CN111849021A - 聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法 - Google Patents

聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法 Download PDF

Info

Publication number
CN111849021A
CN111849021A CN201910347679.4A CN201910347679A CN111849021A CN 111849021 A CN111849021 A CN 111849021A CN 201910347679 A CN201910347679 A CN 201910347679A CN 111849021 A CN111849021 A CN 111849021A
Authority
CN
China
Prior art keywords
beta
resveratrol
cyclodextrin
hydroxypropyl
polytetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910347679.4A
Other languages
English (en)
Other versions
CN111849021B (zh
Inventor
杨加志
李雪菲
李文静
李锦坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910347679.4A priority Critical patent/CN111849021B/zh
Publication of CN111849021A publication Critical patent/CN111849021A/zh
Application granted granted Critical
Publication of CN111849021B publication Critical patent/CN111849021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种聚四氟乙烯/羟丙基‑β‑环糊精‑白藜芦醇抗氧化薄膜的制备方法。所述方法先采用饱和水溶液法制得羟丙基‑β‑环糊精‑白藜芦醇包合物,再将羟丙基‑β‑环糊精‑白藜芦醇包合物粉末置于反应腔室,调整靶材与洁净的基底的距离为20~30cm,抽真空,镀膜,设置工作电流在7~9A,工作电压在1.2~1.6kV,采用低功率电子束沉积技术制备聚四氟乙烯/羟丙基‑β‑环糊精‑白藜芦醇抗氧化薄膜。本发明制得的抗氧化薄膜与基底的结合力强,致密性好,膜厚度可控,具有良好的抗氧化性,可以提高质子交换膜的使用寿命。

Description

聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备 方法
技术领域
本发明属于抗氧化薄膜的制备技术领域,涉及一种聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法。
背景技术
聚四氟乙烯(PTFE)的机械性能强、化学性能稳定、成本低,是改性制备质子交换膜的重要材料。此外,其网络结构可提高Nafion膜的拉伸强度并降低膜高温溶胀性,减少Nafion使用量,降低成本。但是,PTFE在质子交换膜使用过程中,易生成HO·和HOO·自由基,这些自由基的攻击使膜加速老化,导致质子交换膜的寿命缩短。M.Lei等采用二氧化铈掺杂的化学法来提高质子交换膜的抗氧化性能,但该方法制备复杂,且制备的质子交换膜不均匀,二氧化铈的掺杂量也不好控制(Lei M,et al.CeO2 nanocubes-graphene oxideas durable and highly active catalyst support for proton exchange membranefuel cell[J].Scientific Reports,2014,4:7415.)。
白藜芦醇(Res)是存在于葡萄、藜芦、虎杖等植物中的多酚化合物,是一种重要的植物抗毒素。自藜芦醇具有多种生物活性如抗菌、抗癌及良好的抗氧化作用等。白藜芦醇易溶于乙醇、丙酮等极性有机溶剂,但是难溶于水,限制了其在食品和医药中的应用。
羟丙基-β-环糊精是优良的药用辅料,水溶性很高,一般大于75%,对热稳定,且对肾无毒,对肌肉和粘膜几乎无刺激。研究表明难溶性药物被羟丙基-β-环糊精包合后,不仅能增加药物的溶解度,还可以提高药物生物利用度和稳定性,广泛应用于制药、食品及其它行业。
低功率电子束沉积技术的原理是一束电子通过5-10kV的电场后被加速,最后聚集到待蒸发材料的表面,当电子束打到待蒸发材料的表面时,电子会迅速损失自己的能量,将能量传递给待蒸发材料使其熔化并蒸发。电子束蒸发是制备高熔点和高纯度薄膜的主要方法,并且功率调节范围广,使用方便。
发明内容
本发明的目的在于提供一种薄膜与基底的结合力强、抗氧化性能好的聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法,该方法能够在室温条件下沉积纯度高的抗氧化薄膜。
实现本发明目的的技术方案如下:
聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法,具体步骤如下:
步骤1,将白藜芦醇的乙醇溶液逐滴加入到羟丙基-β-环糊精的饱和水溶液中,搅拌混合均匀,静置,冷冻干燥,研磨,得到羟丙基-β-环糊精-白藜芦醇包合物;
步骤2,将羟丙基-β-环糊精-白藜芦醇包合物粉末置于反应腔室,调整靶材与洁净的多孔聚四氟乙烯薄膜基底的距离为20~30cm,抽真空,镀膜,设置工作电流在7~9A,工作电压在1.2~1.6kV,采用低功率电子束沉积技术制备得到聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜。
优选地,步骤1中,所述的羟丙基-β-环糊精与白藜芦醇的摩尔比为1:1~3,所述的羟丙基-β-环糊精-白藜芦醇包合物的包合率为60%~68%。
优选地,步骤1中,所述的搅拌混合时间为40~80min,静置时间为2~3h。
优选地,步骤2中,抽真空时,真空度为6×10-3~8×10-3Pa。
与现有的技术相比,本发明具有以下优点:
(1)电子束蒸发粒子的动能大,制得的抗菌薄膜与基底的结合力强,致密性好;
(2)电子束蒸发时,薄膜厚度可以根据自带的膜厚仪在沉积的过程中测量,便于控制成膜厚度,进而控制复合膜在用于质子交换膜时的机械性能;
(3)制备的薄膜材料具有良好的抗氧化性,可以用于质子交换膜燃料电池,延长电池使用寿命。
附图说明
图1为PTFE,羟丙基-β-环糊精(HP-β-CD),白藜芦醇(Res),羟丙基-β-环糊精-白藜芦醇包合物(HP-β-CD-Res),聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的XRD图。
图2为实施例1,实施例2,实施例3,对比例1,对比例2的聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜在芬顿试剂中彻底溶解时间曲线。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
实施例1
第一步:称取3.0g羟丙基-β-环糊精,加30ml水搅拌使其溶解;再称取0.2285g白藜芦醇在20ml无水乙醇中溶解,在磁力搅拌器上,将白藜芦醇的乙醇溶液逐滴加入到羟丙基-β-环糊精溶液中,继续搅拌60min。静置2h,抽滤。将滤液倒入培养皿,放入冰箱过夜,待结成冰后用真空冷冻干燥机制成蓬松的块状物质研碎即得羟丙基-β-环糊精-白藜芦醇包合物。
第二步,多孔聚四氟乙烯薄膜的处理:先用裁纸器剪切一批2*2cm的正方形PTFE膜;将裁好的膜放在烧杯里,丙酮浸泡,保鲜膜密封24h;取出丙酮浸泡的PTFE膜,乙醇洗涤2-3次,再用乙醇浸泡,密封保存12h;将清洗后的PTFE膜放入真空干燥箱中干燥2h。将烘干后的PTFE膜放置于电子束沉积的腔室中,用夹子将基底固定。
第三步,将羟丙基-β-环糊精-白藜芦醇包合物粉末置于反应腔室,调整靶材与洁净的基底的距离为20~30cm,抽真空,镀膜,设置工作电流在7~9A,工作电压在1.2kV,采用低功率电子束沉积技术制备得到聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜。
第四步,采用芬顿试剂法检测膜的抗氧化性:取2mg/L的FeSO4溶液10ml于烧杯中,且调节其pH为3,再加入3%的过氧化氢5ml,搅拌均匀。将2*2cm的膜放入80℃芬顿试剂中,记录膜彻底溶解的时间。
本实施例得到的羟丙基-β-环糊精-白藜芦醇包合物中白藜芦醇的包合率为68%,膜彻底溶解的时间为98min,所得聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的抗氧化性性能最好。
实施例2
本实施例与实施例1基本相同,唯一不同的是步骤1中羟丙基-β-环糊精的质量为4.5g。
本实施例得到的羟丙基-β-环糊精-白藜芦醇包合物中白藜芦醇的包合率为65%,膜彻底溶解的时间为90min,所得聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的抗氧化性性能略低于实施例1。
实施例3
本实施例与实施例1基本相同,唯一不同的是步骤1中羟丙基-β-环糊精的质量为1.5g。
本实施例得到的羟丙基-β-环糊精-白藜芦醇包合物中白藜芦醇的包合率为60%,膜彻底溶解的时间为84min,所得聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的抗氧化性性能低于实施例1与实施例2。
当工作电压相同时,白藜芦醇与羟丙基-β-环糊精的摩尔质量比为1:2,即羟丙基-β-环糊精-白藜芦醇包合物中白藜芦醇的包合率为68%时,复合膜彻底溶解的时间最长,其抗氧化性能越好。
实施例4
本实施例与实施例1基本相同,唯一不同的是步骤3工作电压在1.6kV。
本实施例得到的羟丙基-β-环糊精-白藜芦醇包合物中白藜芦醇的包合率为68%,膜彻底溶解的时间为97min,所得聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的抗氧化性性能与实施例1基本相同,优于实施例2与实施例3。
对比例1
第一步,多孔聚四氟乙烯薄膜的处理:先用裁纸器剪切一批2*2cm的正方形PTFE膜;将裁好的膜放在烧杯里,丙酮浸泡,保鲜膜密封24h;取出丙酮浸泡的PTFE膜,乙醇洗涤2-3次,再用乙醇浸泡,密封保存12h;将清洗后的PTFE膜放入真空干燥箱中干燥2h。
第二步,采用芬顿试剂法检测膜的抗氧化性:取2mg/L的FeSO4溶液10ml于烧杯中,且调节其pH为3,再加入3%的过氧化氢5ml,搅拌均匀。将烘干后的2*2cm的膜放入80℃芬顿试剂中,看膜彻底溶解的时间。
本对比例得到的多孔聚四氟乙烯薄膜的彻底溶解的时间为30min,抗氧化性性能明显低于采用低功率电子束沉积技术制备得到聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜。
对比例2
本对比例与实施例1基本相同,唯一不同的是步骤1中羟丙基-β-环糊精的质量为1.0g。
本对比例得到的羟丙基-β-环糊精-白藜芦醇包合物中白藜芦醇的包合率为31%,膜彻底溶解的时间为48min,所得聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的抗氧化性性能远低于与实施例1、实施例2与实施例3。
对比例3
本对比例与实施例1基本相同,唯一不同的是步骤3中工作电压为0.8kV。
本对比例得到的羟丙基-β-环糊精-白藜芦醇包合物中白藜芦醇的包合率为68%,膜彻底溶解的时间为85min,所得聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的抗氧化性性能明显低于实施例1。
对比例4
本对比例与实施例2基本相同,唯一不同的是步骤3中工作电压为0.8kV。
本对比例得到的羟丙基-β-环糊精-白藜芦醇包合物中白藜芦醇的包合率为65%,膜彻底溶解的时间为76min,所得聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的抗氧化性性能明显低于与实施例1与实施例2。
对比例5
本对比例与实施例3相同,唯一不同的是步骤3中工作电压为0.8kV。
本对比例得到的羟丙基-β-环糊精-白藜芦醇包合物中白藜芦醇的包合率为60%,膜彻底溶解的时间为60min,所得聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的抗氧化性性能明显低于实施例1与实施例3。
图1为PTFE,羟丙基-β-环糊精(HP-β-CD),白藜芦醇(Res),羟丙基-β-环糊精-白藜芦醇包合物(HP-β-CD-Res),聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇包合物抗氧化薄膜的XRD谱图。通过白藜芦醇(Res),羟丙基-β-环糊精(HP-β-CD),羟丙基-β-环糊精-白藜芦醇包合物(HP-β-CD-Res)的XRD谱图对比可以发现,包合物中Res的特征峰(2θ=7°,17°,19°)消失,说明Res被成功包结;通过的聚四氟乙烯,羟丙基-β-环糊精-白藜芦醇包合物,聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇包合物抗氧化薄膜的XRD谱图对比发现,PTFE的特征峰(2θ=18°)与羟丙基-β-环糊精-白藜芦醇包合物的包峰同时存在,且PTFE的特征峰(2θ=18°)变小,说明聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇包合物抗氧化薄膜被成功制备。
图2为实施例1,实施例2,实施例3,实施例4,对比例3,对比例4以及对比例5的聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜在芬顿试剂中彻底溶解的时间。从图中对比可以发现,当工作电压一定时,羟丙基-β-环糊精-白藜芦醇包合物的包合率越高,所制备的聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化复合薄膜的抗氧化性能越好;当羟丙基-β-环糊精-白藜芦醇包合物的包合率一定时,工作电压越强,所制备的聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化复合薄膜的抗氧化性能越好,但当工作电压达到1.2kV时,所制备的复合薄膜完全降解的时间基本稳定,无明显变化。

Claims (6)

1.聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法,其特征在于,具体步骤如下:
步骤1,将白藜芦醇的乙醇溶液逐滴加入到羟丙基-β-环糊精的饱和水溶液中,搅拌混合均匀,静置,冷冻干燥,研磨,得到羟丙基-β-环糊精-白藜芦醇包合物;
步骤2,将羟丙基-β-环糊精-白藜芦醇包合物粉末置于反应腔室,调整靶材与洁净的多孔聚四氟乙烯薄膜基底的距离为20~30cm,抽真空,镀膜,设置工作电流在7~9A,工作电压在1.2~1.6kV,采用低功率电子束沉积技术制备得到聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的羟丙基-β-环糊精与白藜芦醇的摩尔比为1:1~3。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的羟丙基-β-环糊精-白藜芦醇包合物的包合率为60%~68%。
4.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的搅拌混合时间为40~80min。
5.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的静置时间为2~3h。
6.根据权利要求1所述的制备方法,其特征在于,步骤2中,抽真空时,真空度为6×10-3~8×10-3Pa。
CN201910347679.4A 2019-04-28 2019-04-28 聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法 Active CN111849021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910347679.4A CN111849021B (zh) 2019-04-28 2019-04-28 聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910347679.4A CN111849021B (zh) 2019-04-28 2019-04-28 聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN111849021A true CN111849021A (zh) 2020-10-30
CN111849021B CN111849021B (zh) 2022-04-08

Family

ID=72965008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910347679.4A Active CN111849021B (zh) 2019-04-28 2019-04-28 聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN111849021B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479623A (zh) * 2022-01-26 2022-05-13 苏州鼎奕通材料科技有限公司 一种能够抗大肠杆菌、金黄色葡萄球菌的镀膜材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883663A (zh) * 2007-10-16 2010-11-10 Hkpb科技有限公司 表面涂布方法和其用途
CN103948933A (zh) * 2014-03-05 2014-07-30 吉林化工学院 一种白藜芦醇包合物及其制剂的制备方法
CN107207741A (zh) * 2014-12-03 2017-09-26 捷迈有限公司 注入抗氧剂的超高分子量聚乙烯
CN107280988A (zh) * 2017-07-03 2017-10-24 李剑峰 白藜芦醇‑环糊精包合物、低聚肽面膜液及其制备方法
CN108392640A (zh) * 2018-04-23 2018-08-14 东北林业大学 一种芦丁羟丙基-β-环糊精包合物的制备方法
CN109363964A (zh) * 2018-07-14 2019-02-22 泉州师范学院 氧化白藜芦醇羟丙基甲基纤维素复合膜及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883663A (zh) * 2007-10-16 2010-11-10 Hkpb科技有限公司 表面涂布方法和其用途
CN103948933A (zh) * 2014-03-05 2014-07-30 吉林化工学院 一种白藜芦醇包合物及其制剂的制备方法
CN107207741A (zh) * 2014-12-03 2017-09-26 捷迈有限公司 注入抗氧剂的超高分子量聚乙烯
CN107280988A (zh) * 2017-07-03 2017-10-24 李剑峰 白藜芦醇‑环糊精包合物、低聚肽面膜液及其制备方法
CN108392640A (zh) * 2018-04-23 2018-08-14 东北林业大学 一种芦丁羟丙基-β-环糊精包合物的制备方法
CN109363964A (zh) * 2018-07-14 2019-02-22 泉州师范学院 氧化白藜芦醇羟丙基甲基纤维素复合膜及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479623A (zh) * 2022-01-26 2022-05-13 苏州鼎奕通材料科技有限公司 一种能够抗大肠杆菌、金黄色葡萄球菌的镀膜材料及其制备方法
CN114479623B (zh) * 2022-01-26 2022-09-27 苏州鼎奕通材料科技有限公司 一种能够抗大肠杆菌、金黄色葡萄球菌的镀膜材料及其制备方法

Also Published As

Publication number Publication date
CN111849021B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
Pandit et al. Application of PVA–PDDA polymer electrolyte composite anion exchange membrane separator for improved bioelectricity production in a single chambered microbial fuel cell
Srinophakun et al. Application of modified chitosan membrane for microbial fuel cell: Roles of proton carrier site and positive charge
US10868322B2 (en) Hydrocarbon-based cross-linked membrane in which nanoparticles are used, method for manufacturing said membrane, and fuel cell
CN101814611B (zh) 一种燃料电池用磷酸掺杂聚苯并咪唑膜电极的制备方法
Mandal et al. Influence of binder crystallinity on the performance of Si electrodes with poly (vinyl alcohol) binders
CN101157766A (zh) 一种超疏水聚苯乙烯薄膜及其制备方法
CN111849021B (zh) 聚四氟乙烯/羟丙基-β-环糊精-白藜芦醇抗氧化薄膜的制备方法
Yun et al. Porous carbon nanotube electrodes supported by natural polymeric membranes for PEMFC
Holder et al. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation
Ma et al. Polypyrrole–dopamine nanofiber light-trapping coating for efficient solar vapor generation
Suryaprakash et al. Spray drying as a novel and scalable fabrication method for nanostructured CsH 2 PO 4, Pt-thin-film composite electrodes for solid acid fuel cells
WO2009100002A2 (en) Highly conducting solid state ionics for electrochemical systems and methods of fabricating them using layer-by-layer technology
CN112133946A (zh) 一种含羧基磺化聚芳醚酮砜/负载磷钨酸-离子液体金属有机框架复合膜及其制备方法
CN109593201A (zh) 一种类聚苯并咪唑结构二维共价有机框架的制备方法
CN109244324A (zh) 热交联聚丙烯酸/聚乙烯醇填充的细菌纤维素复合隔膜
CN102738477A (zh) 基于3维质子导体的有序化单电极和膜电极及制备方法
CN115337448A (zh) 具有抗炎、抗菌及ros响应性能的单宁酸偶联的聚磷腈基水凝胶伤口敷料及其制备方法
JP2001158806A (ja) スルホン基含有ポリビニルアルコール、固体高分子電解質、高分子複合膜、その製造方法、および電極
Bagra et al. Bio-compatibility, surface & chemical characterization of glow discharge plasma modified ZnO nanocomposite polycarbonate
CN113402725B (zh) 杂多酸改性金属有机框架复合物的制备方法及应用
KR100843569B1 (ko) 수소이온 전도성 복합 트리블록 공중합체 전해질막 및 그제조방법
KR20100021618A (ko) 막전극 접합체, 그리고 이것을 구비하는 막-전극-가스 확산층 접합체 및 고체 고분자형 연료 전지
CN102738478A (zh) 基于3维质子导体的单电极和燃料电池膜电极及制备方法
CN111100328A (zh) 改性无机纳米粒子、聚合物混合浆料、复合膜及制备方法
Kim et al. Silver nanowire catalysts on carbon nanotubes-incorporated bacterial cellulose membrane electrodes for oxygen reduction reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant