信号CCOUT用以主动调节峰值电流控制信号VCST的值,从而为负载提供稳定电压或电流,直到下个周期PWM=1,功率管Q1再次开启。在本实施例中,VCST为原边线圈峰值电流控制电压,其中,D_SEC=TSEC/TSW,CAC=VREF/D_SEC。
具体的,恒流控制电路包括信号生成模块3、第一计时模块1、第二计时模块2及计时比对模块4,所述信号生成模块3用以将所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;所述第一计时模块1用以接收所述CAC电压信号及VCS信号,当所述CAC电压信号的电压值与所述VCS信号的电压值相等时,所述第一计时模块1工作以开始输出或停止输出第一时间信号t1;所述第二计时模块2用以输出第二时间信号t2,所述计时比较模块用以将第一时间信号t1和第二时间信号t2作比对,并根据比对结果判断是否输出调节信号CCOUT以控制峰值电流控制电路输出恒定电流。
所述恒流控制电路还包括延时模块5,所述延时模块5用以接收所述计时比较模块发送的调节信号CCOUT以输出过载保护信号PRO,所述过载保护信号PRO用以控制所述开关电源驱动信号关断。其中,所述逻辑与门模块用以接收所述PRO信号并输出低电平,所述D触发器由所述逻辑与门模块的低电平触发,并向驱动所述功率管关断。
本发明还提供了一种基于连续导通模式的反激式开关电源控制方法,采用如上所述的基于连续导通模式的反激式开关电源电路,所述方法包括:
采样电路用以采样副边线圈的导通时间占空比信号D_SEC,并将所述导通时间占空比信号D_SEC发送至恒流控制电路;
所述恒流控制电路接收所述导通时间占空比信号D_SEC,并使得所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;
所述CAC电压信号控制所述恒流控制电路输出调节信号CCOUT,所述调节信号CCOUT用以主动调节峰值电流控制信号VCST的值,以使得所述反激式开关电源电路输出恒流。
具体的,请结合图2及图4,当原边线圈导通时,所述信号生成模块3用以将所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;原边线圈导通时,所述第一计时模块1和第二计时模块2同时开始计时,并输出第一计时信号t1和第二计时信号t2,此时所述VCS信号上升;所述VCS信号与所述CAC电压信号的电压相等时,所述第一计时模块1停止计时;副边线圈导通时,所述第二计时模块2停止计时,所述计时比较模块将所述第一时间信号t1和第二时间信号t2作比对;所述第二时间信号t2大于两倍的第一时间信号t1,所述计时比较模块输出调节信号CCOUT以控制峰值电流控制电路输出VCST降低,继而使得所述基于连续导通模式的反激式开关电源电路输出恒定电流。即t2>2×t1,则其输出调节信号CCOUT控制VCST信号降低;若第二时间信号t2小于两倍的第一时间信号t1,即t2<2×t1,则其输出调节信号CCOUT将不动作,即VCST信号不变。
请结合图2及图3,在其他实施例中,所述信号生成模块3用以将所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;原边线圈导通时,所述第二计时模块2开始计时以输出第二计时信号t2,所述VCS信号上升;所述VCS信号与所述CAC电压信号的电压相等时,所述第一计时模块1开始计时以输出第一计时信号t1;副边线圈导通时,所述第一计时模块1和第二计时模块2停止计时,所述计时比较模块将所述第一时间信号t1和第二时间信号t2作比对;所述第二时间信号t2小于两倍的第一时间信号t1,所述计时比较模块输出调节信号CCOUT以控制峰值电流控制电路输出VCST降低,继而使得所述基于连续导通模式的反激式开关电源电路输出恒定电流。即t2<2×t1,则其输出调节信号CCOUT控制VCST信号降低;若第二时间信号t2大于两倍的第一时间信号t1,即t2>2×t1,则其输出调节信号CCOUT将不动作,即VCST信号不变。
当所述第二时间信号t2等于两倍的第一时间信号t1时,所述基于连续导通模式的反激式开关电源电路输出的平均电流为:
Figure BDA0002636726930000071
其中,RCS为电流检测电阻的阻值,n为原边线圈和副边线圈的匝数比。
由上述公式可知,由于预设电压VREF及RCS电阻均为定值,因此输出恒流。
所述恒流控制电路还包括延时模块5,所述延时模块5接收所述计时比较模块发送的调节信号CCOUT,判断所述调节信号CCOUT是否持续高电平,并根据判断结果以确定是否输出PRO信号,所述PRO信号用以控制所述反激式开关电源电路驱动信号关断。
具体的,如图2所示,当原边线圈导通,即SW=1时,第二计时模块2开始计时,此时VCS信号的电压值不断上升,当VCS信号的电压值上升至预设的CAC电压信号的电压值后,第一计时模块1也开始计时,直到SW信号=0,第一计时模块1与第二计时模块2同时停止计时,计时比对模块4将第一时间信号t1和第二时间信号t2进行比较,若第二时间信号t2小于两倍的第一时间信号t1,即t2<2×t1时;
或者,当原边线圈导通,即SW=1时,第二计时模块2开始计时,同时第一计时模块1也开始计时,此时VCS信号的电压值不断上升,当VCS信号的电压值上升至预设的CAC电压信号的电压值后,第一计时模块1停止计时。当SW=0,第二计时模块2也停止计时,计时比对模块4将第一时间信号t1和第二时间信号t2进行比较,若第二时间信号t2大于两倍的第一时间信号t1,即t2>2×t1;
在上述两种情况下,计时比对模块4输出调节信号CCOUT信号到延时模块5,当调节信号CCOUT持续多个周期输出都为高,则延时模块5输出PRO信号到逻辑与门模块中。PRO=0,D触发器输出PWM=0,功率管Q1被关断,开关电源处于保护状态。
综上所述:通过设置有恒流控制电路,其接收采样电路对副边线圈采样而发送的导通时间占空比信号D_SEC,并将导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号,以使得恒流控制电路调节VCST信号的电压值,进而使得反激式开关电源电路在CCM模式下输出恒流,方便快捷。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种基于连续导通模式的反激式开关电源电路,其特征在于,包括恒流控制电路、采样电路及峰值电流控制电路,所述采样电路用以采样副边线圈的导通时间以得到导通时间占空比信号D_SEC,并将所述导通时间占空比信号D_SEC发送至所述恒流控制电路,所述恒流控制电路接收所述导通时间占空比信号D_SEC,使得所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号,所述恒流控制电路将所述CAC电压信号与所述峰值电流控制电路的峰值电流控制信号VCST转换成时间信号,并对所述时间信号作比对处理以输出调节信号CCOUT,所述调节信号CCOUT用以主动调节峰值电流控制信号VCST的值,以使得所述反激式开关电源电路输出恒流。
2.如权利要求1所述的基于连续导通模式的反激式开关电源电路,其特征在于,原边线圈导通时,与所述原边线圈连接的电流检测电阻输出VCS信号,所述恒流控制电路包括:
信号生成模块,所述信号生成模块用以将所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;
第一计时模块,当所述VCS信号与CAC电压信号相等时,所述第一计时模块用以开始输出或停止输出第一时间信号t1;
第二计时模块,所述第二计时模块用以输出第二时间信号t2;
计时比较模块,所述计时比较模块用以将第一时间信号t1和第二时间信号t2作比对,并根据比对结果判断是否输出调节信号CCOUT以主动调节峰值电流控制信号VCST的值,以使得所述反激式开关电源电路输出恒流。
3.如权利要求2所述的基于连续导通模式的反激式开关电源电路,其特征在于,所述恒流控制电路还包括延时模块,所述延时模块用以接收所述计时比较模块发送的调节信号CCOUT,判断所述调节信号CCOUT是否持续高电平,并根据判断结果以确定是否输出过载保护信号PRO,所述过载保护信号PRO用以控制所述反激式开关电源电路驱动信号关断。
4.一种基于连续导通模式的反激式开关电源控制方法,其特征在于,采用如权利要求1所述的基于连续导通模式的反激式开关电源电路,所述方法包括:
采样电路用以采样副边线圈的导通时间以得到导通时间占空比信号D_SEC,并将所述导通时间占空比信号D_SEC发送至恒流控制电路;
所述恒流控制电路接收所述导通时间占空比信号D_SEC,并使得所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;
所述恒流控制电路再将所述CAC电压信号与所述峰值电流控制电路的峰值电流控制信号VCST转换成时间信号,并对所述时间信号做对比以输出调节信号CCOUT,所述调节信号CCOUT用以主动调节峰值电流控制信号VCST的值,以使得所述反激式开关电源电路输出恒流。
5.如权利要求4所述的基于连续导通模式的反激式开关电源控制方法,其特征在于,原边线圈导通时,与所述原边线圈连接的电流检测电阻输出VCS信号,所述恒流控制电路包括信号生成模块、第一计时模块、第二计时模块、及计时比较模块;
所述信号生成模块用以将所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;
原边线圈导通时,所述第一计时模块和第二计时模块同时开始计时,并输出第一计时信号t1和第二计时信号t2,所述VCS信号上升;
所述VCS信号与所述CAC电压信号的电压相等时,所述第一计时模块停止计时;
原边线圈关断时,所述第二计时模块停止计时,所述计时比较模块将所述第一时间信号t1和第二时间信号t2作比对;
所述第二时间信号t2大于两倍的第一时间信号t1,所述计时比较模块输出调节信号CCOUT,所述调节信号CCOUT为高电平以控制峰值电流控制电路降低峰值电流控制信号VCST的值,继而使得所述基于连续导通模式的反激式开关电源电路输出恒定电流。
6.如权利要求4所述的基于连续导通模式的反激式开关电源控制方法,其特征在于,原边线圈导通时,与所述原边线圈连接的电流检测电阻输出VCS信号,所述恒流控制电路包括信号生成模块、第一计时模块、第二计时模块、及计时比较模块;
所述信号生成模块用以将所述导通时间占空比信号D_SEC与预设参考电压信号VREF生成CAC电压信号;
原边线圈导通时,所述第二计时模块开始计时以输出第二计时信号t2,所述VCS信号上升;
所述VCS信号与所述CAC电压信号的电压相等时,所述第一计时模块开始计时以输出第一计时信号t1;
原边线圈关断时,所述第一计时模块和第二计时模块停止计时,所述计时比较模块将所述第一时间信号t1和第二时间信号t2作比对;
所述第二时间信号t2小于两倍的第一时间信号t1,所述计时比较模块输出调节信号CCOUT,所述调节信号CCOUT为高电平以控制峰值电流控制电路降低峰值电流控制信号VCST的值,继而使得所述基于连续导通模式的反激式开关电源电路输出恒定电流。
7.如权利要求5或6所述的基于连续导通模式的反激式开关电源控制方法,其特征在于,
当所述第二时间信号t2等于两倍的第一时间信号t1时,所述基于连续导通模式的反激式开关电源电路输出的平均电流为:
Figure FDA0002636726920000031
其中,RCS为电流检测电阻的阻值,n为原边线圈和副边线圈的匝数比。
8.如权利要求7所述的基于连续导通模式的反激式开关电源控制方法,其特征在于,所述恒流控制电路还包括延时模块,
所述延时模块接收所述计时比较模块发送的调节信号CCOUT,判断所述调节信号CCOUT是否持续高电平,并根据判断结果以确定是否输出过载保护信号PRO,所述过载保护信号PRO用以控制所述反激式开关电源电路驱动信号关断。
CN202010827437.8A 2020-08-17 2020-08-17 基于连续导通模式的反激式开关电源电路及控制方法 Pending CN111884522A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010827437.8A CN111884522A (zh) 2020-08-17 2020-08-17 基于连续导通模式的反激式开关电源电路及控制方法
US17/773,602 US11984809B2 (en) 2020-08-17 2020-12-21 CCM-based fly-back switching power supply circuit and control method thereof
PCT/CN2020/138083 WO2022036971A1 (zh) 2020-08-17 2020-12-21 基于连续导通模式的反激式开关电源电路及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010827437.8A CN111884522A (zh) 2020-08-17 2020-08-17 基于连续导通模式的反激式开关电源电路及控制方法

Publications (1)

Publication Number Publication Date
CN111884522A true CN111884522A (zh) 2020-11-03

Family

ID=73202833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010827437.8A Pending CN111884522A (zh) 2020-08-17 2020-08-17 基于连续导通模式的反激式开关电源电路及控制方法

Country Status (3)

Country Link
US (1) US11984809B2 (zh)
CN (1) CN111884522A (zh)
WO (1) WO2022036971A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022036971A1 (zh) * 2020-08-17 2022-02-24 苏州力生美半导体有限公司 基于连续导通模式的反激式开关电源电路及控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364991B (zh) * 2011-02-01 2012-10-24 杭州士兰微电子股份有限公司 一种原边控制led恒流驱动开关电源控制器及其方法
CN102946197B (zh) * 2012-09-14 2014-06-25 昂宝电子(上海)有限公司 用于电源变换***的电压和电流控制的***和方法
JP6561612B2 (ja) * 2015-06-17 2019-08-21 富士電機株式会社 スイッチング電源の制御装置
CN106054995B (zh) 2016-07-04 2017-08-25 东南大学 一种原边反馈反激式电源ccm与dcm模式的恒流控制***
CN107154723B (zh) * 2017-04-26 2019-02-05 东南大学 一种反激式电源ccm与dcm模式的恒流控制***
EP3460977A1 (en) * 2017-09-26 2019-03-27 Yu Jing Energy Technology Co., Ltd Primary-side regulated current control system under llc topology
CN111478593A (zh) * 2020-05-20 2020-07-31 深圳市力生美半导体股份有限公司 反激式恒压恒流开关电源
CN111884522A (zh) * 2020-08-17 2020-11-03 苏州力生美半导体有限公司 基于连续导通模式的反激式开关电源电路及控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022036971A1 (zh) * 2020-08-17 2022-02-24 苏州力生美半导体有限公司 基于连续导通模式的反激式开关电源电路及控制方法
US11984809B2 (en) 2020-08-17 2024-05-14 Lii Semiconductor Co., Ltd. CCM-based fly-back switching power supply circuit and control method thereof

Also Published As

Publication number Publication date
WO2022036971A1 (zh) 2022-02-24
WO2022036971A9 (zh) 2022-04-07
US20220385192A1 (en) 2022-12-01
US11984809B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
CN209767389U (zh) 电流倍增dc-dc转换器
US8754617B2 (en) Reverse shunt regulator
US8923021B2 (en) Control circuit and system for switch mode power supply
US7826237B2 (en) Method and system for efficient power control with multiple modes
US7116089B1 (en) Constant-peak-current minimum-off-time pulse frequency modulator for switching regulators
EP1744441B1 (en) Method and apparatus to limit output power in a switching power supply
US9595861B2 (en) Power switching converter
US8634212B2 (en) Controller and controlling method for power converter
US20080031017A1 (en) Light load regulator for isolated flyback converter
US11271483B2 (en) Bias power regulator circuit for isolated converters with a wide output voltage range
CN113241941B (zh) 一种开关电源控制电路及***,以及控制方法
US6826063B2 (en) DC voltage converting circuit
US8385087B2 (en) Extending achievable duty cycle range in DC/DC forward converter with active clamp reset
US11682964B2 (en) Driving circuit and driving method
CN111884522A (zh) 基于连续导通模式的反激式开关电源电路及控制方法
US9543819B2 (en) Adaptive BJT driver for switching power converter
US11356010B2 (en) Controller with frequency request circuit
CN212278127U (zh) 基于连续导通模式的反激式开关电源电路
CN113726166A (zh) 反激变换器及其控制方法
CN212627660U (zh) 控制电路及开关模式供电电路
US9985532B1 (en) Pulse frequency modulation mode transitions for single stage power converter
US20230412082A1 (en) Control circuit, system and method for switched-mode power supply
CN113315380B (zh) 一种开关电源控制电路及***,以及控制方法
CN218633897U (zh) 一种可控的延时电路
CN113725819B (zh) 一种反激电路及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination