CN111804322A - 一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法及其应用 - Google Patents

一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法及其应用 Download PDF

Info

Publication number
CN111804322A
CN111804322A CN202010145715.1A CN202010145715A CN111804322A CN 111804322 A CN111804322 A CN 111804322A CN 202010145715 A CN202010145715 A CN 202010145715A CN 111804322 A CN111804322 A CN 111804322A
Authority
CN
China
Prior art keywords
composite material
carbon nitride
nitride composite
nitrogen
doped graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010145715.1A
Other languages
English (en)
Inventor
刘辉
孙萍
翟志才
方应森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN202010145715.1A priority Critical patent/CN111804322A/zh
Publication of CN111804322A publication Critical patent/CN111804322A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/305Endocrine disruptive agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法及其应用,其制备方法,包括以下步骤:S1、原料,选取商用石墨烯、三聚氰胺、尿素;S2、混合,将商用石墨烯、三聚氰胺、尿素均匀混合;S3、煅烧,将S2步骤混合均匀的商用石墨烯、三聚氰胺、尿素在氮气氛围下置于管式炉中,温度控制在500‑600℃进行煅烧,且升温速率控制在3‑8℃/min,恒温220‑250min,在氮气氛围下冷却至室温,便得到了活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料g‑C3N4/rGO‑N,该g‑C3N4/rGO‑N对内分泌干扰物BPA、抗生素CIP等新型污染物及常规染料AO7和OG的去除具有高效作用,并且新型氧化***催化剂和氧化剂的投加量较少,成本比较低。

Description

一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制 备方法及其应用
技术领域
本发明涉及一种氮掺杂石墨烯负载氮化碳复合材料的制备及其应用于基于过硫酸盐的高级氧化水处理技术,属于水污染控制技术领域。
背景技术
高级氧化技术如芬顿、类芬顿以及光催化技术是过去几十年降解有机污染物一种有效的方法。相比于这些基于羟基自由基(·OH)的AOPs,活化过硫酸盐(Persulfate,PS)技术是近年来发展起来的以硫酸根自由基(SO4 ·-)为主要活性物种降解污染物的新型AOPs。它具有更高的氧化还原电位,它能使绝大多数难生物降解的有机污染物迅速分解,并最终矿化为CO2、H2O和无机盐,因此,活化过硫酸盐技术成为近年来污染控制领域的研究热点。但在常温下,PS非常稳定,因而活性低,要使O-O键断裂产生高活性物种(如SO4 ·-、·OH或1O2等)需要向过硫酸根阴离子提供能量或化学活化剂。常见的能量来源主要包括紫外光、加热、波辐射、超声、电离辐射等,化学活化剂主要有过渡金属离子、金属氧化物、碱等,但这些活化方式存在金属离子流失和能耗高等缺陷。因此,开发新型金属流失率低甚至无金属流失以及不消耗其它能源的催化剂是目前研究的热点。
近年来,无金属催化剂受到了人们的广泛关注。碳纳米材料,如碳纳米管(CNTs)、石墨烯,具有表面化学惰性、良好的导电性、大的比表面积和孔体积等特点,并在各种降解过程中被证明具有较好的催化效果。因此将碳纳米材料引入到环境催化,作为一种不含金属的非均相催化剂,进行水中有机污染物的去除将是非常具有前景的。而对碳纳米材料进行氮、硫、磷、硼等杂原子掺杂是一种增强碳纳米材料催化活性的有效手段,并已成为近年来研究的热点。
近年来,一种新型的、可见光响应的半导体光催化剂石墨相氮化碳(g-C3N4)引起了学者们越来越多的关注。与其他半导体催化剂相比,g-C3N4无毒、廉价,可由三聚氰胺、双氰胺等富氮前驱体热缩直接合成,获取方式较容易。但是其单独的来处理有机废水则耗时长,还需要消耗其他的外加能源,对有机物的降解效果也不怎么理想。为解决此类问题,研究者们将其他氧化剂与g-C3N4相结合来增强有机物的降解效率。例如有较多g-C3N4协同过硫酸盐在可见光下降解污染物的报道,但这些报道多是g-C3N4作为光催化剂的研究,而其耦合过硫酸盐时也需外加光源。也有一些作为过硫酸盐活化剂的研究,但这些催化剂多是金属与g-C3N4的复合材料,非金属的g-C3N4复合材料研究较少。
鉴于g-C3N4有着较高的含N量及富含石墨氮,我们尝试把g-C3N4负载于石墨烯材料上,制备一种能够在无光照条件下高效催化分解PMS降解污染物的非金属催化剂。本研究成果能为简单廉价的负载氮化碳型催化剂催化过硫酸盐降解污染物在环境修复上的应用提供一种新的思路和借鉴。
发明内容
(一)要解决的技术问题
本发明要解决的问题是把g-C3N4负载于石墨烯材料上进而制备一种能够在无光照条件下高效催化分解PMS降解污染物的非金属催化剂,且采取一步法把rGO与三聚氰胺及尿素同步热解和热缩聚,得到新型的PMS催化剂g-C3N4/rGO-N。
(二)技术方案
本发明的一个目的是提供的一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法包括以下步骤:
S1、原料,选取商用石墨烯、三聚氰胺、尿素;
S2、混合,将商用石墨烯、三聚氰胺、尿素均匀混合;
S3、煅烧,将S2步骤混合均匀的商用石墨烯、三聚氰胺、尿素在氮气氛围下置于管式炉中,温度控制在500-600℃进行煅烧,且升温速率控制在3-8℃/min,恒温220-250min,在氮气氛围下冷却至室温,便得到了活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料。
在一方面,S1步骤中商用石墨烯、三聚氰胺、尿素的质量比=(1:1:1)
在一方面,所述商用石墨烯为还原氧化法制备而得,SSA>400m2/g。
在一方面,S3步骤中温度控制在500℃、550℃、600℃。
在一方面,S3步骤中升温速率控制在5℃/min,恒温240min。
本发明的另一个目的是提供活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料在去除水中污染物中的应用。
在一方面,活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料在去除水中内分泌干扰物BPA、抗生素CIP、染料AO7、染料OG中的一种或多种组合污染物的应用。
本发明的另一个目的是提供活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料在去除水中污染物中的应用方法,包括以下步骤,取一定量的氮掺杂石墨烯负载氮化碳复合材料作为催化剂加入待处理污水中,然后加入PMS作为氧化剂,常温搅拌或振荡或静置30min即可。
其中所述待处理污水为含有染料AO7和/或染料OG,氮掺杂石墨烯负载氮化碳复合材料与PMS的质量比=20:307。而所述待处理污水为含有内分泌干扰物BPA和/或抗生素CIP,氮掺杂石墨烯负载氮化碳复合材料与PMS的质量比=30:307。
(三)有益效果
首先,本发明提供的一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法制备而得的催化剂与其他催化剂相比,无毒、廉价,可由三聚氰胺、双氰胺等富氮前驱体热缩直接合成,获取方式较容易;
其次,本发明提供的一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备原料采用石墨烯,其具有表面化学惰性、良好的导电性、大的比表面积和孔体积等特点,在各种降解过程中被证明具有较好的催化效果,故将碳纳米材料引入到环境催化,作为一种不含金属的非均相催化剂,能够对水中有机污染物进行有效的去除,同时纳米碳材料环境友好,无金属浸出等二次污染;
最后,首先,本发明提供的一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法制备而得的催化剂对内分泌干扰物BPA、抗生素CIP等新型污染物及常规染料AO7和OG的去除具有高效作用,并且新型氧化***催化剂和氧化剂的投加量较少,成本比较低。
附图说明
图1为所制备的氮掺杂石墨烯负载氮化碳复合材料的XRD衍射谱图。
图2为所制备的氮掺杂石墨烯负载氮化碳复合材料的拉曼光谱图。
图3为所制备的氮掺杂石墨烯负载氮化碳复合材料的SEM和TEM图。
图4为所制备的氮掺杂石墨烯负载氮化碳复合材料的BET图。
图5为所制备的氮掺杂石墨烯负载氮化碳复合材料的XPS图。
图6为所制备的氮掺杂石墨烯负载氮化碳复合材料对染料AO7去除效果图。
图7为所制备的氮掺杂石墨烯负载氮化碳复合材料对OG,CIP和BPA去除效果图。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法包括以下步骤:S1、原料,选取商用石墨烯、三聚氰胺、尿素;S2、混合,将商用石墨烯、三聚氰胺、尿素均匀混合;S3、煅烧,将S2步骤混合均匀的商用石墨烯、三聚氰胺、尿素在氮气氛围下置于管式炉中,温度控制在500-600℃进行煅烧,且升温速率控制在3-8℃/min,恒温220-250min,在氮气氛围下冷却至室温,便得到了活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料g-C3N4/rGO-N。其中g-C3N4/rGO-N无毒、廉价,可由三聚氰胺、双氰胺等富氮前驱体热缩直接合成,获取方式较容易。
其中,S1步骤中商用石墨烯、三聚氰胺、尿素的质量比=(1:1:1)。
而商用石墨烯为还原氧化法制备而得,SSA>400m2/g。S3步骤中温度控制在500℃、550℃、600℃,优选地的温度为550℃。S3步骤中升温速率控制在5℃/min,恒温240min。
实施例1
活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备具体如下:
分别取5g rGO和5g三聚氰胺、5g尿素混合均匀后,置于20ml带盖的刚玉坩埚,用铝箔密封后,放入已通N230min管式炉中分别在不同温度下煅烧。煅烧时间可选择为220至250min中任意时间点,优选煅烧时间为220、240、250min,最佳时间为240min。当煅烧时间少于220min或者大于250min会造成制备得其g-C3N4/rGO-N中部分石墨晶体结构造成破坏。而升温速率可控制3-8℃/min任意一个速率即可,如选取3、5、8℃/min。当升温速率低于3℃/min整个制备时间比较漫长,而升温速率大于8℃/min会使得石墨晶体内外温度变化速度不均,影响产物最终结构的稳定性。最佳的升温速率可选择5℃/min。在氮气氛围下冷却至室温后,最后得到的产物即为g-C3N4/rGO-N。并对产物氮掺杂石墨烯负载氮化碳的表征进行试验分析。
其中用JEM-2100F透射电子显微镜(TEM)(JEOL,日本)和Quanta400FEG扫描电子显微镜(SEM)(FEI,USA)观察制备的材料形貌结构;晶像结构在日本岛津的XR-7000型衍射仪(XRD)上进行表征。使用ESCALAB250XIX射线光电子能谱(XPS)***(ThermoFisherScientific,USA)分析表面元素组成。BET测试利用TriStarII3020比表面积及孔隙度分析仪。使用拉曼显微镜(LabRAMHREvolution,HORIBAJY,France)收集拉曼光谱。
图1为晶像结构在日本岛津的XR-7000型衍射仪(XRD)上进行表征分析结果,在所有样品中都可以看到26°的特征峰,并且没有发现这些衍射峰的明显偏移,这意味着掺杂过程没有明显破坏石墨晶体结构。图2为氮掺杂石墨烯负载氮化碳复合材料的拉曼光谱图,由此可知g-C3N4/rGO-N具有相对较低的强度比(ID/IG),具有较高的质量。图3的SEM电镜图中可以观察到两个石墨烯样品的折皱和堆叠层形态。通过TEM进一步揭示折皱的片材形态。图4所示的BET图可知,g-C3N4/rGO-N的IV型等温线表明存在中孔,并具有较大的比表面积。图5的XPS分析结果显示,g-C3N4/rGO-N的氮含量为14at.%,主要含N-6(吡啶N)、N-5(吡咯N)和(N-Q)石墨N和(N-A)氨基N。
实施例2
活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料对染料AO7的去除试验具体如下:
选取实施例1中制备的活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料作为原料先后进行对比试验。
其中在50mg/LAO7溶液中,加入20mg/Lg-C3N4/rGO-N和307mg/LPMS,每隔一段时间,取样,过滤除去g-C3N4/rGO-N,加入甲醇终止反应,采用紫外分光光度计分析反应溶液AO7浓度变化。
作为比较,分别加入常规rGO及其N掺杂样品或经典金属催化剂(Co3O4和Fe3O4)作为催化剂,其他条件同上。
或者单独加入g-C3N4/rGO-N,不加PMS,其他条件同上。
单独加入PMS,不加g-C3N4/rGO-N,其他条件同上。
如图6A所示,在催化剂用量和氧化剂用量较少的情况下,常规rGO及其N掺杂样品或经典金属催化剂(Co3O4和Fe3O4)不能有效地活化PMS去除AO7。从图6B可以看出,rGO的简单热处理没有增强其活性。此外,当仅将氧化剂PMS本身或单独的活化剂g-C3N4/rGO-N加入到体系中时,30分钟时AO7的去除率小于10%,这表明PMS的直接氧化和g-C3N4/rGO-N在AO7上的吸附途径可以忽略。但是,当同时添加g-C3N4/rGO-N和PMS时,30min可几乎完全去除AO7。
实施例-
活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料活化PMS去除染料OG的去除试验具体如下:
在100mg/L的OG溶液中,加入20mg/Lg-C3N4/rGO-N和307mg/LPMS,每隔一段时间,取样,过滤除去g-C3N4/rGO-N,采用分光光度计,分析反应溶液中OG浓度变化。如图7所示,30min后可去除100%OG。
实施例4
活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料活化PMS去除抗生素CIP的去除试验具体如下:
在20mg/LCIP溶液中,加入30mg/Lg-C3N4/rGO-N和307mg/LPMS,每隔一段时间,取样,过滤除去g-C3N4/rGO-N,采用液相色谱,分析反应溶液中CIP浓度变化。如图7所示,30min后几乎可完全去除CIP。
实施例5
活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料活化PMS去除内分泌干扰物BPA的去除试验具体如下:
在20mg/LBPA溶液中,加入30mg/Lg-C3N4/rGO-N和307mg/LPMS,每隔一段时间,取样,过滤除去g-C3N4/rGO-N,采用液相色谱,分析反应溶液中BPA浓度变化。如图7所示,30min后可100%去除BPA。
同时分别将20mg/LBPA、20mg/LCIP、20mg/LAO7、20mg/LOG溶液进行两种或者多种混合,然后一定量g-C3N4/rGO-N和PMS,每隔一段时间,取样,过滤除去g-C3N4/rGO-N,采用液相色谱,分析反应溶液中混合液残余物质浓度变化,30min后可100%去除混合液残余物质。
由此可见,本发明制备而得的催化剂g-C3N4/rGO-N对内分泌干扰物BPA、抗生素CIP等新型污染物及常规染料AO7和OG的去除具有高效作用,并且新型氧化***催化剂和氧化剂的投加量较少,成本比较低。
综上所述,上述实施方式并非是本发明的限制性实施方式,凡本领域的技术人员在本发明的实质内容的基础上所进行的修饰或者等效变形,均在本发明的技术范畴。

Claims (10)

1.一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法,其特征在于,包括以下步骤:
S1、原料,选取商用石墨烯、三聚氰胺、尿素;
S2、混合,将商用石墨烯、三聚氰胺、尿素均匀混合;
S3、煅烧,将S2步骤混合均匀的商用石墨烯、三聚氰胺、尿素在氮气氛围下置于管式炉中,温度控制在500-600℃进行煅烧,且升温速率控制在3-8℃/min,恒温220-250min,在氮气氛围下冷却至室温,便得到了活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料。
2.根据权利要求1所述的一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法,其特征在于,S1步骤中商用石墨烯、三聚氰胺、尿素的质量比=(1:1:1)。
3.根据权利要求2所述的一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法,其特征在于,所述商用石墨烯为还原氧化法制备而得,SSA>400m2/g。
4.根据权利要求3所述的一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法,其特征在于,S3步骤中温度控制在500℃、550℃、600℃。
5.根据权利要求4所述的一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法,其特征在于,S3步骤中升温速率控制在5℃/min,恒温240min。
6.活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料在去除水中污染物中的应用,其特征在于,该氮掺杂石墨烯负载氮化碳复合材料由根据权利要求1至5任一项所述的一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法制备而得。
7.活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料在去除水中内分泌干扰物BPA、抗生素CIP、染料AO7、染料OG中的一种或多种组合污染物的应用,其特征在于,该氮掺杂石墨烯负载氮化碳复合材料由根据权利要求1至5任一项所述的一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法制备而得。
8.活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料在去除水中污染物中的应用方法,其特征在于,包括以下步骤,取一定量根据权利要求1至6任意一项所述的活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法制备而成的氮掺杂石墨烯负载氮化碳复合材料作为催化剂加入待处理污水中,然后加入PMS作为氧化剂,常温搅拌或振荡或静置即可。
9.根据权利要求8所述的活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料在去除水中污染物中的应用方法,其特征在于,所述待处理污水为含有染料AO7和/或染料OG,氮掺杂石墨烯负载氮化碳复合材料与PMS的质量比=20:307。
10.根据权利要求8所述的活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料在去除水中污染物中的应用方法,其特征在于,所述待处理污水为含有内分泌干扰物BPA和/或抗生素CIP,氮掺杂石墨烯负载氮化碳复合材料与PMS的质量比=30:307。
CN202010145715.1A 2020-03-05 2020-03-05 一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法及其应用 Pending CN111804322A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010145715.1A CN111804322A (zh) 2020-03-05 2020-03-05 一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010145715.1A CN111804322A (zh) 2020-03-05 2020-03-05 一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN111804322A true CN111804322A (zh) 2020-10-23

Family

ID=72847632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010145715.1A Pending CN111804322A (zh) 2020-03-05 2020-03-05 一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111804322A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112642459A (zh) * 2020-12-24 2021-04-13 哈尔滨工业大学(深圳) 一种高级氧化催化剂及其制备方法和应用
CN113289656A (zh) * 2021-05-21 2021-08-24 山西大学 一种氮掺杂非金属催化剂的制备方法及其应用
CN113578370A (zh) * 2021-09-07 2021-11-02 东北大学 一种碳材料负载的管状氮化碳光催化剂的制备方法
CN114392729A (zh) * 2022-01-19 2022-04-26 云南民族大学 一种多孔氮化碳-rgo-二氧化钛纳米带催化活化过硫酸盐的用途
CN114772700A (zh) * 2022-04-24 2022-07-22 湖南大学 利用铁锰双金属有机框架/改性还原氧化石墨烯复合材料去除磺胺二甲基嘧啶的方法
CN115231650A (zh) * 2022-07-22 2022-10-25 湖南农业大学 可见光激发石墨相氮化碳活化pms在降解二氯喹啉酸中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106540732A (zh) * 2016-10-20 2017-03-29 中国石油大学(北京) 一种还原氧化石墨烯/介孔石墨化氮化碳材料及制备方法
CN108671954A (zh) * 2018-05-18 2018-10-19 重庆交通大学 一种rGO/Fe3+/g-C3N4三元复合光催化剂及其制备方法
CN109174154A (zh) * 2018-09-13 2019-01-11 浙江大学 一种碳化氮的掺杂改性方法及降解废水中抗生素的应用
CN109967111A (zh) * 2019-01-23 2019-07-05 嘉兴学院 活化过硫酸盐的氮硫共掺杂石墨烯的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106540732A (zh) * 2016-10-20 2017-03-29 中国石油大学(北京) 一种还原氧化石墨烯/介孔石墨化氮化碳材料及制备方法
CN108671954A (zh) * 2018-05-18 2018-10-19 重庆交通大学 一种rGO/Fe3+/g-C3N4三元复合光催化剂及其制备方法
CN109174154A (zh) * 2018-09-13 2019-01-11 浙江大学 一种碳化氮的掺杂改性方法及降解废水中抗生素的应用
CN109967111A (zh) * 2019-01-23 2019-07-05 嘉兴学院 活化过硫酸盐的氮硫共掺杂石墨烯的制备方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MINGYU WEI ET AL.: "Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation", 《JOURNAL OF HAZARDOUS MATERIALS》 *
尹竞等: "g-C_3N_4/石墨烯复合材料的制备及光催化活性的研究", 《中国环境科学》 *
程若霖等: "氮掺杂还原氧化石墨烯与吡啶修饰的g-C3N4复合光催化剂及其增强的产氢活性", 《物理化学学报》 *
郝尚斌等: "石墨烯复合材料耦合PMS去除金橙G研究", 《水处理技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112642459A (zh) * 2020-12-24 2021-04-13 哈尔滨工业大学(深圳) 一种高级氧化催化剂及其制备方法和应用
CN113289656A (zh) * 2021-05-21 2021-08-24 山西大学 一种氮掺杂非金属催化剂的制备方法及其应用
CN113289656B (zh) * 2021-05-21 2023-03-07 山西大学 一种氮掺杂非金属催化剂的制备方法及其应用
CN113578370A (zh) * 2021-09-07 2021-11-02 东北大学 一种碳材料负载的管状氮化碳光催化剂的制备方法
CN114392729A (zh) * 2022-01-19 2022-04-26 云南民族大学 一种多孔氮化碳-rgo-二氧化钛纳米带催化活化过硫酸盐的用途
CN114772700A (zh) * 2022-04-24 2022-07-22 湖南大学 利用铁锰双金属有机框架/改性还原氧化石墨烯复合材料去除磺胺二甲基嘧啶的方法
CN114772700B (zh) * 2022-04-24 2024-05-17 湖南大学 利用铁锰双金属有机框架/改性还原氧化石墨烯复合材料去除磺胺二甲基嘧啶的方法
CN115231650A (zh) * 2022-07-22 2022-10-25 湖南农业大学 可见光激发石墨相氮化碳活化pms在降解二氯喹啉酸中的应用

Similar Documents

Publication Publication Date Title
CN111804322A (zh) 一种活化过硫酸盐的氮掺杂石墨烯负载氮化碳复合材料的制备方法及其应用
Wang et al. Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets
Lu et al. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange
Chen et al. Synergistic photo-thermal catalytic NO purification of MnOx/g-C3N4: enhanced performance and reaction mechanism
Wang et al. Magnetic 2D/2D oxygen doped g-C3N4/biochar composite to activate peroxymonosulfate for degradation of emerging organic pollutants
Wang et al. Simple synthesis of Zr-doped graphitic carbon nitride towards enhanced photocatalytic performance under simulated solar light irradiation
Hu et al. Insight into the kinetics and mechanism of visible-light photocatalytic degradation of dyes onto the P doped mesoporous graphitic carbon nitride
CN108435225B (zh) 一种Fe-N/C复合催化剂及其制备方法和应用
CN110743588A (zh) 一种氮掺杂生物炭催化材料及其制备方法与应用
Mohamed et al. Rational design of manganese ferrite-graphene hybrid photocatalysts: Efficient water splitting and effective elimination of organic pollutants
Ariyanti et al. Photo-assisted degradation of dyes in a binary system using TiO2 under simulated solar radiation
Iqbal et al. One-step in situ green template mediated porous graphitic carbon nitride for efficient visible light photocatalytic activity
Chen et al. Enhanced photocatalytic hydrogen peroxide production at a solid-liquid-air interface via microenvironment engineering
Talebian et al. Complete mineralization of surfactant from aqueous solution by a novel sono-synthesized nanocomposite (TiO2–Cu2O) under sunlight irradiation
Anjum et al. Synthesis of Cr2O3/C3N4 composite for enhancement of visible light photocatalysis and anaerobic digestion of wastewater sludge
Anjum et al. Carbon nitride/titania nanotubes composite for photocatalytic degradation of organics in water and sludge: pre-treatment of sludge, anaerobic digestion and biogas production
Gao et al. Photocatalytic hydrogen evolution from water on SiC under visible light irradiation
CN113617350A (zh) 一种缺陷碳材料及其制备方法和应用
Song et al. Constructing a novel Ag nanowire@ CeVO4 heterostructure photocatalyst for promoting charge separation and sunlight driven photodegradation of organic pollutants
Li et al. Activity and mechanism of macroporous carbon/nano-TiO2 composite photocatalyst for treatment of cyanide wastewater
CN109395759B (zh) 一种具有核壳结构的Fe3C纳米粒子及其制备方法和应用
Huang et al. Highly efficient nitrogen-doped carbon nanotubes coated on paper-like sintered stainless steel fibers as metal-free structured catalyst for phenol degradation
Gu et al. Graphitic carbon nitride–doped sewage sludge as a novel material for photodegradation of Eriochrome Black T
Tan et al. Supercritical carbon dioxide-assisted TiO2/g-C3N4 heterostructures tuning for efficient interfacial charge transfer and formaldehyde photo-degradation
CN113522338B (zh) 硼氧共掺杂氮化碳非金属臭氧催化剂的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination