CN111871391A - 聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用 - Google Patents

聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用 Download PDF

Info

Publication number
CN111871391A
CN111871391A CN202010656966.6A CN202010656966A CN111871391A CN 111871391 A CN111871391 A CN 111871391A CN 202010656966 A CN202010656966 A CN 202010656966A CN 111871391 A CN111871391 A CN 111871391A
Authority
CN
China
Prior art keywords
polyvinyl alcohol
graphene oxide
manganese dioxide
solution
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010656966.6A
Other languages
English (en)
Other versions
CN111871391B (zh
Inventor
喻国策
王建龙
霍江波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202010656966.6A priority Critical patent/CN111871391B/zh
Publication of CN111871391A publication Critical patent/CN111871391A/zh
Application granted granted Critical
Publication of CN111871391B publication Critical patent/CN111871391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于水处理技术领域,尤其涉及一种聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用。本发明制备方法制备的吸附材料,以金属离子(二价锰离子)与聚合物(聚乙烯醇)为协同交联剂,诱导氧化石墨烯自组装形成三维凝胶;减压干燥后,再将其浸渍于高锰酸钾溶液中,使二价锰离子原位转化为二氧化锰,再次干燥,即可制得PVA/GO/MnO2。本发明基于金属离子/高聚物的协同诱发机制,合成方法简单高效。同时这种材料对锶离子表现出较好的吸附性能,且其具有易于分离的优点。本发明为核废水中放射性锶的去除提供了一种良好的吸附剂,具有潜在的应用价值。

Description

聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用
技术领域
本发明属于水处理技术领域,尤其涉及一种聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用。
背景技术
随着核技术在国民生产中的推广应用,核污染问题也日益突出。核原料235U和239Pu裂变时会产生多种裂变产物,其中90Sr占有比较高的裂变产率(5.76%)。随着后处理过程,90Sr等核素进入水体而产生大量高放射性废水。90Sr具有较长的半衰期(28.9年),释放至环境中会产生持久的危害,严重威胁人类的生命健康。国际***也将其列为高放射性核素之一。因此,锶的高效分离和严格控制,对保护环境具有十分重要的意义。
去除锶离子的传统方法主要包括:化学沉淀法,溶剂萃取法,离子交换法,吸附法,电化学处理法及生物法等。其中,吸附技术凭借去除效率高,操作成本低,工艺简单和选择性高等优点,受到了重点关注。金属氧化物,金属硫化物,碳基材料(碳纳米管和石墨烯),层状双氢氧化物和金属有机骨架材料等用作除锶吸附剂,已见诸报道。在众多的吸附材料中,性能优异的石墨烯及其衍生物,成为环保领域的一个研究热点。(氧化)石墨烯呈二维片层结构,具有较大的比表面积,其表面含有丰富的含氧官能团,已广泛用于去除重金属离子和核素等的研究。然而,由于范德华力的存在,石墨烯片层容易发生团聚而降低活性。同时,石墨烯在水中的高度分散性,导致吸附后不易实现固液分离。这些缺点限制了石墨烯吸附剂的进一步应用研究。为解决这个难题,很多学者致力于开发以石墨烯为基质的三维凝胶吸附材料(即石墨烯气凝胶)。此类气凝胶是由氧化石墨烯自组装或同其他物质交联合成的具有分级结构的三维材料。该材料具有较大的比表面积和丰富的孔隙结构,低的密度和高的弹性等优点。特别是这种宏观块体形态彻底克服了二维石墨烯不易分离的缺点。上述优势使三维石墨烯凝胶作为吸附剂或吸附剂载体展现出了广阔的应用前景。
发明内容
本发明的目的是提出聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用,针对核素等污染物,选用聚乙烯醇和锰离子作为交联剂,协同诱发石墨烯的组装,进而生成三维凝胶吸附剂,并将该吸附剂用于核废水处理。
本发明提出的聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备方法,包括以下步骤:
(1)配制交联剂溶液:
将聚乙烯醇和四水合乙酸锰混溶于水中,混溶的质量百分比为:聚乙烯醇:四水合乙酸锰:水=(0.01~0.04):(0.02~0.08):1,加热并保持水温50~100℃,持续搅拌3~10小时,得到交联剂溶液;
(2)配制高锰酸钾溶液:
用高锰酸钾固体粉末配制高锰酸钾溶液,使高锰酸钾溶液的质量百分比浓度为1wt%~wt4%;
(3)诱发交联:
在4~12mg/mL氧化石墨烯(GO)分散液(由购买的储备液稀释配制)中滴加交联剂,滴加比例为:交联剂:氧化石墨烯分散液=(0.02~1):1,振荡以促进胶化,得到聚乙烯醇/氧化石墨烯/二价锰离子水凝胶;
(4)减压干燥:
使聚乙烯醇/氧化石墨烯/二价锰离子水凝胶在-80~-60℃下冷冻干燥12~48小时,得到聚乙烯醇/氧化石墨烯/二价锰离子干凝胶;
(5)氧化反应:
将聚乙烯醇/氧化石墨烯/二价锰离子干凝胶浸渍于高锰酸钾溶液中,室温搅拌,搅拌速度为50~200转/分钟,反应3~12小时,得到聚乙烯醇/氧化石墨烯/二氧化锰水凝胶;
(6)对步骤(5)的聚乙烯醇/氧化石墨烯/二氧化锰水凝胶进行淋洗,至淋洗液无色且pH测试呈中性,在-80~-60℃下冷冻干燥12~48小时,得到聚乙烯醇/氧化石墨烯/二氧化锰吸附剂。
本发明提出的聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的应用,将聚乙烯醇/氧化石墨烯/二氧化锰吸附剂用于去除废水中核素(Sr2+),包括以下步骤:
(1)将聚乙烯醇/氧化石墨烯/二氧化锰吸附剂加入到含有Sr2+的核废水中,吸附剂的质量与核废水的体积混合比为0.40~4g/L,得到混合溶液;
(2)反应6~24小时,过滤并测定其中残余Sr2+的质量浓度,Sr2+从液体转移至固体聚乙烯醇/氧化石墨烯/二氧化锰吸附剂表面,溶液残留浓度逐渐降低,去除核废水中的Sr2 +
本发明提出的聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备方法及应用,其优点是:
与现有除锶吸附剂相比,本发明的主要优点如下:
1、本发明的聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备方法,操作简单,易于规模化生产,且所采用原料,储量丰富,成本低廉。
2、本发明制备的凝胶吸附剂,对锶离子表现出较高的吸附活性(饱和吸附量26.5mg[Sr2+]/g吸附剂),高于粘土矿物等吸附剂。
3、本发明制备的凝胶吸附剂,呈宏观三维块体形态,可借用网状工具实现固液分离,生产过程易于操作。
4、本发明制备的凝胶吸附剂,质量小易粉碎,方便运输,为后续的处理处置提供方便。
5、本发明方法制备的聚乙烯醇/氧化石墨烯/二氧化锰凝胶吸附剂,既有较好的吸附活性,又具有易分离的优势,可作为一种较好的去除放射性废水中锶的吸附材料。
附图说明
图1是本发明方法制备的PVA/GO/MnO2吸附剂的吸附效果示意图。
具体实施方式
本发明提出的聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备方法,包括以下步骤:
(1)配制交联剂溶液:
将聚乙烯醇(PVA)和四水合乙酸锰混溶于水中,混溶的质量百分比为:聚乙烯醇:四水合乙酸锰:水=(0.01~0.04):(0.02~0.08):1,加热并保持水温50~100℃,持续搅拌3~10小时,得到交联剂溶液;
(2)配制高锰酸钾溶液:
用高锰酸钾固体粉末配制高锰酸钾溶液,使高锰酸钾溶液的质量百分比浓度为1wt%~wt4%;
(3)诱发交联:
在4~12mg/mL氧化石墨烯(GO)分散液(由购买的储备液稀释配制)中滴加交联剂,滴加比例为:交联剂:氧化石墨烯分散液=(0.02~1):1,振荡以促进胶化,得到聚乙烯醇/氧化石墨烯/二价锰离子水凝胶;
(4)减压干燥:
使聚乙烯醇/氧化石墨烯/二价锰离子水凝胶在-80~-60℃下冷冻干燥12~48小时,得到聚乙烯醇/氧化石墨烯/二价锰离子干凝胶;
(5)氧化反应:
将聚乙烯醇/氧化石墨烯/二价锰离子干凝胶浸渍于高锰酸钾溶液中,室温搅拌,搅拌速度为50~200转/分钟,反应3~12小时,得到聚乙烯醇/氧化石墨烯/二氧化锰水凝胶;
(6)对步骤(5)的聚乙烯醇/氧化石墨烯/二氧化锰水凝胶进行淋洗,至淋洗液无色且pH测试呈中性,在-80~-60℃下冷冻干燥12~48小时,得到聚乙烯醇/氧化石墨烯/二氧化锰吸附剂(PVA/GO/MnO2)。
本发明提出的聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的应用,将聚乙烯醇/氧化石墨烯/二氧化锰吸附剂用于去除废水中核素(Sr2+),包括以下步骤:
(1)将聚乙烯醇/氧化石墨烯/二氧化锰吸附剂加入到含有Sr2+的核废水中,吸附剂的质量与核废水的体积混合比为0.40~4g/L,得到混合溶液;
(2)反应6~24小时,过滤并测定其中残余Sr2+的质量浓度,Sr2+从液体转移至固体聚乙烯醇/氧化石墨烯/二氧化锰吸附剂表面,溶液残留浓度逐渐降低,去除核废水中的Sr2 +
本发明方法制备聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的原理:
本发明所论述的凝胶复合吸附材料的合成机理在于:氧化石墨烯(GO)表面含有环氧基、羧基和羟基等含氧官能团;这些基团在吸附水中核素或重金属的过程中发挥重要作用。为了尽可能保留这些活性位点,在合成三维石墨烯凝胶材料时,本发明选用聚乙烯醇(PVA,氢键作用)作为交联剂之一。另外,金属阳离子(Mn2+)也可以诱发氧化石墨烯的交联聚沉。PVA的氢键作用与Mn2+的电荷可协同诱发GO的交联。更重要的是,原位附着在三维骨架结构中的Mn2+可以通过后续氧化剂(高锰酸钾,KMnO4)的氧化作用,从而转变为锰氧化物。锰氧化物表面一般带负电,这种性质有利于阳离子的吸附。该复合凝胶对水中的锶离子表现出增强的吸附活性,且这种凝胶吸附剂具有易于分离的优势。本发明为核废水中锶离子的去除和控制,提供了一种可靠的选择。
以下介绍本发明方法的实施例,以下对本发明实施例的介绍,是为了辅助说明和解释本发明,并不用于限制本发明。相关领域技术人员,对于实施方案中的成分和用量做的各种变动,均属于本发明的覆盖范围。
实施例一:
(1)配制交联剂溶液:
称取一定量聚乙烯醇(PVA)和四水合乙酸锰混溶于适量纯水,混溶的质量百分比为PVA:四水合乙酸锰:水=0.016:0.039:1,加热并保持水温80℃,持续搅拌4小时,得到交联剂溶液;
(2)配制高锰酸钾溶液:
用高锰酸钾固体粉末配制高锰酸钾溶液,使高锰酸钾溶液的质量百分比浓度为1.58wt%;
(3)诱发交联:
在2.5mL氧化石墨烯(GO,8mg/mL)分散液中滴加交联剂,滴加比例为:交联剂:氧化石墨烯分散液=0.25:1,并振荡以促进胶化,得到聚乙烯醇/氧化石墨烯/二价锰离子水凝胶;
(4)减压干燥:
待胶化完成,封口,-60℃冷冻干燥24小时,聚乙烯醇/氧化石墨烯/二价锰离子干凝胶;
(5)氧化反应:
将聚乙烯醇/氧化石墨烯/二价锰离子干凝胶浸渍于高锰酸钾溶液中,室温搅拌100转/分钟,保持反应6小时,得聚乙烯醇/氧化石墨烯/二氧化锰水凝胶;
(6)清洗和减压干燥:取出反应后的吸水凝胶,水洗若干次,至淋洗液无色且pH呈中性。-60℃冷冻干燥24小时,即得聚乙烯醇/氧化石墨烯/二氧化锰干凝胶。
实施例二
将实施案例1合成的PVA/GO/MnO2凝胶吸附剂,用于模拟水中Sr(II)的去除实验,详细过程如下:
(1)配制一系列不同浓度Sr(II)溶液,梯度设置如下:5.3,8.6,11.4,14.0,17.2,18.9,22.4mg/L。用0.1mol/L的稀硝酸将上述系列溶液的pH调至7.0±0.2,每个浓度设3个平行样,并分装于21个锥形瓶中(含30mL溶液),备用。
(2)称量凝胶吸附剂(21份×0.012g),分别投加于步骤一所述溶液中。投加量控制为:0.40g/L,摇床参数设置为:100转/分钟,25℃;放入摇床,恒温振荡12小时。
步骤三、反应完成后,使用一次性注射器分别取样5mL,经孔径为0.22μm的水系膜过滤,保存滤液;通过偏振塞曼原子吸收分光光度计-ZA3000系列(ASS,日立公司,日本)分析定量。
图1是PVA/GO/MnO2的吸附等温线,随着平衡浓度的增加,吸附量也逐渐增加。利用朗格缪尔等温模型可得理论最大吸附量26.8mg[Sr2+]/g[吸附剂]。
实施例三
将实施案例1合成的PVA/GO/MnO2凝胶吸附剂,用于模拟水中Sr(II)的pH影响实验,详细过程如下:
(1)配制浓度约为12.0mg/L Sr(II)溶液,分装于6个锥形瓶中,每个瓶中溶液为90mL,0.1mol/L硝酸将上述溶液pH调至如下:2.0,3.7,6.0,7.0,8.1,10.0;然后将每个瓶中的溶液,再均分成三等份(3×30mL),平行处理,备用。
(2)称量凝胶吸附剂(18份×0.012g),分别投加于(1)所述溶液中。即投加量为:0.40g/L;摇床参数设置为:100转/分钟,25℃;将系列溶液放入摇床,恒温振荡12小时。
步骤三、反应完成后,移液枪取样5mL,经装有滤膜(孔径为0.22μm的水系膜)的一次性注射器过滤,保存滤液;通过偏振塞曼原子吸收分光光度计-ZA3000系列(ASS,日立公司,日本)分析定量。
结果表明:当溶液初始pH=6.0~10.0范围内时,Sr2+的去除率均大于70%。
实施例四
将实施案例1合成的PVA/GO/MnO2凝胶吸附剂,用于模拟水中共存离子对Sr(II)吸附实验,详细过程如下:
(1)配制浓度约为10.0mg/L的Sr(II)溶液,等分装于5个烧杯中,其中1个烧杯未加入干扰离子(对照组),依次在其他4个烧杯中加入高浓度的硝酸钠,硝酸钾,硝酸镁和硝酸钙溶液(实验组),使混合后各阳离子(Na+,K+,Mg2+,Ca2+)浓度约为50.0mg/L(干扰离子:目标离子质量浓度比为5:1)。用0.1mol/L硝酸将上述系列溶液调至pH=7.0±0.2,然后将5个烧杯中的溶液等量分装于15个锥形瓶中,做平行处理,备用。
(2)称量凝胶吸附剂(15份×0.012g),分别投加于步骤一所述溶液中。即投加量为:0.40g/L,摇床参数设置为:100转/分钟,25℃;然后放入摇床,恒温振荡12小时。
步骤三、反应完成后,用移液枪取样5mL,经装有滤膜(孔径为0.22μm的水系膜)的一次性注射器过滤,保存滤液;通过偏振塞曼原子吸收分光光度计-ZA3000系列(ASS,日立公司,日本)分析定量。
结果表明:高浓度的Na+和K+,对Sr2+的去除率影响较小,仅有约5%的波动;而Mg2+和Ca2+对Sr2+的吸附有较大抑制作用,这主要是因为它们具有相同的理化性质和相近的水合半径。

Claims (2)

1.一种聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备方法,其特征在于该方法包括以下步骤:
(1)配制交联剂溶液:
将聚乙烯醇和四水合乙酸锰混溶于水中,混溶的质量百分比为:聚乙烯醇:四水合乙酸锰:水=(0.01~0.04):(0.02~0.08):1,加热并保持水温50~100℃,持续搅拌3~10小时,得到交联剂溶液;
(2)配制高锰酸钾溶液:
用高锰酸钾固体粉末配制高锰酸钾溶液,使高锰酸钾溶液的质量百分比浓度为1wt%~wt4%;
(3)诱发交联:
在4~12mg/mL氧化石墨烯(GO)分散液(由购买的储备液稀释配制)中滴加交联剂,滴加比例为:交联剂:氧化石墨烯分散液=(0.02~1):1,振荡以促进胶化,得到聚乙烯醇/氧化石墨烯/二价锰离子水凝胶;
(4)减压干燥:
使聚乙烯醇/氧化石墨烯/二价锰离子水凝胶在-80~-60℃下冷冻干燥12~48小时,得到聚乙烯醇/氧化石墨烯/二价锰离子干凝胶;
(5)氧化反应:
将聚乙烯醇/氧化石墨烯/二价锰离子干凝胶浸渍于高锰酸钾溶液中,室温搅拌,搅拌速度为50~200转/分钟,反应3~12小时,得到聚乙烯醇/氧化石墨烯/二氧化锰水凝胶;
(6)对步骤(5)的聚乙烯醇/氧化石墨烯/二氧化锰水凝胶进行淋洗,至淋洗液无色且pH测试呈中性,在-80~-60℃下冷冻干燥12~48小时,得到聚乙烯醇/氧化石墨烯/二氧化锰吸附剂。
2.一种如权利要求1的制备方法制备的聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的应用,其特征在于,将聚乙烯醇/氧化石墨烯/二氧化锰吸附剂用于去除废水中核素(Sr2+),包括以下步骤:
(1)将聚乙烯醇/氧化石墨烯/二氧化锰吸附剂加入到含有Sr2+的核废水中,使吸附剂的质量与核废水的体积混合比为0.40~4g/L,得到混合溶液;
(2)反应6~24小时,过滤并测定其中残余Sr2+的质量浓度,Sr2+从液体转移至固体聚乙烯醇/氧化石墨烯/二氧化锰吸附剂表面,溶液残留浓度逐渐降低,去除核废水中的Sr2+
CN202010656966.6A 2020-07-09 2020-07-09 聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用 Active CN111871391B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010656966.6A CN111871391B (zh) 2020-07-09 2020-07-09 聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010656966.6A CN111871391B (zh) 2020-07-09 2020-07-09 聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用

Publications (2)

Publication Number Publication Date
CN111871391A true CN111871391A (zh) 2020-11-03
CN111871391B CN111871391B (zh) 2022-06-07

Family

ID=73151489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010656966.6A Active CN111871391B (zh) 2020-07-09 2020-07-09 聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用

Country Status (1)

Country Link
CN (1) CN111871391B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145028A (zh) * 2021-03-23 2021-07-23 清华大学 一种磁性还原氧化石墨烯气凝胶及其制备方法与应用
CN113658809A (zh) * 2021-06-29 2021-11-16 东风汽车集团股份有限公司 一种非晶氧化锰电极材料制备方法
CN114804202A (zh) * 2022-05-31 2022-07-29 中国核动力研究设计院 一种聚锑酸无机吸附剂、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140081067A1 (en) * 2011-02-25 2014-03-20 William Marsh Rice University Sorption and separation of various materials by graphene oxides
CN103738944A (zh) * 2013-11-14 2014-04-23 盐城增材科技有限公司 一种通过纳米粒子掺杂制备三维石墨烯的方法
CN106902778A (zh) * 2017-04-28 2017-06-30 武汉理工大学 一种壳聚糖/氧化石墨烯/聚乙烯醇多孔复合吸附材料及其制备方法
US20180193261A1 (en) * 2015-03-23 2018-07-12 Gwangju Institute Of Science And Technology Method for preparing hydrogel containing reduced graphene oxide
CN109012598A (zh) * 2018-09-12 2018-12-18 南昌航空大学 一种基于二氧化锰/氧化石墨烯纳米复合材料的环丙沙星吸附净化剂的制备方法
CN110102258A (zh) * 2019-05-15 2019-08-09 华北电力大学 三维二氧化锰与氧化石墨烯复合吸附剂的合成方法及应用
CN110808359A (zh) * 2019-08-15 2020-02-18 浙江工业大学 一种MnO2/rGO/PANI气凝胶的制备方法及其在水系锌离子电池中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140081067A1 (en) * 2011-02-25 2014-03-20 William Marsh Rice University Sorption and separation of various materials by graphene oxides
CN103738944A (zh) * 2013-11-14 2014-04-23 盐城增材科技有限公司 一种通过纳米粒子掺杂制备三维石墨烯的方法
US20180193261A1 (en) * 2015-03-23 2018-07-12 Gwangju Institute Of Science And Technology Method for preparing hydrogel containing reduced graphene oxide
CN106902778A (zh) * 2017-04-28 2017-06-30 武汉理工大学 一种壳聚糖/氧化石墨烯/聚乙烯醇多孔复合吸附材料及其制备方法
CN109012598A (zh) * 2018-09-12 2018-12-18 南昌航空大学 一种基于二氧化锰/氧化石墨烯纳米复合材料的环丙沙星吸附净化剂的制备方法
CN110102258A (zh) * 2019-05-15 2019-08-09 华北电力大学 三维二氧化锰与氧化石墨烯复合吸附剂的合成方法及应用
CN110808359A (zh) * 2019-08-15 2020-02-18 浙江工业大学 一种MnO2/rGO/PANI气凝胶的制备方法及其在水系锌离子电池中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YING-XIA MA ET AL.: "Fabrication of 3D Porous Polyvinyl Alcohol/Sodium Alginate/Graphene Oxide Spherical Composites for the Adsorption of Methylene Blue", 《JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY》 *
YING-XIA MA ET AL.: "Fabrication of 3D Porous Polyvinyl Alcohol/Sodium Alginate/Graphene Oxide Spherical Composites for the Adsorption of Methylene Blue", 《JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY》, vol. 20, no. 4, 1 April 2020 (2020-04-01), pages 2205 - 2213 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145028A (zh) * 2021-03-23 2021-07-23 清华大学 一种磁性还原氧化石墨烯气凝胶及其制备方法与应用
CN113658809A (zh) * 2021-06-29 2021-11-16 东风汽车集团股份有限公司 一种非晶氧化锰电极材料制备方法
CN114804202A (zh) * 2022-05-31 2022-07-29 中国核动力研究设计院 一种聚锑酸无机吸附剂、制备方法及应用

Also Published As

Publication number Publication date
CN111871391B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN111871391B (zh) 聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用
Chen et al. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade
Huo et al. Selective adsorption of cesium (I) from water by Prussian blue analogues anchored on 3D reduced graphene oxide aerogel
Niu et al. Preparation of sulphate aluminate cement amended bentonite and its use in heavy metal adsorption
Lu et al. Spectroscopic and modeling investigation of efficient removal of U (VI) on a novel magnesium silicate/diatomite
Li et al. Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U (VI)
Ahmadijokani et al. Efficient removal of heavy metal ions from aqueous media by unmodified and modified nanodiamonds
CN101973620A (zh) 利用氧化石墨烯片去除水中重金属离子的方法
CN113368812B (zh) 一种Co3O4/埃洛石复合材料、制备方法及应用
CN113877517B (zh) 一种用于去除放射性碘的硫化铋气凝胶吸附剂及其制备方法和应用
Zhuang et al. Selective and effective adsorption of cesium ions by metal hexacyanoferrates (MHCF, M= Cu, Co, Ni) modified chitosan fibrous biosorbent
Zhu et al. Hazelnut shell activated carbon: a potential adsorbent material for the decontamination of uranium (VI) from aqueous solutions
CN111871361B (zh) 环境修复材料及其制备方法和应用
Sha et al. Removal of fluoride using platanus acerifoli leaves biochar–an efficient and low-cost application in wastewater treatment
Ao et al. Polyethyleneimine incorporated chitosan/α-MnO2 nanorod honeycomb-like composite foams with remarkable elasticity and ultralight property for the effective removal of U (VI) from aqueous solution
CN111790349A (zh) 一种用于吸附重金属离子的吸附剂的制备方法及应用
Gao et al. Effective Pb2+ adsorption by calcium alginate/modified cotton stalk biochar aerogel spheres: With application in actual wastewater
Lalhmunsiama et al. Recent advances in adsorption removal of cesium from aquatic environment
CN114262034B (zh) 一种利用聚乙烯醇/壳聚糖/石墨烯/亚铁氰化镍铜复合物分离盐湖卤水中铷的方法
CN113908799B (zh) 一种磁性普鲁士蓝纳米粘土的制备方法和应用
CN111450808A (zh) 膦酸功能化聚合物/石墨烯纳米带复合气凝胶及其制备方法和应用
CN102580697A (zh) 一种钠基膨润土-am-aa复合新型铅离子吸附剂
Dai et al. High-efficiency removal of Cs (I) by vermiculite/zinc hexacyanoferrate (II) composite from aqueous solutions
Wang et al. Spongy porous CuFe Prussian blue deposited MXene nanosheets for quick removal of cesium ions from wastewater and seawater
CN112439389B (zh) 一种磁性淀粉膨润土废水处理剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant