CN111807852B - 一种制备高气孔率多孔陶瓷材料的方法 - Google Patents

一种制备高气孔率多孔陶瓷材料的方法 Download PDF

Info

Publication number
CN111807852B
CN111807852B CN202010686548.1A CN202010686548A CN111807852B CN 111807852 B CN111807852 B CN 111807852B CN 202010686548 A CN202010686548 A CN 202010686548A CN 111807852 B CN111807852 B CN 111807852B
Authority
CN
China
Prior art keywords
water
porous ceramic
ceramic material
parts
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010686548.1A
Other languages
English (en)
Other versions
CN111807852A (zh
Inventor
郑彧
韦中华
童亚琦
张伟儒
陈波
李镔
王子诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Sinoma Synthetic Crystals Co Ltd
Sinoma Advanced Nitride Ceramics Co Ltd
Original Assignee
Beijing Sinoma Synthetic Crystals Co Ltd
Sinoma Advanced Nitride Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sinoma Synthetic Crystals Co Ltd, Sinoma Advanced Nitride Ceramics Co Ltd filed Critical Beijing Sinoma Synthetic Crystals Co Ltd
Priority to CN202010686548.1A priority Critical patent/CN111807852B/zh
Publication of CN111807852A publication Critical patent/CN111807852A/zh
Application granted granted Critical
Publication of CN111807852B publication Critical patent/CN111807852B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6346Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高气孔率多孔陶瓷材料,其特征在于,按重量份数计,由以下重量份数的原料烧结制得,水基溶液为44.4~76.5份,陶瓷粉体10~30份,分散剂为0.1~1份,造孔剂1~8份,陶瓷纤维1~6份,引发剂1~5份。本发明以水基凝胶注模成型法为基础,在水基溶液中添加造孔剂和陶瓷纤维,其中陶瓷纤维形成支撑骨架,减少烧结时原料的收缩及开裂,造孔剂形成介孔‑大孔复合结构,进而获得具有介孔‑大孔复合结构的高气孔率多孔陶瓷材料。

Description

一种制备高气孔率多孔陶瓷材料的方法
技术领域
本发明涉及一种制备高气孔率多孔陶瓷材料的方法,通过该方法可以得到气孔率大于70%的多孔陶瓷材料,属于陶瓷材料制备技术领域。
背景技术
多孔陶瓷材料具有力学性能好、热导率小、耐高温、耐腐蚀等优点,是作为隔热的理想材料。而有些特殊的使用场景,例如航天领域,由于严苛的环境,就需要隔热效果更好的多孔陶瓷材料,即需要多孔陶瓷材料气孔率更高,要求多孔陶瓷材料气孔率达到70%以上。
目前,在制备多孔陶瓷材料的多种方法中,凝胶注模法是制取50%以上气孔率的多孔陶瓷材料的最佳方法。其中,凝胶注模法根据溶剂不同可分为非水系和水系两种形式。若溶剂是有机溶剂(例如以叔丁醇作为溶剂),则此方法成为非水基凝胶注模成型法;若溶剂是水,则此方法称为水基凝胶注模成型法。其中,非水基凝胶注模成型法由于溶剂成本高、溶剂污染环境等问题,逐渐淘汰。
而采用水基凝胶注模成型法制备高气孔率多孔陶瓷材料时,会产生以下问题:
1、由于制备高气孔率的多孔陶瓷材料,就有大量溶剂需要排除,这就导致固相含量低,在多孔陶瓷材料湿坯干燥时会发生坯体收缩、开裂。
2、由于制备高气孔率的多孔陶瓷材料,在烧结时多孔陶瓷材料的坯体会出现坯体过度收缩、开裂,不能有效保持气孔率。
因此使用水基凝胶注模成型法难以获得气孔率大于70%的高气孔率的多孔陶瓷材料,所以迫切需要一种方法来解决使用水基凝胶注模成型法难以获得气孔率大于70%的高气孔率的多孔陶瓷材料这个问题。
发明内容
根据本发明的一个方面涉及一种高气孔率多孔陶瓷材料,按重量份数计,由以下重量份数的原料烧结制得,水基溶液为44.4~76.5份,陶瓷粉体10~30份,分散剂为0.1~1份,造孔剂1~8份,陶瓷纤维1~6份,引发剂1~5份。
进一步的,所述水基溶液包括水,有机单体,交联剂,其中,按重量份数计,所述水,有机单体,交联剂的混合比例为:水为40~60份,有机单体为4~15份,交联剂为0.4~1.5份。
进一步的,烧结制得的所述多孔陶瓷材料,气孔率大于70%,体积密度小于1.4g/cm-3,压缩强度大于5MPa;经闪光法测试材料导热系数,多孔陶瓷材料导热系数小于0.1W/m·k;多孔陶瓷材料具有介孔-大孔复合结构,多孔陶瓷材料尺寸大于80×80mm或直径>80mm。
相比于现有技术,本发明具有的优点和有益效果,本发明以水基凝胶注模成型法为基础,在水基溶液中添加造孔剂和陶瓷纤维,其中陶瓷纤维形成支撑骨架,减少烧结时原料的收缩及开裂,造孔剂形成介孔-大孔复合结构,进而获得具有介孔-大孔复合结构的高气孔率多孔陶瓷材料。
进一步的,所述造孔剂为PMMA微球,微球粒径为D50为10-50μm。
进一步的,所述引发剂包括硫酸铵、过硫酸钠和过硫酸钾中的一种或多种。
进一步的,所述陶瓷纤维为氧化铝纤维或氮化硼纤维,纤维直径为0.5-5μm,纤维长度2-20μm。
进一步的,所述有机单体包括丙烯酰胺,N-羟甲基丙烯酰胺中的一种或多种。
进一步的,所述交联剂为N,N’-亚甲基双丙烯酰胺。
进一步的,所述分散剂为聚丙烯酸铵,聚甲基丙烯酸,蓖麻油中的一种或多种。
进一步的,所述陶瓷粉体为Y2O3稳定的四方相,优选为,ZrO2粉体、Al2O3粉体。
进一步的,所述原料中可以添加催化剂,所述催化剂为N,N,N',N'-四甲基乙二胺,其中催化剂按重量份数计为0.02~1份。
采用上述进一步技术方案的优点和有益效果在于,本发明添加造孔剂及陶瓷纤维,其中造孔剂及陶瓷纤维会产生空间占位效应,阻碍水基凝胶注模成型法中原料因固相含量低而导致的烧结收缩,同时陶瓷纤维的骨架、桥联等作用可减少原料开裂等缺陷的产生。通过造孔剂及陶瓷纤维在原料烧结的作用,显著提高了多孔陶瓷材料的气孔率并大幅度降低了多孔陶瓷材料变形、开裂等缺陷的发生。同时本发明采用的PMMA微球,在排胶环节会裂解排除,经烧结后会形成大孔-介孔结构。
根据本发明的另一个方面,提供一种制备高气孔率多孔陶瓷材料的方法,包括以下步骤:
S1、将水基溶液,陶瓷粉体,分散剂,造孔剂,陶瓷纤维混合研磨形成预混液;
S2、向所述预混液中加入引发剂,注入模具形成湿坯;
S3、将所述湿坯脱模,烧结得到气孔率大于70%的多孔陶瓷材料;
其中,按重量份数计,所述预混液的混合比例为:水基溶液为44.4~76.5份,陶瓷粉体10~30份,分散剂为0.1~1份,造孔剂1~8份,陶瓷纤维1~6份,引发剂1~5份。
进一步的,所述研磨为球磨,所述球磨时间为12-24h;所述球磨处理使用的球磨罐为尼龙或氧化铝球磨罐;球磨球为玛瑙球或氮化硅球或聚氨酯球;球磨转速为50-200转/分钟。
进一步的,所述水基溶液,陶瓷粉体和分散剂先进行一次球磨处理,球磨处理结束后加入造孔剂和陶瓷纤维,再进行一次球磨处理,两次球磨处理结束后,进行步骤S2。
进一步的,步骤S2可加入催化剂,所述催化剂为N,N,N',N'-四甲基乙二胺,其中催化剂按重量份数计为0.02~1份。
进一步的,所述水基溶液包括水,有机单体,交联剂,
其中,按质量份数计,所述水基溶液的混合比例为:水为40~60份,有机单体为4~15份,交联剂为0.4~1.5份。
进一步的,所述水优选为去离子水。
进一步的,所述造孔剂为PMMA微球,微球粒径为D50为10-50μm。
进一步的,所述引发剂包括硫酸铵、过硫酸钠和过硫酸钾中的一种或多种。
进一步的,所述陶瓷纤维为氧化铝纤维或氮化硼纤维,纤维直径为0.5-5μm,纤维长度2-20μm,。
进一步的,所述有机单体包括丙烯酰胺,N-羟甲基丙烯酰胺中的一种或多种。
进一步的,所述交联剂为N,N’-亚甲基双丙烯酰胺。
进一步的,所述分散剂为聚丙烯酸铵,聚甲基丙烯酸,蓖麻油中的一种或多种。
进一步的,所述陶瓷粉体为Y2O3稳定的四方相,优先为,ZrO2粉体、Al2O3粉体。
进一步的,所述预混液的陶瓷粉体的固相体积含量为5-25%。
进一步的,所述模具涂有脱模剂,所述模具为聚四氟乙烯模具或聚丙烯模具,所述脱模剂为凡士林、硅油和甲基硅油中的一种或多种
进一步的,所述湿坯脱模,烧结分为三个阶段:
(1)预处理:所述湿坯水浴固化脱模,
其中,水浴的温度为40-80℃,时间为30-120min;
(2)预烧结:所述湿坯低温烧结,温度为30-50℃,时间24-80h;
所述湿坯冷冻干燥,真空干燥,其中所述冷冻干燥温度为-80~-40℃,时间8-12h;所述真空干燥为抽真空至10pa以下,时间24-120h;
(3)烧结:所述湿坯烧结,以0.2℃-0.5℃/min的升温速率升温至450-600℃排胶60-180分钟,然后以5℃-10℃/min的升温速率升温至1200-1600℃,保持60-180分钟。
相比于现有技术,本发明具有的优点和有益效果,本发明以水基凝胶注模成型法为基础,在原浆料配方中添加造孔剂及陶瓷纤维,其中造孔剂及陶瓷纤维会产生空间占位效应,阻碍水基凝胶注模成型法中湿坯因固相含量低而导致的烧结收缩,同时陶瓷纤维的骨架、桥联等作用可减少湿坯开裂等缺陷的产生。通过造孔剂及陶瓷纤维在原料烧结的作用,显著提高了多孔陶瓷材料的气孔率并大幅度降低了变形,开裂等缺陷的产生。同时本发明采用的PMMA微球,在排胶环节会裂解排除,经烧结后会形成大孔-介孔结构。同时烧结后,本发明添加的陶瓷纤维会在多空陶瓷内部形成桥联结构,从而提升多孔陶瓷材料力学性能。同时本发明是以水基凝胶注模成型法为基础,可实现原位、近净尺寸成型,可直接制备形状复杂坯体。
正是由于本发明提出的技术方案,解决了在多孔陶瓷材料湿坯干燥时会发生坯体收缩、开裂和在烧结时多孔陶瓷材料的坯体会出现坯体过度收缩、开裂,不能有效保持气孔率等问题。
附图说明
图1为实施例1中无添加的样品图。
图2为实施例1中添加Al2O3纤维的样品图。
图3为实施例1中添加PMMA微球的样品图。
图4为实施例1中添加PMMA微球和Al2O3纤维的样品图。
图5为实施例3的CT扫描形貌及扫描电镜局部放大图。
图6为实施例3的样品压缩强度曲线。
具体实施方式
为了更好的了解本发明的技术方案,下面结合具体实施例、说明书附图对本发明作进一步说明。
实施例1:添加造孔剂及陶瓷纤维和不添加造孔剂及陶瓷纤维样品的对比。
为验证造孔剂和陶瓷纤维对湿坯的作用,本实施例制备以下四组样品。制备过程如下:
将500g去离子水、60g丙烯酰胺、6g N,N’-亚甲基双丙烯酰胺搅拌混合形成水基溶液;将水基溶液、200g ZrO2粉体、3g聚丙烯酸铵混合以100转/分钟的速度球磨12h,得到料浆;
将得到的料浆均分四份,分别编号样品1、样品2、样品3、样品4。按下表配方进一步添加原料,并以100转/分钟的速度球磨12h。
Figure BDA0002587769060000051
向以上四个样品中分别加入20.5g 20%wt的过硫酸铵水溶液、2g N,N,N',N'-四甲基乙二胺,充分搅拌后迅速倒入涂好硅油的聚丙烯模具中,模具尺寸为145mm×145mm×70mm,注模厚度为20mm;将模具放置在水浴55℃下进行固化;将固化结束并且温度降至室温的湿坯从模具中移出;湿坯采用真空冷冻干燥工艺干燥,真空冷冻干燥工艺为:-60℃下冷冻10h,之后抽真空至10Pa,保持24h,得到的四个样品的照片如说明书附图1-4。
如说明书附图1-4所示:
无添加样品出现大裂纹断裂,表面布满龟裂的小裂纹,并且干燥收缩较大,收缩不均匀,样品出现变形。
只添加Al2O3纤维或PMMA微球,样品收缩变形得到改善,但也不能完全避免裂纹的产生。
同时添加Al2O3纤维和PMMA微球的样品,坯体无大裂纹,表面也无小裂纹。
说明本发明采用的添加适量的Al2O3纤维和PMMA微球可以形成支撑骨架,大幅度减少低固相含量凝胶注模湿坯干燥收缩及开裂。
实施例2:陶瓷纤维含量的确定
按上述实施例1配方配制浆料。将得到的浆料均分5份,按ZrO2粉体质量比,分别添加陶瓷纤维,比例为0%、5%,8%,15%,18%。将五个样品分别以50转/分钟的速度球磨12h。
向以上五个样品中分别加入20.5g 20%wt过硫酸铵水溶液、2g N,N,N',N'-四甲基乙二胺,充分搅拌后迅速倒入涂好硅油的聚丙烯模具中,模具尺寸为145mm×145mm×70mm,注模厚度为20mm;将模具放置在水浴55℃下进行固化;将固化结束并且温度降至室温的湿坯从模具中移出;湿坯采用真空冷冻干燥工艺干燥,真空冷冻干燥工艺为:-60℃下冷冻8h,之后抽真空至10Pa,保持24h。得到干燥的坯体。将上述坯体放入高温炉中,以0.5℃/min的升温速率升温至600℃排胶2h,然后以5℃/min的升温速率升温至1500℃,保持120分钟,后随炉冷却降温,得到多孔陶瓷材料样品。
经测试,不同样品烧结收缩结果为下表。
陶瓷纤维含量/% 0 5 8 15 18
烧结线收缩/% 46.28 28.19 16.25 11.34 10.67
可以看出,未向浆料中添加陶瓷纤维的湿坯烧结后,收缩达到46%以上,无法获得高气孔率材料;按照ZrO2粉体质量5%的量添加了陶瓷纤维的坯体烧结后收缩降为28%左右,而当陶瓷纤维添加量为ZrO2粉体质量的8%时,烧结收缩下降为16%左右。陶瓷纤维添加量过小对烧结收缩的抑制作用相应较小,但陶瓷纤维添加过多时,虽然会影响多孔陶瓷材料的力学性能,提高多孔陶瓷材料的导热系数,但同时也会大幅度提高材料制造成本。因此,实验证明向ZrO2粉体中添加陶瓷纤维适宜的含量为氧化锆粉体质量的8%~15%,即按重量份数计,陶瓷纤维为1~6份。
实施例3:
本实施例中,有机单体为丙烯酰胺,交联剂为N,N’-亚甲基双丙烯酰胺,分散剂为聚丙烯酸铵,催化剂为N',N'-四甲基乙二胺,引发剂为过硫酸铵。
制备过程如下进行:
将307g去离子水、44.4g丙烯酰胺、4.4g N,N’-亚甲基双丙烯酰胺混合在一起充分搅拌至澄清透明溶液(即水基溶液);将水基溶液、145g ZrO2粉体、3g聚丙烯酸铵混合球磨12h,得到浆料;
将得到的浆料中加入21.7gPMMA微球和14.5g氧化铝纤维,以100转/分钟的速度球磨12h,得到预混液;
在得到的预混液中加入20.5g 20%wt的过硫酸铵水溶液、2g N,N,N',N'-四甲基乙二胺,充分搅拌后迅速倒入涂好硅油的聚丙烯模具中,模具尺寸为135mm×135mm×70mm,注模厚度为30mm;将模具放置在水浴55℃下进行固化;将固化结束并且温度降至室温的湿坯从模具中移出;
将湿坯放入烘箱,在40℃下干燥48h,得到干燥的坯体;将干坯放入高温炉中,以0.25℃/min的速度缓慢升温至500℃进行排胶2h,之后以10℃/min的速度升温至1400℃,保温1.5h,随炉冷却,完成烧结。
测得本实施例制备的多孔陶瓷材料即氧化锆基多孔隔热材料气孔率可达82.1%,体积密度为0.98g/cm-3,压缩强度大于5MPa,达到了轻质高强的性能。经闪光法测试材料导热系数,本实施例氧化锆基多孔隔热材料的导热系数为0.07W/m·k,达到绝热材料标准,其隔热性能远好于常用隔热材料刚玉轻质耐火砖(导热系数为0.5W/m·k~1.0W/m·k)。
发明附图2为本实施例CT及扫描电镜观察得到的微观形貌结果,可见本发明制备的多孔陶瓷材料呈现出介孔-大孔复合结构。
发明附图3本实施例样品压缩强度曲线。样品在气孔率达到82.1%的情况下,压缩强度最大高达12.6MPa,是一种轻质高强的隔热材料。说明本发明所添加的陶瓷纤维及样品所呈现出的介孔-大孔复合结构可帮助多孔陶瓷材料样品大幅度提升强度。
实施例4
本实施例中,有机单体为N-羟甲基丙烯酰胺,交联剂为N,N’-亚甲基双丙烯酰胺,分散剂为聚甲基丙烯酸,催化剂为N,N,N',N'-四甲基乙二胺,引发剂为过20%wt过硫酸钠。
制备过程如下进行:
将291g去离子水、38g N-羟甲基丙烯酰胺、3g N,N’-亚甲基双丙烯酰胺混合在一起充分搅拌至澄清透明溶液(即水基溶液);将水基溶液、163g ZrO2粉体、5g聚甲基丙烯酸混合球磨24h;得到浆料;
在得到的浆料中加入29gPMMA微球和17.4g氮化硼纤维,以70转/分钟的速度球磨12h,得到预混液;
在得到的预混液中加入15.2g 20%wt的过硫酸钠水溶液、1.5g N,N,N',N'-四甲基乙二胺,充分搅拌后迅速倒入涂好脱模剂硅油的聚四氟乙烯模具中,模具直径尺寸为166mm×166mm×60mm,注模厚度为30mm;将模具放置在60℃水浴中进行固化;将固化结束并且温度降至室温的湿坯从模具中移出;
将湿坯放入真空冷冻干燥机的冷阱中,在-80℃下冷冻10h,之后抽真空至5pa,并保持120h,得到干燥的坯体;将干坯放入高温炉中,以0.2℃/min的速度缓慢升温至550℃进行排胶2h,之后以5℃/min的速度升温至1550℃,保温2h,随炉冷却,完成烧结。
本实施例制备的多孔陶瓷材料即氧化锆基多孔隔热材料气孔率可达75.6%,体积密度为1.34g/cm-3,压缩强度大于6MPa,达到了轻质高强的性能。经闪光法测试材料导热系数,本实施例氧化锆基多孔隔热材料导热系数为0.09W/m·k,为绝热材料。特别的,本实施例样品在1700℃下使用1h线收缩只有2.1%,具有极高的尺寸稳定性。
实施例5
制备过程如下进行:
将400g去离子水、40g丙烯酰胺、4g N,N’-亚甲基双丙烯酰胺混合在一起充分搅拌至澄清透明溶液(即水基溶液);将水基溶液、100g ZrO2粉体、1g聚甲基丙烯酸混合球磨12h;得到浆料;
在得到的浆料中加入10gPMMA微球和10g氮化硼纤维,以50转/分钟的速度球磨12h,得到预混液;
在得到的预混液中加入10g过硫酸钠、0.2g N,N,N',N'-四甲基乙二胺,充分搅拌后迅速倒入涂好脱模剂甲基硅油的聚四氟乙烯模具中,模具直径尺寸为80mm×80mm×60mm,注模厚度为30mm;将模具放置在40℃水浴中进行固化,固化时间30min;将固化结束并且温度降至室温的湿坯从模具中移出;
将湿坯放入真空冷冻干燥机的冷阱中,在-80℃下冷冻8h,之后抽真空至10pa,并保持该24h,得到干燥的坯体;将干坯放入高温炉中,以0.2℃/min的速度缓慢升温至450℃进行排胶1h,之后以5℃/min的速度升温至1200℃,保温1h,随炉冷却,完成烧结。
本实施例制备的多孔陶瓷材料气孔率可达77.4%,体积密度为1.14g/cm-3,压缩强度大于5MPa,达到了轻质高强的性能。经闪光法测试材料导热系数,本实施例氧化锆基多孔隔热材料导热系数为0.08W/m·k,为绝热材料。
实施例6
制备过程如下进行:
将600g去离子水、150gN-羟甲基丙烯酰胺、15g N,N’-亚甲基双丙烯酰胺混合在一起充分搅拌至澄清透明溶液(即水基溶液);将水基溶液、300g Al2O3粉体、10g蓖麻油混合球磨12h;得到浆料;
在得到的浆料中加入80gPMMA微球和60g氧化铝纤维,以200转/分钟的速度球磨24h,得到预混液;
在得到的预混液中加入50g过硫酸钾、10g N,N,N',N'-四甲基乙二胺,充分搅拌后迅速倒入涂好脱模剂凡士林的聚丙烯模具中,模具直径尺寸为80mm×80mm×60mm,注模厚度为30mm;将模具放置在80℃水浴中进行固化,固化时间120min;将固化结束并且温度降至室温的湿坯从模具中移出;
将湿坯放入真空冷冻干燥机的冷阱中,在-40℃下冷冻12h,之后抽真空至10pa,并保持120h,得到干燥的坯体;将干坯放入高温炉中,以0.5℃/min的速度缓慢升温至600℃进行排胶3h,之后以10℃/min的速度升温至1600℃,保温3h,随炉冷却,完成烧结。
本实施例制备的多孔陶瓷材料气孔率可达80.4%,体积密度为0.94g/cm-3,压缩强度大于5MPa,达到了轻质高强的性能。经闪光法测试材料导热系数,本实施例氧化锆基多孔隔热材料导热系数为0.06W/m·k,为绝热材料。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能。

Claims (6)

1.一种制备高气孔率多孔陶瓷材料的方法,其特征在于,包括以下步骤:
S1、将水基溶液,陶瓷粉体,分散剂,造孔剂,陶瓷纤维混合研磨形成预混液;
S2、向所述预混液中加入引发剂,注入模具形成湿坯;
S3、将所述湿坯脱模、烧结得到气孔率大于70%的多孔陶瓷材料;
其中,按重量份数计,所述预混液的混合比例为:水基溶液为44.4~76.5份,陶瓷粉体10~30份,分散剂为0.1~1份,造孔剂1~8份,陶瓷纤维1~6份,引发剂1~5份;
所述水基溶液包括水,有机单体,交联剂;
所述造孔剂为PMMA微球,所述PMMA微球粒径为D50为10-50μm;
所述陶瓷纤维为氮化硼纤维或氧化铝纤维,纤维直径为0.5-5μm,纤维长度2-20μm;
所述湿坯脱模、烧结分为三个阶段:
(1)预处理:所述湿坯水浴固化脱模,
其中,水浴的温度为40-80℃,时间为30-120min;
(2)预烧结:所述湿坯低温烧结,温度为30-50℃,时间24-80h;
或,所述湿坯采用真空冷冻干燥工艺干燥,其中所述真空冷冻干燥工艺为:在-80~-40℃冷冻8-12h;之后抽真空至10pa以下,保持24-120h;
(3)烧结:所述湿坯烧结,以0.2℃-0.5℃/min的升温速率升温至450-600℃排胶60-180分钟,然后以5℃-10℃/min的升温速率升温至1200-1600℃,保持60-180分钟。
2.如权利要求1所述的一种制备高气孔率多孔陶瓷材料的方法,其特征在于,按重量份数计,所述水,有机单体,交联剂的混合比例为:水为40~60份,有机单体为4~15份,交联剂为0.4~1.5份。
3.如权利要求1所述的一种高气孔率多孔陶瓷材料的方法,其特征在于,烧结制得的所述多孔陶瓷材料,气孔率大于70%,体积密度小于1.4g/cm3 ,压缩强度大于5MPa;经闪光法测试材料导热系数,多孔陶瓷材料导热系数小于0.1W/( m·k) ;多孔陶瓷材料具有介孔-大孔复合结构。
4.如权利要求1所述的一种制备高气孔率多孔陶瓷材料的方法,其特征在于,所述引发剂包括硫酸铵、过硫酸钠和过硫酸钾中的一种或多种。
5.如权利要求1所述的一种制备高气孔率多孔陶瓷材料的方法,其特征在于,所述有机单体包括丙烯酰胺,N-羟甲基丙烯酰胺中的一种或多种;所述交联剂为N,N’-亚甲基双丙烯酰胺;所述分散剂为聚丙烯酸铵,聚甲基丙烯酸,蓖麻油中的一种或多种。
6.如权利要求1所述的一种制备高气孔率多孔陶瓷材料的方法,其特征在于,所述模具涂有脱模剂,所述模具为聚四氟乙烯模具或聚丙烯模具,所述脱模剂为凡士林、硅油和甲基硅油中的一种或多种。
CN202010686548.1A 2020-07-16 2020-07-16 一种制备高气孔率多孔陶瓷材料的方法 Active CN111807852B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010686548.1A CN111807852B (zh) 2020-07-16 2020-07-16 一种制备高气孔率多孔陶瓷材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010686548.1A CN111807852B (zh) 2020-07-16 2020-07-16 一种制备高气孔率多孔陶瓷材料的方法

Publications (2)

Publication Number Publication Date
CN111807852A CN111807852A (zh) 2020-10-23
CN111807852B true CN111807852B (zh) 2022-10-04

Family

ID=72865377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010686548.1A Active CN111807852B (zh) 2020-07-16 2020-07-16 一种制备高气孔率多孔陶瓷材料的方法

Country Status (1)

Country Link
CN (1) CN111807852B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132025A (ja) * 1990-09-20 1992-05-06 Matsushita Electric Ind Co Ltd 光情報記録媒体
WO2007061457A2 (en) * 2005-11-16 2007-05-31 Geo2 Technologies, Inc. System for extruding a porous substrate
CN107892582A (zh) * 2017-12-12 2018-04-10 中国人民解放军国防科技大学 一种炭纤维增强纳米孔炭隔热复合材料的制备方法
CN110256059A (zh) * 2019-06-12 2019-09-20 山东工业陶瓷研究设计院有限公司 一种高通量陶瓷平板膜及其制备方法
CN111848209A (zh) * 2020-06-28 2020-10-30 航天材料及工艺研究所 一种常压干燥的纳米隔热材料及其制备工艺

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360662A (en) * 1992-03-12 1994-11-01 Hughes Aircraft Company Fabrication of reliable ceramic preforms for metal matrix composite production
CN1187292C (zh) * 2003-05-30 2005-02-02 武汉理工大学 水基凝胶注模成型法制备多孔陶瓷的工艺
JP5275993B2 (ja) * 2006-08-29 2013-08-28 コーニング インコーポレイテッド 高多孔性耐熱衝撃性セラミック構造
CN103058708B (zh) * 2013-01-07 2014-06-04 中钢集团洛阳耐火材料研究院有限公司 一种低热导率氮化硅结合碳化硅多孔陶瓷的制备方法
CN103467072B (zh) * 2013-08-27 2015-08-19 中国科学院宁波材料技术与工程研究所 一种轻质微孔刚玉陶瓷的制备方法
CN104529497B (zh) * 2014-11-28 2017-02-01 西安交通大学 一种采用真空冷冻干燥技术提高陶瓷铸型精度的方法
CN105175001A (zh) * 2015-09-01 2015-12-23 中国科学院重庆绿色智能技术研究院 超轻闭孔泡沫陶瓷的制备方法
CN105272223B (zh) * 2015-09-29 2018-11-09 北京中材人工晶体研究院有限公司 一种大尺寸氧化锆基隔热材料的制备方法
CN106478077A (zh) * 2016-09-28 2017-03-08 广州凯耀资产管理有限公司 一种建筑用多孔保温陶瓷材料及其制备方法
CN107417288A (zh) * 2017-09-07 2017-12-01 济宁学院 氧化铝纤维增强纳米氧化铝泡沫陶瓷及其制备方法
CN107805065A (zh) * 2017-09-26 2018-03-16 安徽华光光电材料科技集团有限公司 一种采用氧化锆空心球制备多孔隔热陶瓷的方法
CN109694258B (zh) * 2017-10-23 2021-07-23 中国科学院金属研究所 一种YSZ纤维增强型γ-Y2Si2O7多孔隔热陶瓷的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132025A (ja) * 1990-09-20 1992-05-06 Matsushita Electric Ind Co Ltd 光情報記録媒体
WO2007061457A2 (en) * 2005-11-16 2007-05-31 Geo2 Technologies, Inc. System for extruding a porous substrate
CN107892582A (zh) * 2017-12-12 2018-04-10 中国人民解放军国防科技大学 一种炭纤维增强纳米孔炭隔热复合材料的制备方法
CN110256059A (zh) * 2019-06-12 2019-09-20 山东工业陶瓷研究设计院有限公司 一种高通量陶瓷平板膜及其制备方法
CN111848209A (zh) * 2020-06-28 2020-10-30 航天材料及工艺研究所 一种常压干燥的纳米隔热材料及其制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
热裂解多孔陶瓷球负载催化剂制备及物性研究;毕冬梅等;《华中科技大学学报(自然科学版)》;20151223(第12期);全文 *

Also Published As

Publication number Publication date
CN111807852A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
US8262957B2 (en) Ceramic porous body with communication macropores and process for producing the ceramic porous body
CN105272223B (zh) 一种大尺寸氧化锆基隔热材料的制备方法
JPH11165309A (ja) バインダー凝固を用いるセラミックの製造方法
CN108395240B (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
CN110590388A (zh) 一种低成本、高效氧化铝纤维增强氧化铝复合材料制备方法
Yao et al. Effect of recoating slurry compositions on the microstructure and properties of SiC reticulated porous ceramics
Xue et al. Al2O3 ceramics with well-oriented and hexagonally ordered pores: The formation of microstructures and the control of properties
CN104446625A (zh) 一种高孔隙率多孔陶瓷及其制备方法
CN103781964A (zh) 无机纤维成型体
CN109100194B (zh) 一种高温介电常数纤维检测样件、制备方法及检测方法
CN112250450B (zh) 一种可耐2000℃高温的隔热瓦坯体的制备方法
CN112479722A (zh) 一种泡沫陶瓷及其制备方法
CN111205093A (zh) 一种超轻质氮化硅泡沫陶瓷的制备方法
CN110204322B (zh) 一种莫来石隔热耐火砖及其制备方法
Lü et al. Bending strength and fracture surface topography of natural fiber-reinforced shell for investment casting process
CN109320257B (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
CN111807852B (zh) 一种制备高气孔率多孔陶瓷材料的方法
CN114605107A (zh) 一种采用凝胶注模成型法制备的纤维增强气凝胶隔热材料及其制备方法
CN109437946A (zh) 一种水基凝胶注模制备ysz纤维基多孔陶瓷的方法
CN109133986A (zh) 一种基于发泡法的AlN-SiC多孔复合陶瓷及其制备方法
JP4836348B2 (ja) 耐久性にすぐれたアルミナ質焼結体からなる熱処理用部材
CN117285338A (zh) 一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法
CN108751998B (zh) 一种氮化硅结合碳化硅陶瓷过滤器及其制备方法
CN110950664A (zh) 一种轻质高强碳化硅节能窑具及其制备方法
CN111908847B (zh) 一种抗冻抗开裂混凝土及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant