CN111850389B - 一种制备铁氮化物纳米棒材料的方法 - Google Patents

一种制备铁氮化物纳米棒材料的方法 Download PDF

Info

Publication number
CN111850389B
CN111850389B CN201910352344.1A CN201910352344A CN111850389B CN 111850389 B CN111850389 B CN 111850389B CN 201910352344 A CN201910352344 A CN 201910352344A CN 111850389 B CN111850389 B CN 111850389B
Authority
CN
China
Prior art keywords
reaction
temperature
preparing
carbon
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910352344.1A
Other languages
English (en)
Other versions
CN111850389A (zh
Inventor
李达
李勇
潘德胜
刘伟
崔哲镇
张志东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201910352344.1A priority Critical patent/CN111850389B/zh
Publication of CN111850389A publication Critical patent/CN111850389A/zh
Application granted granted Critical
Publication of CN111850389B publication Critical patent/CN111850389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明的目的是提供一种制备铁氮化物纳米棒材料的方法,采用化学液相法制备,所述碳包裹Fe16N2纳米棒材料,其外壳层为碳,内核组成为Fe16N2纳米棒。该方法制备可以用于合成具有磁性的、直径为20‑30纳米、长度为0.5‑3微米的碳包裹的Fe16N2纳米棒。碳包裹Fe16N2纳米棒具备的优异磁性,利用表面效应、催化、光学或磁学等特殊性质,在结合生物分子独特的生物功能下,能够广泛应用于生物、医学、永磁等领域。

Description

一种制备铁氮化物纳米棒材料的方法
技术领域
本发明属于无机功能纳米材料领域,具体涉及一种制备铁氮化物磁性纳米材料的方法。
背景技术
二元铁氮化物具有黑灰色泽,属于金属间隙化合物。根据铁-氮相图,二元铁氮化物包括Fe2N、γ'-Fe4N、ε-Fe2N1-x和α”-Fe16N2等相。其中具有四方晶体结构(I4/mmm)的α”-相铁氮化物的一般化学式可写为α”-Fe16N2,氮元素的含量为11.1at.%(原子百分比)。室温时,具有铁磁性。α”-Fe16N2化合物因其良好的磁性能,在永磁应用方面具有很大潜力。含有磁性γ'-Fe4N、ε-Fe2N1-x纳米粒子的胶体溶液可用于制造磁流体。氮化铁还可作为催化剂,对于费托合成及合成氨等反应具有良好的催化反应活性。
通常传统的渗氮方法有三种,包括气体氮化、液体氮化和氮离子注入等方法。采用机械合金化方法P.Y.Lee等研究了铁氮化物粉体的结构和磁性能(J.Alloys Compd.1995,222,179-183.)。W.A.Kaczmarek(Scr.Metall.Mater.,1995,33,1687-1694.)和X.Q.Zhao等(Mater.Res.Soc.Symp.Proc.,1995,368,39-43.)在NH3/H2或NH3的氮化气氛中加热分解羰基铁,制备了铁氮化物纳米粒子。Grimes等(J.Appl.Phys.,2000,87,5642-5644.)以羰基铁和乙烯为原料,使用激光热分解法得到了磁性γ'-Fe4N纳米粒子。李达等(J.Magn.Magn.Mater.2004,277(1-2),64-70.和J.Magn.Magn.Mater.2004,283(1),8-15.)利用化学汽相冷凝方法合成纳米铁氮化物粉末,研究了载流气体种类及流量、工作腔气氛和原料分解温度等实验条件,对铁氮化物纳米粉末的相形成、微观组织结构和磁性的影响。发明专利申请20171036578.2公开了一种采用可溶性铁前驱体为原材料,通过化学溶液法,以有机胺为氮源,合成了碳包裹Fe3N及其复合磁性纳米颗粒的方法。
T.K.Kim等(Appl.Phys.Lett.,1972,20,492.)在氮气(N2)中蒸发铁,制备了主相为Fe16N2的磁性薄膜,发现Fe16N2拥有最高的饱和磁化强度值。K.Nakajima等人(IEEETrans.Magn.,1998,34,542-548.)通过氮离子注入单晶铁膜,获得了Fe16N2。M.Q.Huang等人(J.Appl.Phys.,1994,75,6574-6576.)在NH3/H2混合气氛中处理铁粉,制备了Fe16N2,其成分占粉末样品的50%。S.Kikkawa等(Mater.Res.Bulletin,2008,43,3352-3357.)采用氢气还原gamma-Fe2O3粉末,并通过氨气在130℃低温氮化100小时,获得了Fe16N2颗粒。通过化学溶液制备碳包裹α”-Fe16N2磁性纳米棒材料的方法,未见报导。
发明内容
本发明的目的是提供一种制备Fe16N2纳米棒材料的方法,采用化学液相法制备碳包裹Fe16N2纳米棒,该方法制备操作简单、制备温度低,可以用于合成具有磁性、直径为20-30纳米、长度为0.5-3微米的,具有核壳微观结构的碳包裹的Fe16N2纳米棒材料。
本发明技术方案如下:
本发明提供了所述一种制备铁氮化物纳米棒材料的方法,采用化学液相法制备,具体步骤如下:
(1)将有机溶剂、表面活性剂之一种或多种混合,排除空气,加热到一定温度,得到反应溶液。
(2)将转移到注射器中的原材料,缓慢注入反应溶液。注入完毕,保温一段时间。
(3)将反应体系降至反应温度,保温至结束反应,降温至室温。
(4)离心分离反应产物溶液,弃上清,得到沉淀产物。
(5)用无水乙醇洗涤后,干燥,得到产物粉末。
本发明方案步骤(1)中有机溶剂为十八烯和四乙烯五胺混合溶剂,混合有机溶剂中十八烯和四乙烯五胺的体积比为2:1到1:2之间;表面活性剂为油胺。加热温度为200-220℃。
本发明方案步骤(1)有机溶剂用量为50-120ml,表面活性剂用量为0-40ml。在此基础上,混合有机溶剂与表面活性剂的体积比例为60:1到60:10之间。
本发明方案步骤(2)中原材料为羰基铁,原材料用量为0.05-15mmol,且反应溶液和羰基铁的体积比为60:0.1到60:5之间;注入完毕后保温时间为0-30min。
本发明方案步骤(3)中反应温度为120-160℃。保温时间为3-12天。
本发明所述一种制备铁氮化物纳米棒材料的方法制备的氮化物纳米棒材料,为碳包裹Fe16N2纳米棒,具有磁性能;碳包裹Fe16N2纳米棒具有壳核微观结构,其外壳层为碳,内核组成为Fe16N2
本发明采用化学液相法制备碳包裹制备Fe16N2纳米棒材料,优点在于:过程简单,成本低廉、无须昂贵或有特殊要求的试剂和设备,获得了具有磁性的碳包裹制备Fe16N2纳米棒材料,利用表面效应、催化、光学或磁学等特殊性质,在结合生物分子独特的生物功能下,能够广泛应用于生物、医学、永磁等领域。
附图说明
图1为本发明制得的碳包裹Fe16N2磁性纳米材料的x-射线衍射图;(a)反应温度120℃;(b)反应温度130℃;(c)Fe16N2的x-射线衍射标准卡片(#78-1865)数据。
图2为本发明制得的碳包裹Fe16N2磁性纳米材料的透射电镜(TEM)照片。
图3为本发明制得的碳包裹Fe16N2磁性纳米材料的高分辨透射电镜(HRTEM)照片。
图4为本发明制得的碳包裹Fe16N2的X-射线光电子谱图。
图5为本发明在反应温度160℃下制得的碳包裹Fe16N2磁性纳米材料的室温磁滞回线。
图6本发明在反应温度140℃下制得的碳包裹Fe16N2磁性纳米材料的室温磁滞回线。
图7为本发明在反应温度120℃下制得的碳包裹Fe16N2磁性纳米材料的室温磁滞回线。
具体实施方式
以下实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1
(1)将有机溶剂十八烯(48ml)、四乙烯五胺(10ml)以及表面活性剂油胺(1.3ml)混合,通氮气排除空气,加热到200℃,得到反应溶液。
(2)将转移到注射器中的羰基铁(2ml),缓慢注入反应溶液。注入完毕,在200℃保温20分钟。
(3)将反应体系降至160℃,并在该温度下保温6天。然后,反应结束,降温至室温。
(4)离心分离反应产物溶液,弃上清,得到沉淀产物。
(5)用无水乙醇洗涤后,干燥,得到产物粉末。
采用X-射线衍射测定了产物的晶体结构,确定了物相是具有四方晶体结构的Fe16N2,如图1a所示。其透射电镜(TEM)照片,显示碳包裹Fe16N2纳米棒的直径为20-30纳米、长度为0.5-3微米。由于具有磁各向异性性能,使纳米棒按照一定方式排列,如图2所示。碳包裹Fe16N2磁性纳米棒材料的高分辨TEM照片如图3所示。图4为碳包裹Fe16N2的X-射线光电子谱图。其室温磁滞回线如图5所示。
实施例2
与实施例1不同之处为:将转移到注射器中的羰基铁(1.5ml),缓慢注入反应溶液。注入完毕,在200℃保温10分钟。将反应体系降至120℃,并在该温度下保温6天。然后,反应结束,降温至室温。采用X-射线衍射测定了产物的晶体结构,确定了物相是具有四方晶体结构的Fe16N2,如图1b所示。
实施例3
与实施例1不同之处为:将反应体系降至140℃,并在该温度下保温6天。然后,反应结束,降温至室温。将碳包裹Fe16N2磁性纳米棒材料离心分离,并用无水乙醇洗涤3遍,干燥。其室温磁滞回线如图6所示。
实施例4
与实施例1不同之处为:将有机溶剂十八烯(40ml)、四乙烯五胺(10ml)以及表面活性剂油胺(20ml)混合,通氮气排除空气,加热到220℃,得到反应溶液。将转移到注射器中的羰基铁(1ml),缓慢注入反应溶液。注入完毕,在200℃保温5分钟。将反应体系降至120℃,并在该温度下保温6天。然后,反应结束,降温至室温。将碳包裹Fe16N2磁性纳米棒材料离心分离,并用无水乙醇洗涤3遍,干燥。其室温磁滞回线如图7所示。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种制备铁氮化物纳米棒材料的方法,其特征在于,采用化学液相法制备得到碳包裹Fe16N2纳米棒,具体步骤如下:
(1)将有机溶剂、表面活性剂之一种或多种混合,排除空气,加热到200-220℃,得到反应溶液,所述有机溶剂为十八烯和四乙烯五胺混合溶剂,表面活性剂为油胺;
(2)将转移到注射器中的原材料,缓慢注入反应溶液;注入完毕,保温一段时间,所述原材料为羰基铁;
(3)将反应体系降至反应温度,保温至结束反应后,降温至室温,所述反应温度为120-160℃,保温时间为3-12天;
(4)离心分离反应产物溶液,弃上清,得到沉淀产物;
(5)用无水乙醇洗涤后,干燥,得到产物粉末。
2.按照权利要求1所述一种制备铁氮化物纳米棒材料的方法,其特征在于,采用化学液相法制备得到碳包裹Fe16N2纳米棒,具体步骤如下:
(1)将有机溶剂、表面活性剂之一种或多种混合,在惰性气体保护下升温至200-220℃,保温5分钟以上,排除体系中的水和氧气,获得反应溶液,所述有机溶剂为十八烯和四乙烯五胺混合溶剂,表面活性剂为油胺;
(2)将原材料通过注射器缓慢注入反应溶液,保温0~30min,所述原材料为羰基铁;
(3)将反应体系降至反应温度,保温至结束反应后,将反应体系降至室温,所述反应温度为120-160℃,保温时间为3-12天;
(3)离心分离反应产物溶液,弃上清,得到沉淀产物;
(4)用无水乙醇洗涤后,干燥,得到产物粉末。
3.按照权利要求1或2所述一种制备铁氮化物纳米棒材料的方法,其特征在于:步骤(1)中混合有机溶剂中十八烯和四乙烯五胺的体积比为2:1到1:2之间。
4.按照权利要求1或2所述一种制备铁氮化物纳米棒材料的方法,其特征在于:步骤(2)中反应溶液和羰基铁的体积比为60:0.1到60:5之间。
5.按照权利要求1或2所述一种制备铁氮化物纳米棒材料的方法,其特征在于:步骤(1)中有机溶剂用量为50-120ml,表面活性剂用量为0-40ml;步骤(2)中原材料用量为0.05-15mmol。
6.按照权利要求5所述一种制备铁氮化物纳米棒材料的方法,其特征在于:步骤(1)中混合有机溶剂与表面活性剂的体积比例为60:1到60:10之间。
7.一种按照权利要求1或2所述制备铁氮化物纳米棒材料的方法制备的材料,其特征在于:铁氮化物纳米棒材料具有磁性能,且铁氮化物纳米棒的外壳为碳。
CN201910352344.1A 2019-04-29 2019-04-29 一种制备铁氮化物纳米棒材料的方法 Active CN111850389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910352344.1A CN111850389B (zh) 2019-04-29 2019-04-29 一种制备铁氮化物纳米棒材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910352344.1A CN111850389B (zh) 2019-04-29 2019-04-29 一种制备铁氮化物纳米棒材料的方法

Publications (2)

Publication Number Publication Date
CN111850389A CN111850389A (zh) 2020-10-30
CN111850389B true CN111850389B (zh) 2021-12-21

Family

ID=72966301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910352344.1A Active CN111850389B (zh) 2019-04-29 2019-04-29 一种制备铁氮化物纳米棒材料的方法

Country Status (1)

Country Link
CN (1) CN111850389B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2365082B1 (es) * 2010-03-08 2012-08-08 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtencion de materiales con comportamiento superparamagnetico
US8597420B2 (en) * 2011-03-17 2013-12-03 Xerox Corporation Solvent-based inks comprising coated magnetic nanoparticles
BR112016022561A2 (pt) * 2014-03-28 2017-08-15 Univ Minnesota Material magnético de nitreto de ferro incluindo nanopartículas revestidas
US10072356B2 (en) * 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
CN107162064B (zh) * 2017-06-26 2019-05-31 浙江工业大学 一种高温分解法制备氟化亚铁纳米材料的方法
CN109215913B (zh) * 2017-07-04 2021-03-02 中国科学院金属研究所 一种制备碳包裹铁氮化物及其复合磁性纳米材料的方法
CN109461557B (zh) * 2017-09-06 2020-08-11 中国科学院金属研究所 具有室温亚铁磁性的有序无机-有机杂化纳米材料及制备

Also Published As

Publication number Publication date
CN111850389A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
Gandha et al. High energy product developed from cobalt nanowires
Wang et al. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction
Salavati-Niasari et al. Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate
JP6155440B2 (ja) 強磁性窒化鉄粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石の製造方法
Wu et al. Magnetic properties of nanocrystalline Fe/Fe 3 C composites
WO2013042721A1 (ja) 強磁性窒化鉄粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石
JP5924657B2 (ja) 強磁性窒化鉄粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石
Chen et al. Preparation of carbon-encapsulated metal magnetic nanoparticles by an instant pyrolysis method
CN100355940C (zh) 三氧化二铁包覆碳纳米管磁性复合材料的制备方法
CN109215913B (zh) 一种制备碳包裹铁氮化物及其复合磁性纳米材料的方法
CN100344708C (zh) 一种三氧化二铁修饰的碳纳米管磁性复合材料的制备方法
CN102744419B (zh) 一种磁性纳米颗粒形貌控制的方法
CN111850389B (zh) 一种制备铁氮化物纳米棒材料的方法
CN105081338B (zh) 一种单分散钕铁硼纳米粒子的制备方法
JP2011184725A (ja) 水熱還元プロセスによるコバルトナノ粒子の合成法
CN102744420A (zh) 一种粒径可调控的磁性纳米颗粒的制备方法
CN108350543A (zh) 具有径向梯度的纳米颗粒的组合物及其使用方法
Qiao et al. Chemical synthesis, structure and magnetic properties of Co nanorods decorated with Fe3O4 nanoparticles
US20190091661A1 (en) Method for preparation of various carbon allotropes based magnetic adsorbents with high magnetization
JP2005281786A (ja) 磁性金属粒子およびその製造方法
CN111403165B (zh) 一种钐铁氮/纳米铁复合粘结永磁体的制备方法
CN109911881B (zh) 一种碳包覆铁纳米颗粒的合成方法
KR20040034224A (ko) 산화철 나노분말 및 그 제조방법
TWI404672B (zh) 二氧化矽/氧化鐵殼核狀磁性奈米棒的製作方法
Nguyen et al. Solvothermal synthesis of high-performance magnetic cobalt nanowires and bonded anisotropic magnets prepared thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant