CN111692731A - 空调器的杀菌控制方法及空调器 - Google Patents

空调器的杀菌控制方法及空调器 Download PDF

Info

Publication number
CN111692731A
CN111692731A CN202010496213.3A CN202010496213A CN111692731A CN 111692731 A CN111692731 A CN 111692731A CN 202010496213 A CN202010496213 A CN 202010496213A CN 111692731 A CN111692731 A CN 111692731A
Authority
CN
China
Prior art keywords
temperature
air conditioner
sterilization
heat exchanger
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010496213.3A
Other languages
English (en)
Inventor
徐振坤
唐亚林
席战利
黄剑云
蔡国健
杜顺开
李玉
黄招彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GD Midea Air Conditioning Equipment Co Ltd
Original Assignee
GD Midea Air Conditioning Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GD Midea Air Conditioning Equipment Co Ltd filed Critical GD Midea Air Conditioning Equipment Co Ltd
Publication of CN111692731A publication Critical patent/CN111692731A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种空调器的杀菌控制方法及空调器,其中空调器的杀菌控制方法包括:控制空调器进入高温杀菌模式;控制空调器制热运行;检测室内换热器的温度并判断室内换热器的温度是否高于第一杀菌温度,若是则先控制室外风机的转速降低,再进行调节导风件的角度以增大出风口的出风面积、降低压缩机的频率、增大节流装置的开度、增大室内风机和逐渐退出无风感的转速中的至少一项,以降低室内换热器的温度。根据本发明的空调器的杀菌控制方法,可以使得室内换热器的温度调节至满足杀菌条件以实现杀菌杀毒,并且通过优先降低室外风机的转速,再进一步调节其他参数,解决多参数同步调节时的超调震荡问题,使得空调器在高温杀菌模式下稳定可靠地工作。

Description

空调器的杀菌控制方法及空调器
技术领域
本发明涉及电器技术领域,尤其是涉及一种空调器的杀菌控制方法及空调器。
背景技术
随着人们的健康意识的提高,人们对空调器的功能要求越来越多,例如相关技术中的空调器具有加湿、净化等功能。然而,空调器在长期运行过程中室内换热器上会积累隐藏较多细菌病毒等,很多细菌与病毒不耐高温,有资料显示在56℃以上一定时间,可以杀灭对人体有害的一些细菌,且可以使大部分的病毒灭活。空调器在制热的时候室内换热器是高温状态,但室内换热器的温度大约在40~50℃左右,较难实现杀菌消毒。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出了一种空调器的杀菌控制方法,该空调器的杀菌控制方法可以使得室内换热器的温度调节至满足杀菌条件以实现杀菌杀毒,并且通过优先增大室外风机的转速,再进一步调节其他参数,解决多参数同步调节时的超调震荡问题,使得空调器在高温杀菌模式下稳定可靠地工作。
本发明还提出了一种利用上述杀菌控制方法工作的空调器。
根据本发明实施例的空调器的杀菌控制方法,包括:控制所述空调器进入高温杀菌模式;控制所述空调器制热运行;检测室内换热器的温度并判断所述室内换热器的温度是否高于第一杀菌温度,若是则先控制所述室外风机的转速降低,在所述室外风机的转速调节至第一设定转速后,再进行调节所述导风件的角度以增大所述出风口的出风面积、降低压缩机的频率、增大节流装置的开度、增大室内风机的转速和逐渐退出无风感中的至少一项,以降低所述室内换热器的温度。
根据本发明实施例的空调器的杀菌控制方法,在空调器进入高温杀菌模式后,通过检测室内换热器的温度是否满足杀菌条件,若不满足杀菌条件,则通过优先降低室外风机的转速,然后再对导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和逐渐退出无风感中的至少一项进行调节,由此可以使得室内换热器的温度调节至满足杀菌条件以实现杀菌杀毒,并且通过优先降低室外风机的转速,再进一步调节其他参数,解决多参数同步调节时的超调震荡问题,使得空调器在高温杀菌模式下稳定可靠地工作。
根据本发明的一些实施例,在判断所述室内换热器的温度是否高于第一杀菌温度的同时,判断所述室内换热器的温度是否低于所述第二杀菌温度,若所述室内换热器的温度低于所述第二杀菌温度,则先控制室外风机的转速增大,然后进行调节导风件的角度以减小出风口的出风面积、提高压缩机的频率、减小节流装置的开度、降低室内风机的转速和开启电辅热中的至少一项,以提高所述室内换热器的温度。
根据本发明的一些实施例,所述第一杀菌温度的取值范围为56~96℃。
根据本发明的一些实施例,所述第二杀菌温度的取值范围为56~94℃。
根据本发明的一些实施例,按照第一设定规则控制所述室外风机的转速增大,在所述室内风机的转速按照所述第一设定规则调节至第二设定转速后,再进行调节所述导风件的角度以减小出风口的出风面积、提高所述压缩机的频率、减小所述节流装置的开度、降低所述室内风机的转速和开启所述电辅热中的至少一项,以提高室所述内换热器的温度。
在本发明的一些实施例中,在所述室外风机的转速按照所述第一设定规则调节至所述第二设定转速时开始计时至所述空调器运行第一设定时间后退出所述高温杀菌模式。
在本发明的一些实施例中,所述第一设定时间的取值范围为30~90min,所述第二设定转速的取值范围为700rpm~1100rpm。
在本发明的一些实施例中,按照所述第一设定规则调节所述室外风机的转速,所述第一设定规则为第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个,其中所述第一调节规则为按照步长为调节步幅逐步调节,所述第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,所述第三调节规则为按照当前值的百分比为调节步幅逐步调节,所述第四调节规则为按照额定值的百分比为调节步幅逐步调节,其中所述换热器温度差值是指所述室内换热器的当前温度与第二杀菌温度的差值的绝对值。
在本发明的一些实施例中,按照第二设定规则控制所述室外风机的转速降低,在所述室外风机的转速按照所述第二设定规则调节至所述第一设定转速后,再进行调节所述导风件的角度以增大出风面积、降低所述压缩机的频率、增大所述节流装置的开度和增大所述室内风机的转速中的至少一项,以降低室内换热器的温度。
在本发明的一些实施例中,在所述室外风机的转速按照所述第二设定规则调节至所述第一设定转速时开始计时至所述空调器运行第二设定时间后退出所述高温杀菌模式。
在本发明的一些实施例中,所述第二设定时间的取值范围为10~60min,所述第一设定转速的取值范围为150~600rpm。
在本发明的一些实施例中,按照所述第二设定规则调节所述室外风机的转速,所述第二设定规则为第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个,其中所述第一调节规则为按照步长为调节步幅逐步调节,所述第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,所述第三调节规则为按照当前值的百分比为调节步幅逐步调节,所述第四调节规则为按照额定值的百分比为调节步幅逐步调节,其中所述换热器温度差值是指所述室内换热器的当前温度与所述第一杀菌温度的差值的绝对值。
在本发明的一些实施例中,若判断所述室内换热器的温度在所述第二杀菌温度和所述第一杀菌温度之间时,维持所述空调器当前运行状态,并开始计时至所述空调器运行第三设定时间后退出所述高温杀菌模式。
在本发明的一些实施例中,所述第三设定时间的取值大于10min。
在本发明的一些实施例中,所述第一杀菌温度的取值范围为56~96℃。
在本发明的一些实施例中,所述第一杀菌温度与所述第二杀菌温度的差值不小于0.5℃。
在本发明的一些实施例中,所述第一杀菌温度与所述第二杀菌温度的差值的取值范围为1~3℃。
根据本发明的一些实施例,所述导风件的角度、所述压缩机的频率、所述节流装置的开度和所述室内风机的转速中的任一个的调节均是按照调节步幅逐步调节,在调节所述导风件的角度、所述压缩机的频率、所述节流装置的开度和所述室内风机的转速中的任一个的过程中,增加***压力的调节步幅不大于降低***压力的调节步幅。
根据本发明的一些实施例,所述导风件的角度、所述压缩机的频率、所述节流装置的开度和所述室内风机的转速中的任一项的调节规则为第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个,其中所述第一调节规则为按照步长为调节步幅逐步调节,所述第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,所述第三调节规则为按照当前值的百分比为调节步幅逐步调节,所述第四调节规则为按照额定值的百分比为调节步幅逐步调节,其中在判断所述室内换热器的温度低于第二杀菌温度时,所述换热器温度差值是指所述室内换热器的当前温度与第二杀菌温度的差值的绝对值;在判断所述室内换热器的温度高于第一杀菌温度时,换热器温度差值是指室内换热器的当前温度与第一杀菌温度的差值的绝对值。
根据本发明的一些实施例,所述空调器在制热状态下运行第四设定时间之后,再判断所述室内换热器的温度是否低于第二杀菌温度。
在本发明的一些实施例中,所述第四设定时间的取值范围为1~60min。
在本发明的一些实施例中,在室外温度为15℃以上时,所述第四设定时间的取值范围为3~10min;在室外温度为5~15℃时,所述第四设定时间的取值范围为5~15min;在室外温度为5℃以下时,所述第四设定时间的取值范围为8~20min。
在本发明的一些实施例中,所述空调器进入所述高温杀菌模式的同时检测所述空调器当前运行状态是否处在制热状态,
若是,则所述空调器保持制热运行,且所述第四设定时间的取值范围为1~30min;
若否,则控制所述空调器切换至制热状态运行,且所述第四设定时间的取值范围为1~60min。
在本发明的一些实施例中,在判断所述室内换热器的温度是否低于所述第二杀菌温度之前,判断所述空调器在制热状态下是否运行所述第四设定时间,
若是,则判断所述室内换热器的温度是否低于所述第二杀菌温度;
若否,则判断所述室内换热器的温度是否大于等于第三杀菌温度,或者判断所述室内换热器的温度变化率是否大于等于设定变化率,其中所述第三杀菌温度大于所述第二杀菌温度,
若所述室内换热器的温度大于等于第三杀菌温度或所述室内换热器的温度变化率大于等于设定变化率,则调节所述室内风机的转速、所述压缩机的频率和所述节流装置中的至少一项,以降低所述室内换热器的温度或降低所述室内换热器的温度变化率;若所述室内换热器的温度小于第三杀菌温度或所述室内换热器的温度变化率小于设定变化率,则继续判断所述空调器在制热状态下是否运行所述第四设定时间。
在本发明的一些实施例中,所述设定变化率的取值范围为0.5~5℃/min。
根据本发明的一些实施例,在所述空调器处在所述高温杀菌模式的整个过程中,实时检测所述室内换热器的温度,并判断所述室内换热器的温度是否大于保护温度,若是则所述空调器的压缩机停机。
在本发明的一些实施例中,所述保护温度的取值范围为62~96℃。
在本发明的一些实施例中,在所述压缩机停机达到设定停机时间后重启所述压缩机;或者,在所述压缩机停机后继续检测所述室内换热器的温度,判断所述室内换热器的温度是否低于恢复温度,若是则重启所述压缩机。
在本发明的一些实施例中,所述设定停机时间的取值范围为1~30min。
在本发明的一些实施例中,所述恢复温度不大于48℃。
在本发明的一些实施例中,在所述压缩机重启之前,判断所述压缩机的停机次数是否大于最大停机次数,若是则控制所述空调器退出所述高温杀菌模式。
在本发明的一些实施例中,所述最大停机次数的取值范围为1~30。
根据本发明的一些实施例,在所述空调器进入高温杀菌模式且所述空调器制热运行时,室内风机的转速初始值、压缩机的频率初始值、节流装置的开度初始值以及室外风机的转速初始值均不超过当前室外温度所对应的区间最大值。
根据本发明的一些实施例,所述空调器进入所述高温杀菌模式时开始计时至累计运行第五设定时间之后退出所述高温杀菌模式;或者,所述空调器接收退出所述高温杀菌模式信号之后退出所述高温杀菌模式。
在本发明的一些实施例中,所述第五设定时间的取值大于10min。
在本发明的一些实施例中,在室外温度为15℃以上时,所述第五设定时间的取值范围为35~50min;在室外温度为5~15℃时,所述第五设定时间的取值范围为40~70min;在室外温度为5℃以下时,所述第五设定时间的取值范围为50~90min。
根据本发明的一些实施例,所述空调器在整个所述高温杀菌模式过程中,所述导风件的角度始终在杀菌角度区间内,在所述导风件位于所述杀菌角度区间内时,所述导风件与竖直向上方向之间的夹角β的取值范围为0-120°。
在本发明的一些实施例中,在所述空调器为分体落地式空调器时,所述β的取值范围为0-75°。
根据本发明的一些实施例,所述空调器的杀菌控制方法还包括:检测室外换热器的温度,并判断所述室外换热器的温度是否大于等于预设温度或检测空调器的低压,并判断所述低压是否大于等于预设压力,若所述室外换热器的温度大于等于所述预设温度或所述低压大于等于所述预设压力,则进行降低室外风机转速、提高压缩机频率、减小节流装置开度和增大室内风机转速中的至少一项。
在本发明的一些实施例中,所述预设温度的取值范围为-24~71℃。
在本发明的一些实施例中,所述预设压力的取值范围为0.25~2.5MPa。
根据本发明的一些实施例,所述空调器的杀菌控制方法还包括:检测所述空调器的高压和低压,并判断所述高压和所述低压的压比是否大于等于预设比值或判断所述高压和所述低压的压差是否大于等于预设差值,若所述压比大于等于所述预设比值或所述压差大于等于所述预设差值,则进行提高室外风机转速、降低压缩机频率、增大节流装置开度和增大室内风机转速中的至少一项。
在本发明的一些实施例中,所述预设比值的取值范围为1~18。
在本发明的一些实施例中,所述预设差值的取值范围为0.5~4.1MPa。
在本发明的一些实施例中,所述高温杀菌模式还包括进入所述高温杀菌模式时对空调器进行初始化处理。
在本发明的一些实施例中,所述初始化处理包括:根据室内温度T0初始化室内风机转速,室内风机转速初始值R0与室内温度正相关或设置所述室内风机初始转速R0为低档风速。
在本发明的一些实施例中,所述初始化处理包括:根据室外温度T4初始化室外风机转速,室外风机转速初始值W0与室外温度T4反相关。
在本发明的一些实施例中,所述初始化处理包括:根据室外温度T4初始化压缩机频率,压缩机频率初始值F0与室外温度T4反相关。
在本发明的一些实施例中,所述初始化处理包括:根据室外温度T4初始化节流装置开度,节流装置开度初始值P0与室外温度T4正相关。
在本发明的一些实施例中,所述初始化处理包括:初始化空调器的导风角度至杀菌角度。
根据本发明实施例的空调器,所述空调器具有进风口和出风口,所述空调器包括室内风机、室内换热器、节流装置、压缩机、室外风机、室外换热器和控制模块,其中所述压缩机、所述室外换热器、所述节流装置和室内换热器依次相连且构成制冷剂循环,所述出风口处设有可转动的导风件,所述空调器的工作模式包括高温杀菌模式,在所述空调器进入所述高温杀菌模式后,所述控制模块控制所述空调器按照上述杀菌控制方法进行工作。
根据本发明实施例的空调器,具有高温杀菌模式,通过设置的控制模块控制空调器在高温杀菌模式下按照上述的杀菌控制方法进行,不仅可以实现杀菌杀毒,并且通过优先增大室外风机的转速,再进一步调节其他参数,解决多参数同步调节时的超调震荡问题,使得空调器在高温杀菌模式下稳定可靠地工作。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一些实施例的空调器的杀菌控制方法的控制流程示意图;
图2是根据本发明另一些实施例的空调器的杀菌控制方法的控制流程示意图;
图3是根据本发明一些实施例的空调器的杀菌控制方法的压缩机停机保护控制流程示意图;
图4是根据本发明一些实施例的空调器的导风件的控制角度示意图,其中空调器为分体壁挂式空调器;
图5是根据本发明另一些实施例的空调器的导风件的控制角度示意图,其中空调器为分体落地式空调器;
图6是根据本发明实施例的空调器的杀菌控制方法的第四设定时间和第五设定时间与室外温度的关系图。
图7是根据本发明实施例的空调器的杀菌控制方法的压缩机的频率初始值与室外温度的关系图;
图8是根据本发明实施例的空调器的杀菌控制方法的室外风机的转速初始值与室外温度的关系图;
图9是根据本发明实施例的空调器的杀菌控制方法的节流装置的开度初始值与室外温度的关系图;
图10是根据本发明实施例的空调器的杀菌控制方法的室内风机转速初始值与室内温度的关系图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述根据本发明实施例的空调器的杀菌控制方法。
参照图1和图2,根据本发明实施例的空调器的杀菌控制方法,包括:
控制空调器进入高温杀菌模式,在空调器接收到相应指令后可以进入高温杀菌模式;
在空调器进入高温杀菌模式后,控制空调器制热运行,若空调器之前是制热运行则可保持制热运行,若空调器之前是制冷运行或其他非制热运行,则控制空调器切换至制热运行;
检测室内换热器的温度并判断室内换热器的温度是否高于第一杀菌温度,其中检测室内换热器的温度在整个高温杀菌模式运行过程中可以实时进行,若是则先控制室外风机的转速降低,使得室内换热器的温度可以得到一定的降低,然后进行调节导风件的角度以增大出风口的出风面积、降低压缩机的频率、增大节流装置的开度、增大室内风机的转速和逐渐退出无风感中的至少一项,可以进一步地降低室内换热器的温度。
其中,导风件可以是可转动地设于空调器的出风口,导风件可以打开和关闭出风口。通过导风件的转动,可以使得导风件位于不同的角度位置,从而可以改变导风件相对出风口的位置,以调节出风面积,从而调节出风量。
可选地,导风件可以为导风板或导风百叶,导风件上可以形成有多个散风孔,气流可以通过该散风孔流出至室内。例如,在空调器为分体壁挂式空调器时,导风件可以为导风板;在空调器为分体落地式空调器时,导风件可以为导风百叶。
通过上述调节手段可以提高室内换热器温度,使得室内换热器温度不低于第二杀菌温度,从而可以实现对室内换热器上的细菌病毒进行有效杀灭。并且通过优先增大室外风机的转速,再进一步调节其他参数,解决多参数同步调节时的超调震荡问题,使得空调器在高温杀菌模式下稳定可靠地工作。
其中,增大室外风机的转速,可以提升室外换热器与室外空气的换热量,使得温度较低的室外换热器从温度较高的外界吸收的热量增大,从而可以提升循环传递至室内换热器上的热量,从而实现室内换热器温度的快速提升。
可见,在增大室外风机的转速后,室内换热器的温度可以得到一定的提升,然后再对导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和电辅热中的至少一项进行调节,从而可以进一步地提升室内换热器的温度,使得室内换热器的温度不低于第二杀菌温度,起到杀菌消毒的作用。
其中,对于导风件的调节可以是通过调节导风件的转动角度,以使得导风件朝向打开出风口的方向转动,减少导风件遮挡出风口的面积,从而可以增大出风口的有效出风面积,进而可以增大出风量,也就增大室内换热器上的热量耗散,从而可以在短时间内较快的降低室内换热器的温度。
在调节导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和逐渐退出无风感时,可以调节其中的一项或多项。其中,对于导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和逐渐退出无风感的调节分别是:调节导风件的角度以增大出风口的出风面积、降低压缩机的频率、增大节流装置的开度、增大室内风机的转速和逐渐退出无风感。其中,调节导风件的角度以增大出风口的出风面积、降低压缩机的频率、增大节流装置的开度、增大室内风机的转速和逐渐退出无风感均可以提升空调器的***压力,从而可以降低室内换热器的温度。
在调节导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和逐渐退出无风感中的一项时,可以是仅调节导风件的角度以增大出风口的出风面积,可以是仅降低压缩机的频率,可以是仅增大节流装置的开度,可以是仅增大室内风机的转速,可以是仅逐渐退出无风感。
在调节导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和逐渐退出无风感中的多项时,可以是多项同时调节,也可以是多项依次调节。例如,可以同时调节导风板的角度、增大室内风机的转速、降低压缩机的频率和增大节流装置的开度;例如,可以先后依次调节导风板的角度、增大室内风机的转速、降低压缩机的频率和增大节流装置的开度。
需要解释的是,本发明所述的多项(多个)是指两项(两个)或两项(两个)以上。
根据本发明实施例的空调器的杀菌控制方法,在空调器进入高温杀菌模式后,通过检测室内换热器的温度是否满足杀菌条件,若不满足杀菌条件,则通过优先降低室外风机的转速,然后再对导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和逐渐退出无风感中的至少一项进行调节,由此可以使得室内换热器的温度调节至满足杀菌条件以实现杀菌杀毒,并且通过优先降低室外风机的转速,再进一步调节其他参数,解决多参数同步调节时的超调震荡问题,使得空调器在高温杀菌模式下稳定可靠地工作。
根据本发明的一些实施例,在判断室内换热器的温度是否高于第一杀菌温度的同时,判断室内换热器的温度是否低于第二杀菌温度,若室内换热器的温度低于第二杀菌温度,则先控制室外风机的转速增大,然后进行调节导风件的角度以减小出风口的出风面积、提高压缩机的频率、减小节流装置的开度、降低室内风机的转速和开启电辅热中的至少一项,以提高室内换热器的温度。
由此,既可以防止室内换热器的温度未达到有效杀菌温度,同时又可以避免由于换热器温度过高导致空调器运行的可靠性降低,从而可以保证空调器在高温杀菌模式下可靠稳定地运行。
其中,增大室外风机的转速,可以增大室外换热器与室外空气的换热量,使得温度较低的室外换热器从温度较高的外界吸收的热量增大,从而可以增大循环传递至室内换热器上的热量,从而实现室内换热器温度的提升。
具体地,在判断室内换热器的温度低于第二杀菌温度时,先增大室外风机的转速后,使得室内换热器的温度可以得到一定的提升,然后调节导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和逐渐退出无风感的至少一项,可以进一步地提升室内换热器的温度。
通过上述调节手段可以提升室内换热器温度,使得室内换热器温度不高于第一杀菌温度T2且不低于第二杀菌温度T1,从而可以实现对室内换热器上的细菌病毒进行有效杀灭。并且通过优先调节室外风机的转速,再进一步调节其他参数,解决多参数同步调节时的超调震荡问题,使得空调器在高温杀菌模式下稳定可靠地工作。
在调节导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和开启电辅热时,可以调节其中的一项或多项。其中,对于导风件的角度、压缩机的频率、节流装置的开度和室内风机的转速的调节分别是:调节导风件的角度以减小出风口的出风面积、增大压缩机的频率、减小节流装置的开度和降低室内风机的转速。其中,调节导风件的角度以减小出风口的出风面积、增大压缩机的频率、减小节流装置的开度和降低室内风机的转速、开启电辅热均可以降低空调器的***压力,从而可以提升室内换热器的温度。需要说明的是,若在检测到室内换热器的温度Tx低于第一杀菌温度T2时,若此时电辅热是开启的,可以保持电辅热的工作状态不变。若此时正处于无风感模式,可以选择保持无风感模式不变。
在调节导风件的角度、压缩机的频率、节流装置的开度和室内风机的转速电辅热中的一项时,可以是仅调节导风件的角度以减小出风口的出风面积,可以是仅增大压缩机的频率,可以是仅降低节流装置的开度,可以是仅降低室内风机的转速。
在调节导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和电辅热中的多项时,可以是多项同时调节,也可以是多项依次调节。例如,可以同时调节导风板的角度、降低室内风机的转速、增大压缩机的频率和减小节流装置的开度;例如,可以先后依次调节导风板的角度、降低室内风机的转速、增大压缩机的频率和减小节流装置的开度。
需要说明的是,在调节导风件的过程中,无论导风件处在何种角度位置,出风口会有气流排出至室内,这样在提升室内换热器的温度的同时,可以保证空调器可靠稳定运行,同时可以向室内输送热量,提升室内温度。例如,在导风件上没有形成散风孔时,在调节导风件的过程中,无论导风件处在何种角度位置,导风件不会关闭出风口,导风件依然会打开至少一部分出风口,使得气流可以从出风口排出至室内;在导风件上形成有散风孔时,在调节导风件的过程中,导风件可以处在关闭出风口的角度位置,此时空调器内的气流从导风件的散风孔排出至室内。
在本发明的一些实施例中,第一杀菌温度的取值范围为56~96℃。由此,通过将第一杀菌温度T2设置在56~96℃之间,既可以通过调节使得室内换热器具有较高的温度,以实现有效的杀菌消毒效果,并且可以避免室内换热器的温度过高而影响空调器的可靠性,提高空调器运行的稳定性。其中,R22冷媒机型的空调器,第一杀菌温度T2的取值范围为56~72℃;R410A与R32冷媒机型的空调器,第一杀菌温度T2的取值范围为56~64℃;R290冷媒机型的空调器,第一杀菌温度T2的取值范围为56~96℃。
在本发明的一些实施例中,第二杀菌温度的取值范围为56~94℃。由此,可以有效杀灭大部分的细菌和病毒,并且可以使得空调器在高温杀菌模式下较为稳定可靠地运行。其中,R22冷媒机型的空调器,第二杀菌温度T1取值范围为56~70℃;R410A与R32冷媒机型的空调器,第二杀菌温度T1取值范围为56~62℃,R290冷媒机型的空调器,第二杀菌温度T1取值范围为56~94℃。
根据本发明的一些实施例,如图1和图2所示,按照第一设定规则控制室外风机的转速增大,在室内风机的转速按照第一设定规则调节至第二设定转速后,再进行调节导风件的角度以减小出风口的出风面积、提高压缩机的频率、减小节流装置的开度、降低室内风机的转速和开启电辅热中的至少一项,以提高室内换热器的温度。
可以理解的是,在室外风机逐步转动调节至第二设定转速后,再调节导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和电辅热中的至少一项,以提高室内换热器的温度。
由此,在室外风机逐步转动调节至第二设定转速后再调节其他参数,可以充分向室内换热器提供充足的热量,从而可以在调节其他参数之前使得室内换热器的温度较为快速明显的提升,并结合后续的其他参数的调节,可以使得室内换热器的温度在较短时间内快速稳定地提升。
在本发明的一些实施例中,在室外风机的转速按照第一设定规则调节至第二设定转速时开始计时至空调器运行第一设定时间后退出高温杀菌模式。可以理解的是,室外风机在高速运转的情况下,一方面会释放出较大的热量,另一方面会影响结构的可靠性,通过对运行时间的控制,可以在增大室外换热器与室外环境的换热量的同时,还可以提升室外风机工作的可靠性和使用寿命。
在本发明的一些实施例中,第一设定时间的取值范围为30~90min,第二设定转速的取值范围为700rpm~1100rpm。例如第一设定时间的取值范围可以为30~60min,第二设定转速的取值范围为800rpm~1000rpm。由此,既可以保证杀菌消毒效果,同时可以减少或规避恶劣工况的长期运行带来的室外风机损坏,电控元器件寿命及塑料件的变形问题。
在本发明的一些实施例中,按照第一设定规则增大室外风机的转速,第一设定规则为第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个,其中第一调节规则为按照步长为调节步幅逐步调节,第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,第三调节规则为按照当前值的百分比为调节步幅逐步调节,第四调节规则为按照额定值的百分比为调节步幅逐步调节,其中换热器温度差值是指室内换热器的当前温度与第二杀菌温度的差值的绝对值。
由此,在调节室外风机的转速的过程中,通过按照设定的调节步幅的大小逐步调节室外风机的转速,从而可以使得室外换热器与室外的换热量增大,从而可以提升室外换热器的吸热量,进而通过循环使得室内换热器的温度稳定逐渐提升,从而有利于空调器运行的稳定性和可靠性。其中,所述调节步幅是指在逐步调节某个参数时,每一步调节的相应参数的幅度。在调节室外风机的转速时,调节步幅具体是指每一步调节室外风机的转速的幅度。
其中,第一调节规则为按照步长为调节步幅逐步调节,具体到调节提高室外风机的转速,所述步长是指每一步调节室外风机的转速的幅度大小为一个固定值,例如调节室外风机的转速之前室外风机的转速为W,每一步提高室外风机的转速幅度为W*u,其中W*u为提高转速的步长;
第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,具体到调节提高室外风机的转速,例如调节室外风机的转速之前室外风机的转速为W,每一步提高室外风机的转速幅度为(T1-Tx)*Ku,其中Tx为调节室外风机的转速之前检测的室内换热器的温度,T1为第二杀菌温度,Ku为提高转速的增益系数,Tx为调节导风件之前检测的室内换热器的温度。
第三调节规则为按照当前值的百分比为调节步幅逐步调节,具体到调节提高室外风机的转速,例如调节室外风机的转速之前室外风机的转速为W,每一步提高室外风机的转速幅度为W*u%,其中u%为提高转速的幅度系数;
第四调节规则为按照额定值的百分比为调节步幅逐步调节,具体到调节提高室外风机的转速,例如调节室外风机的转速之前室外风机的转速为W,每一步提高室外风机的转速幅度为(Wmax-Wmin)*Eu%,Wmax为室外风机的额定转速最大值,Wmin为室外风机的额定转速最小值,Eu%为提高转速的额定幅度系数。
在本发明的一些实施例中,第一杀菌温度与第二杀菌温度的差值不小于0.5℃。由此,通过将第一杀菌温度与第二杀菌温度的差值不小于0.5℃,一方面防止频繁调节波动,另一方面可以加快***稳定。例如,第一杀菌温度T2与第二杀菌温度T1的差值的取值范围可以为1~3℃。从而可以更好地防止频繁调节波动且更好地加快***稳定。
在本发明的一些实施例中,如图1和图2所示,按照第二设定规则控制室外风机的转速降低,在室外风机的转速按照第二设定规则调节至第一设定转速后,再进行调节导风件的角度以增大出风面积、降低压缩机的频率、增大节流装置的开度和增大室内风机的转速中的至少一项,以降低室内换热器的温度。
可以理解的是,在室外风机逐步转动调节至第一设定转速后,再调节导风件的角度、压缩机的频率、节流装置的开度、室内风机的转速和电辅热中的至少一项,以降低室内换热器的温度。
由此,在室外风机逐步转动调节至第一设定转速后再调节其他参数,可以减少室外换热器向室内换热器提供的热量,从而可以在调节其他参数之前使得室内换热器的温度较为快速明显的降低,并结合后续的其他参数的调节,可以使得室内换热器的温度在较短时间内快速稳定地降低。
在本发明的一些实施例中,如图1和图2所示,在室外风机的转速按照第二设定规则调节至第一设定转速时开始计时至空调器运行第二设定时间后退出高温杀菌模式。可以理解的是,室外风机在低速运转的情况下会影响结构的可靠性,通过对运行时间的控制,可以在减小室外换热器与室外环境的换热量的同时,还可以提升室外风机工作的可靠性和使用寿命。
在本发明的一些实施例中,第二设定时间的取值范围为10~60min,第一设定转速的取值范围为150~600rpm。例如第二设定时间的取值范围可以为30~45min,第一设定转速的取值范围为200~500rpm。由此,既可以保证杀菌消毒效果,同时可以减少或规避恶劣工况的长期运行带来的室外风机的损坏,电控元器件寿命及塑料件的变形问题。
在本发明的一些可选实施例中,按照第二设定规则降低室外风机的转速,第二设定规则为第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个,其中第一调节规则为按照步长为调节步幅逐步调节,第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,第三调节规则为按照当前值的百分比为调节步幅逐步调节,第四调节规则为按照额定值的百分比为调节步幅逐步调节,其中换热器温度差值是指室内换热器的当前温度与第一杀菌温度的差值的绝对值。
由此,可以通过按照设定的调节步幅的大小逐步降低室外风机的转速,从而可以使得室外换热器与室外的换热量降低,从而可以降低室外换热器的吸热量,进而通过循环使得室内换热器的温度稳定逐渐降低,从而有利于空调器运行的稳定性和可靠性。其中,所述调节步幅是指在逐步调节某个参数时,每一步调节的相应参数的幅度。在调节室外风机的转速时,调节步幅具体是指每一步调节室外风机的转速的幅度。
其中,第一调节规则为按照步长为调节步幅逐步调节,具体到调节降低室外风机的转速,所述步长是指每一步调节室外风机的转速的幅度大小为一个固定值,例如调节室外风机的转速之前室外风机的转速为W,每一步降低室外风机的转速幅度为W*d,其中W*d为降低转速的步长,W*d的取值范围可以为1~300rpm;
第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,具体到调节降低室外风机的转速,例如调节室外风机的转速之前室外风机的转速为W,每一步降低室外风机的转速幅度为(Tx-T2)*Kd,其中Tx为调节室外风机的转速之前检测的室内换热器的温度,T2为第一杀菌温度,Kd为降低转速的增益系数,Kd的取值范围为1~100rpm/℃;
第三调节规则为按照当前值的百分比为调节步幅逐步调节,具体到调节降低室外风机的转速,例如调节室外风机的转速之前室外风机的转速为W,每一步降低室外风机的转速幅度为W*d%,其中d%为降低转速的幅度系数,d%的取值范围为1%~50%;
第四调节规则为按照额定值的百分比为调节步幅逐步调节,具体到调节降低室外风机的转速,例如调节室外风机的转速之前室内风机的转速为W,每一步降低室外风机的转速幅度为(Wmax-Wmin)*Ed%,Wmax为室外风机的额定转速最大值,Wmin为室外风机的额定转速最小值,Ed%为降低转速的额定幅度系数,Ed%的取值范围为1%~50%。
在本发明的一些实施例中,若判断室内换热器的温度在第二杀菌温度和第一杀菌温度之间时,维持空调器当前运行状态,并开始计时至空调器运行第三设定时间后退出高温杀菌模式。这样既方便计算空调器在室内换热器处在较高温度时的运行时间,同时使得空调器持续运行在预定时长范围内,且保证杀菌时间,从而可以保证杀菌消毒效果。并且,通过一些参变量及判断条件进行控制实现空调器在室内换热器处在较高温度时的可靠连续运行实现杀菌消毒,且在持续运行预定时长之后退出高温杀菌模式,可以减少或规避恶劣工况的长期运行带来的压缩机损坏,电控元器件寿命及塑料件的变形问题。
在本发明的一些实施例中,第三设定时间的取值大于10min,例如第三设定时间的取值范围为30~45min。由此,既可以保证杀菌消毒效果,同时可以减少或规避恶劣工况的长期运行带来的压缩机损坏,电控元器件寿命及塑料件的变形问题。
根据本发明的一些实施例,导风件的角度、压缩机的频率、节流装置的开度和室内风机的转速中的任一项的调节规则为第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个,其中第一调节规则为按照步长为调节步幅逐步调节,第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,第三调节规则为按照当前值的百分比为调节步幅逐步调节,第四调节规则为按照额定值的百分比为调节步幅逐步调节,其中在判断室内换热器的温度低于第二杀菌温度时,换热器温度差值是指室内换热器的当前温度与第二杀菌温度的差值的绝对值;在判断所述室内换热器的温度高于所述第一杀菌温度时,所述换热器温度差值是指所述室内换热器的当前温度与所述第一杀菌温度的差值的绝对值。
由此,在调节导风件的角度、压缩机的频率、节流装置的开度和室内风机的转速中的任一项参数的过程中,通过按照设定的调节步幅的大小逐步调节,可以使得室内换热器的温度稳定逐渐提升或降低,从而有利于空调器运行的稳定性和可靠性。其中,所述调节步幅是指在逐步调节某个参数时,每一步调节的参数的幅度。在调节导风件的角度时,调节步幅具体是指每一步调节导风件的角度的幅度。
在其他的实施例中,室内风机的转速和室外风机的转速也可以按档位进行调节。
下面具体说明室内风机的转速、压缩机的频率、节流装置的开度和导风件的角度中的任一项的调节规则为第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个时的具体调节方式。
室内风机的转速降低调节:
第一调节规则为按照步长为调节步幅逐步调节,具体到调节降低室内风机的转速,所述步长是指每一步调节室内风机的转速的幅度大小为一个固定值,例如调节室内风机的转速之前室内风机的转速为R,每一步降低室内风机的转速幅度为R*d,其中R*d为降低转速的步长,R*d的取值范围可以为1~300rpm;
第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,具体到调节降低室内风机的转速,例如调节室内风机的转速之前室内风机的转速为R,每一步降低室内风机的转速幅度为(T1-Tx)*Kd,其中Tx为调节室内风机的转速之前检测的室内换热器的温度,T1为第二杀菌温度,Kd为降低转速的增益系数,Kd的取值范围为1~100rpm/℃;
第三调节规则为按照当前值的百分比为调节步幅逐步调节,具体到调节降低室内风机的转速,例如调节室内风机的转速之前室内风机的转速为R,每一步降低室内风机的转速幅度为R*d%,其中d%为降低转速的幅度系数,d%的取值范围为1%~50%;
第四调节规则为按照额定值的百分比为调节步幅逐步调节,具体到调节降低室内风机的转速,例如调节室内风机的转速之前室内风机的转速为R,每一步降低室内风机的转速幅度为(Rmax-Rmin)*Ed%,Rmax为室内风机的额定转速最大值,Rmin为室内风机的额定转速最小值,Ed%为降低转速的额定幅度系数,Ed%的取值范围为1%~50%。
室内风机的转速提高调节:
第一调节规则为按照步长为调节步幅逐步调节,具体到调节提高室内风机的转速,所述步长是指每一步调节室内风机的转速的幅度大小为一个固定值,例如调节室内风机的转速之前室内风机的转速为R,每一步提高室内风机的转速幅度为R*u,其中R*u为提高转速的步长;
第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,具体到调节提高室内风机的转速,例如调节室内风机的转速之前室内风机的转速为R,每一步提高室内风机的转速幅度为(Tx-T2)*Ku,其中Tx为调节室内风机的转速之前检测的室内换热器的温度,T2为第一杀菌温度,Ku为提高转速的增益系数;
第三调节规则为按照当前值的百分比为调节步幅逐步调节,具体到调节提高室内风机的转速,例如调节室内风机的转速之前室内风机的转速为R,每一步提高室内风机的转速幅度为R*u%,其中u%为提高转速的幅度系数;
第四调节规则为按照额定值的百分比为调节步幅逐步调节,具体到调节提高室内风机的转速,例如调节室内风机的转速之前室内风机的转速为R,每一步提高室内风机的转速幅度为(Rmax-Rmin)*Eu%,Rmax为室内风机的额定转速最大值,Rmin为室内风机的额定转速最小值,Eu%为提高转速的额定幅度系数。
压缩机的频率降低调节:
第一调节规则为按照步长为调节步幅逐步调节,具体到调节降低压缩机的频率,所述步长是指每一步调节压缩机的频率的幅度大小为一个固定值,例如调节压缩机的频率之前压缩机的频率为F,每一步降低压缩机的频率幅度为F*d,其中F*d为降低频率的步长,F*d的取值范围可以为1~30Hz;
第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,具体到调节降低压缩机的频率,例如调节压缩机的频率之前压缩机的频率为F,每一步降低压缩机的频率幅度为(Tx-T2)*Kd,其中Tx为调节压缩机的频率之前检测的室内换热器的温度,T2为第一杀菌温度,Kd为降低频率的增益系数,Kd的取值范围为1~12Hz/℃;
第三调节规则为按照当前值的百分比为调节步幅逐步调节,具体到调节降低压缩机的频率,例如调节压缩机的频率之前压缩机的频率为F,每一步降低压缩机的频率幅度为F*d%,其中d%为降低频率的幅度系数,d%的取值范围为1%~50%;
第四调节规则为按照额定值的百分比为调节步幅逐步调节,具体到调节降低压缩机的频率,例如调节压缩机的频率之前压缩机的频率为F,每一步降低压缩机的频率幅度为(Fmax-Fmin)*Ed%,Fmax为压缩机最大允许频率,Fmin为压缩机最小允许频率,Ed%为降低频率的额定幅度系数,Ed%的取值范围为1%~50%。
压缩机的频率提高调节:
第一调节规则为按照步长为调节步幅逐步调节,具体到调节提高压缩机的频率,所述步长是指每一步调节压缩机的频率的幅度大小为一个固定值,例如调节压缩机的频率之前压缩机的频率为F,每一步提高压缩机的频率幅度为F*u,其中F*u为提高频率的步长;
第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,具体到调节提高压缩机的频率,例如调节压缩机的频率之前压缩机的频率为F,每一步提高压缩机的频率幅度为(T1-Tx)*Ku,其中Tx为调节压缩机的频率之前检测的室内换热器的温度,T1为第二杀菌温度,Ku为提高频率的增益系数;
第三调节规则为按照当前值的百分比为调节步幅逐步调节,具体到调节提高压缩机的频率,例如调节压缩机的频率之前压缩机的频率为F,每一步提高压缩机的频率幅度为F*u%,其中u%为提高频率的幅度系数;
第四调节规则为按照额定值的百分比为调节步幅逐步调节,具体到调节提高压缩机的频率,例如调节压缩机的频率之前压缩机的频率为F,每一步提高压缩机的频率幅度为(Fmax-Fmin)*Eu%,Fmax为压缩机最大允许频率,Fmin为压缩机最小允许频率,Eu%为提高频率的额定幅度系数。
节流装置的开度减小调节:
第一调节规则为按照步长为调节步幅逐步调节,具体到调节减小节流装置的开度,所述步长是指每一步调节节流装置的开度的幅度大小为一个固定值,例如调节节流装置的开度之前节流装置的开度为P,每一步减小节流装置的开度幅度为P*d,其中P*d为减小开度的步长,P*d的取值范围为1~250PPM;
第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,具体到调节减小节流装置的开度,例如调节节流装置的开度之前节流装置的开度为P,每一步减小节流装置的开度幅度为(Tx-T1)*Kd,其中Tx为调节节流装置的开度之前检测的室内换热器的温度,T1为第二杀菌温度,Kd为减小开度的增益系数,Kd的取值范围为1~90PPM/℃;
第三调节规则为按照当前值的百分比为调节步幅逐步调节,具体到调节减小节流装置的开度,例如调节节流装置的开度之前节流装置的开度为P,每一步减小节流装置的开度幅度为P*d%,其中d%为减小开度的幅度系数,d%的取值范围为1%~50%;
第四调节规则为按照额定值的百分比为调节步幅逐步调节,具体到调节减小节流装置的开度,例如调节节流装置的开度之前节流装置的开度为P,每一步减小节流装置的开度幅度为(Pmax-Pmin)*Ed%,Pmax为节流装置最大允许开度,Pmin为节流装置最小允许开度,Ed%为减小开度的额定幅度系数,Ed%的取值范围为1%~50%。
节流装置的开度增大调节:
第一调节规则为按照步长为调节步幅逐步调节,具体到调节增大节流装置的开度,所述步长是指每一步调节节流装置的开度的幅度大小为一个固定值,例如调节节流装置的开度之前节流装置的开度为P,每一步增大节流装置的开度幅度为P*u,其中P*u为增大开度的步长;
第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,具体到调节增大节流装置的开度,例如调节节流装置的开度之前节流装置的开度为P,每一步增大节流装置的开度幅度为(T2-Tx)*Ku,其中Tx为调节节流装置的开度之前检测的室内换热器的温度,T2为第一杀菌温度,Ku为增大开度的增益系数;
第三调节规则为按照当前值的百分比为调节步幅逐步调节,具体到调节增大节流装置的开度,例如调节节流装置的开度之前节流装置的开度为P,每一步增大节流装置的开度幅度为P*u%,其中u%为增大开度的幅度系数;
第四调节规则为按照额定值的百分比为调节步幅逐步调节,具体到调节增大节流装置的开度,例如调节节流装置的开度之前节流装置的开度为P,每一步增大节流装置的开度幅度为(Pmax-Pmin)*Eu%,Pmax为节流装置最大允许开度,Pmin为节流装置最小允许开度,Eu%为增大开度的额定幅度系数。
导风件的角度减小调节
第一调节规则为按照步长为调节步幅逐步调节,具体到调节导风件的角度,所述步长是指每一步调节导风件的角度的幅度大小为一个固定值,例如导风件上下摆动转动,调节导风件之前导风件与竖直向上方向之间的夹角为β,每一步转动导风件的角度幅度为β*d且导风件朝向关闭出风口的方向转动,其中β*d为减小角度的步长,β*d的取值范围可以为1~75°。
第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,具体到调节导风件的角度,例如导风件上下摆动转动,调节导风件之前导风件与竖直向上方向之间的夹角为β,每一步转动导风件的角度幅度为(T1-Tx)*Kd且导风件朝向关闭出风口的方向转动,其中Tx为调节导风件之前检测的室内换热器的温度,T1为第二杀菌温度,Kd为减小角度的增益系数,Kd的取值范围为1~25°/℃。
第三调节规则为按照当前值的百分比为调节步幅逐步调节,具体到调节导风件的角度,例如导风件上下摆动转动,调节导风件之前导风件与竖直向上方向之间的夹角为β,每一步转动导风件的角度幅度为β*d%且导风件朝向关闭出风口的方向转动,其中d%为减小角度的幅度系数,d%的取值范围为1%~50%。
第四调节规则为按照额定值的百分比为调节步幅逐步调节,具体到调节导风件的角度,例如导风件上下摆动转动,调节导风件之前导风件与竖直向上方向之间的夹角为β,每一步转动导风件的角度幅度为(βmax-βmin)*Ed%且导风件朝向关闭出风口的方向转动。其中,βmax为导风件与竖直向上方向之间夹角的最大值(参照图4和图5),βmin为导风件与竖直向上方向之间夹角的最小值(参照图4和图5),Ed%为减小角度的额定幅度系数,Ed%的取值范围为1%~50%。
导风件的角度增大调节
第一调节规则为按照步长为调节步幅逐步调节,具体到调节导风件的角度,所述步长是指每一步调节导风件的角度的幅度大小为一个固定值,例如导风件上下摆动转动,调节导风件之前导风件与竖直向上方向之间的夹角为β,每一步转动导风件的角度幅度为β*u且导风件朝向打开出风口的方向转动,其中β*u为增大角度的步长。
第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,具体到调节导风件的角度,例如导风件上下摆动转动,调节导风件之前导风件与竖直向上方向之间的夹角为β,每一步转动导风件的角度幅度为(Tx-T2)*Ku且导风件朝向打开出风口的方向转动,其中Tx为调节导风件之前检测的室内换热器的温度,T2为第一杀菌温度,Ku为增大角度的增益系数。
第三调节规则为按照当前值的百分比为调节步幅逐步调节,具体到调节导风件的角度,例如导风件上下摆动转动,调节导风件之前导风件与竖直向上方向之间的夹角为β,每一步转动导风件的角度幅度为β*u%且导风件朝向打开出风口的方向转动,其中u%为增大角度的幅度系数。
第四调节规则为按照额定值的百分比为调节步幅逐步调节,具体到调节导风件的角度,例如导风件上下摆动转动,调节导风件之前导风件与竖直向上方向之间的夹角为β,每一步转动导风件的角度幅度为(βmax-βmin)*Eu%且导风件朝向打开出风口的方向转动。其中,βmax为导风件与竖直向上方向之间夹角的最大值(参照图4和图5),βmin为导风件与竖直向上方向之间夹角的最小值(参照图4和图5),Eu%为增大角度的额定幅度系数。
根据本发明的一些实施例,导风件的角度、压缩机的频率、节流装置的开度和室内风机的转速中的任一个的调节均是按照调节步幅逐步调节。由此,在调节导风件的角度、压缩机的频率、节流装置的开度和室内风机的转速中的任一项参数的过程中,通过按照设定的调节步幅的大小逐步调节,可以使得室内换热器的温度稳定逐渐提升或降低,从而有利于空调器运行的稳定性和可靠性。
其中,在调节导风件的角度、压缩机的频率、节流装置的开度和室内风机的转速中的任一个的过程中,增加***压力的调节步幅不大于降低***压力的调节步幅。
具体地,调整导风件的角度以减少出风口的出风面积、提升压缩机的频率、降低节流装置的开度和降低室内风机的转速开启均可以提高***压力,调整导风件的角度以增大出风口的出风面积、减小压缩机的频率、增大节流装置的开度和提高室内风机的转速开启均可以降低空调器的***压力。在需要提高室内换热器温度时,通过调节参数可以提高室内换热器的温度,在室内换热器的温度提升的过程中,***压力增加;在需要降低室内换热器温度时,通过调节参数可以降低室内换热器的温度,在室内换热器的温度降低的过程中,***压力降低。由此,在调节上述参数的过程中,通过将增加***压力的调节步幅不大于降低***压力的调节步幅设置,由此在***压力较低时可以使得***压力提升地慢一些,在***压力较高时可以使得***压力降低的快一些,从而在调节上述参数的过程中,可以保证空调器的可靠稳定运行。
在导风件的角度、室内风机的转速、压缩机的频率、节流装置的开度和室外风机的转速中的任一项参数的调节按照上述第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个进行调节时,下面说明在每一种调节规则下***压力增加和***压力降低的调节步幅比较。
例如,调节导风件的角度时,按照第一调节规则调节:β*d≤β*u,例如β*u≥1.5β*d;按照第二调节规则调节:Kd≤Ku,例如Ku≥1.2Kd;按照第三调节规则调节:d%≤u%,例如u%≥1.5d%;按照第四调节规则调节:Ed%≤Eu%,例如Eu%≥1.5Ed%。
例如,调节室内风机的转速时,按照第一调节规则调节:R*d≤R*u,例如R*u≥1.5R*d;按照第二调节规则调节:Kd≤Ku,例如Ku≥1.2Kd;按照第三调节规则调节:d%≤u%,例如u%≥1.5d%;按照第四调节规则调节:Ed%≤Eu%,例如Eu%≥1.5Ed%。
例如,调节压缩机的频率时,按照第一调节规则调节:F*d≥F*u,例如F*d≥1.5F*u;按照第二调节规则调节:Kd≥Ku,例如Kd≥1.2Ku;按照第三调节规则调节:d%≥u%,例如d%≥1.5u%;按照第四调节规则调节:Ed%≥Eu%,例如Ed%≥1.5Eu%。
例如,调节节流装置的开度时,按照第一调节规则调节:P*d≤P*u,例如P*u≥1.5P*d;按照第二调节规则调节:Kd≤Ku,例如Ku≥1.2Kd;按照第三调节规则调节:d%≤u%,例如u%≥1.5d%;按照第四调节规则调节:Ed%≤Eu%,例如Eu%≥1.5Ed%。
例如,调节室外风机的转速时,按照第一调节规则调节:W*d≥W*u,例如W*d≥1.5W*u;按照第二调节规则调节:Kd≥Ku,例如Kd≥1.2Ku;按照第三调节规则调节:d%≥u%,例如d%≥1.5u%;按照第四调节规则调节:Ed%≥Eu%,例如Ed%≥1.5Eu%。
根据本发明的一些实施例,如图1和图2所示,空调器在制热状态下运行第四设定时间之后,再判断室内换热器的温度是否低于第二杀菌温度。由此,在判断室内换热器的温度Tx是否低于第二杀菌温度T1之前,通过使得空调器在制热状态下运行一段时间,可以使得空调器进入较为稳定的运行状态且使得室内换热器的温度进入较为稳定的状态,从而使得判断结果更为可靠。
其中,在需要同时判断室内换热器的温度Tx是否高于第一杀菌温度T2时,空调器在制热状态下运行第四设定时间之后,再判断室内换热器的温度Tx是否低于第二杀菌温度T1且同时判断室内换热器的温度Tx是否高于第一杀菌温度T2。
其中,第四设定时间是指空调器在制热状态下的运行时间。若在空调器进入高温杀菌模式之前为非制热状态(例如制冷状态)或者在空调器进入高温杀菌模式之前刚开机,此时第四设定时间从空调器进入高温杀菌模式后调整为制热状态时开始计时。若在空调器进入高温杀菌模式之前为制热状态,则第四设定时间从空调器进入高温杀菌模式之前的制热运行开始计时。例如,若在空调器进入高温杀菌模式之前制热运行的时间不低于第四设定时间,则在空调器进入高温杀菌模式之后,即可进行判断室内换热器的温度Tx是否低于第二杀菌温度T1,或者判断室内换热器的温度Tx是否低于第二杀菌温度T1且同时判断室内换热器的温度Tx是否高于第一杀菌温度T2。再例如,若在空调器进入高温杀菌模式之前制热运行的时间低于第四设定时间,则在空调器进入高温杀菌模式之后继续累计至第四设定时间之后,再判断室内换热器的温度Tx是否低于第二杀菌温度T1,或者判断室内换热器的温度Tx是否低于第二杀菌温度T1且同时判断室内换热器的温度Tx是否高于第一杀菌温度T2。
在本发明的一些实施例中,第四设定时间的取值范围为1~60min,例如第四设定时间的取值范围可以为1~20min。由此,既可以使得空调器具有足够的时间达到稳定运行状态,同时可以提高工作效率和杀菌效率。
在本发明的一些实施例中,参照图6,在室外温度为15℃以上时,第四设定时间t1的取值范围为3~10min;在室外温度为5~15℃时,第四设定时间t1的取值范围为5~15min;在室外温度为5℃以下时,第四设定时间t1的取值范围为8~20min。制热模式下运行是抽取室外空气热量到室内加热室内换热器与室内空气,因此室外温度越高,室内换热器就越容易升温,***压力提升越快。因此,室外温度较高时第四设定时间较短,室外温度较低时第四设定时间较长,通过根据室外温度确定第四设定时间,从而使得空调器在不同的室外温度环境下运行时,可以使得空调器的室外温度较低时可以具有较多的运行时间达到稳定运行状态,在室外温度较高时可以使得空调器快速地进入后续的室内换热器的温度判断,从而使得空调器在不同的工况下具有相应的前置制热运行时间,既可以保证空调器在进入室内换热器温度判断之前达到稳定运行状态,同时可以提高工作效率和杀菌效率。
无论室内换热器杀菌消毒或室外换热器的杀菌消毒,均受到室内外温度的影响,随温度的升高,换热器的升温更容易,杀菌消毒更容易实现,但是主要是受到室外温度的影响。因此可以结合室外温度进行杀菌消毒前期稳定时间及杀菌消毒的持续时间的分区控制。分区的温度可以根据空调***、能效等级、初始条件设定、杀菌消毒需求的不同进行差别化需求设置。具体地,图6示出了第四设定时间t1和室外温度T4之间的关系。
在本发明的一些实施例中,空调器进入高温杀菌模式的同时检测空调器当前运行状态是否处在制热状态,若是,则空调器保持制热运行,且第四设定时间的取值范围为1~30min,例如此时第四设定时间的取值范围可以为1~5min;若否,则控制空调器切换至制热状态运行,且第四设定时间的取值范围为1~60min,例如此时第四设定时间的取值范围可以为5~8min。由此,在空调器进入高温杀菌模式时,检测空调器当前运行状态是否处在制热状态,并根据检测结果设定相应的前置制热运行时间(即上述的第四设定时间),例如相对于空调器当前运行状态不是处在制热状态,空调器当前运行状态是处在制热状态时第四设定时间设置的较短。既可以保证空调器在进入室内换热器温度判断之前达到稳定运行状态,同时可以提高工作效率和杀菌效率。
在本发明的一些实施例中,如图1和图2所示,在判断室内换热器的温度是否低于第二杀菌温度之前,判断空调器在制热状态下是否运行第四设定时间,若空调器在制热状态下运行达到第四设定时间,则判断室内换热器的温度Tx是否低于第二杀菌温度T1;若空调器在制热状态下运行未达到第四设定时间,则判断室内换热器的温度Tx是否大于等于第三杀菌温度T3,其中第三杀菌温度T3大于等于第二杀菌温度T1,若室内换热器的温度Tx大于等于第三杀菌温度T3,则调节室内风机的转速、压缩机的频率和节流装置的开度中的至少一项,以降低室内换热器的温度,控制室内换热器的温度升高速度,若室内换热器的温度Tx小于第三杀菌温度T3,则继续判断空调器在制热状态下是否运行第四设定时间;
或者判断室内换热器的温度变化率是否大于等于设定变化率K,其中第三杀菌温度T3大于第二杀菌温度T1,若室内换热器的温度大于等于第三杀菌温度或室内换热器的温度变化率大于等于设定变化率,则调节室内风机的转速、压缩机的频率和节流装置中的至少一项,以降低室内换热器的温度或降低室内换热器的温度变化率,控制室内换热器的温度升高速度;若室内换热器的温度小于第三杀菌温度或室内换热器的温度变化率小于设定变化率,则继续判断空调器在制热状态下是否运行第四设定时间。
其中,“调节室内风机的转速、压缩机的频率和节流装置中的至少一项”,可以是调节其中一项,也可以调节其中的两项或三项。调节室内风机的转速、压缩机的频率和节流装置中的至少两项时,该至少两项参数可以同时调节,也可以依次进行调节。通过采用提高室内风机的转速、降低压缩机的频率和增大节流装置的开度中的至少一项,可以实现降低室内换热器的温度或降低室内换热器的温度变化率。
由此通过检测前置制热运行时间(第四设定时间)与室内换热器温度或室内换热器的温度变化率,若室内换热器温度较高或室内换热器的温度变化率较快,通过调节室内风机的转速、压缩机的频率和节流装置中的至少一项,以降低室内换热器的温度或降低室内换热器的温度变化率,控制室内换热器的温度升高速度,可以缓冲控制避免高温高压急速跳停与压缩的低频回液。
并且,通过将第三杀菌温度T3大于第二杀菌温度T1设置,可以提高空调器在高温杀菌模式下的运行效率和杀菌效率。
其中,在需要同时判断室内换热器的温度Tx是否高于第一杀菌温度T2时,在判断室内换热器的温度Tx是否低于第二杀菌温度T1且同时判断室内换热器的温度Tx是否高于第一杀菌温度T2之前,判断空调器在制热状态下是否运行第四设定时间。并且,此时第三杀菌温度T3可以设置在第二杀菌温度T1和第一杀菌温度T2之间,第三杀菌温度T3大于第二杀菌温度T1且小于第一杀菌温度T2,由此既可以提高空调器在高温杀菌模式下的运行效率和杀菌效率,并且可以更好地缓冲控制避免高温高压急速跳停与压缩的低频回液。
在本发明的一些实施例中,设定变化率的取值范围为0.5~5℃/min。例如设定变化率K的取值范围可以为1~3℃/min。由此,通过将可以较好地缓冲控制避免高温高压急速跳停与压缩的低频回液,并且同时可以兼顾空调器在高温杀菌模式下的运行效率和杀菌效率。
根据本发明的一些实施例,在空调器处在高温杀菌模式的整个过程中,实时检测室内换热器的温度,并判断室内换热器的温度是否大于保护温度,若是则空调器的压缩机停机。细菌病毒不耐高温,理论上杀菌消毒温度越高越好,但对于空调器的***而言从可靠性考虑会有***压力上限,室内换热器的温度就会对应一个温度上限。由此,通过设置室内换热器的一个温度上限(即保护温度),在室内换热器温度大于保护温度时,压缩机停机,避免***压力过高导致的***不稳定或是损坏,实现对空调器的停机保护。
在本发明的一些实施例中,保护温度的取值范围为62~96℃。由此,既可以使得空调器的室内换热器温度在较高温度下运行,起到有效的杀菌消毒效果,同时可以保证***运行的可靠性,更好地实现对空调器的停机保护。其中,R22冷媒机型的空调器,保护温度的取值范围为68~73℃;R410A与R32的空调器,保护温度的取值范围为62~66℃;R290冷媒机型的空调器,保护温度的取值范围为90~96℃。
在本发明的一些实施例中,在压缩机停机达到设定停机时间后重启压缩机,压缩机停机之后,室内换热器的温度开始降低,在压缩机停机达到设定停机时间后室内换热器的温度可以降低至较低,此时可以重启压缩机。或者,在压缩机停机后继续检测室内换热器的温度,判断室内换热器的温度是否低于恢复温度,若是则重启压缩机。压缩机停机之后,室内换热器的温度开始降低,在室内换热器的温度降低至低于恢复温度时,此时可以重启压缩机。由此,通过使得压缩机停机一段时间后重启或室内换热器的温度降低至一定温度后重启压缩机,可以保证***在实现停机保护的同时,可以在压缩机停机之后继续重启工作,保证空调器在高温杀菌模式下的工作效率、杀菌效率以及杀菌消毒的效果。
在本发明的一些实施例中,设定停机时间的取值范围为1~30min,例如设定停机时间的取值范围为3~5min。由此,既可以使得***的压力在足够的时间内得到释放,使得室内换热器的温度在压缩机重启之前可以降至较低的温度,以保证***可靠运行,减小压缩机的停机频率;并且,可以提高空调器在高温杀菌模式的下的工作效率和杀菌效率。
在本发明的一些实施例中,恢复温度不大于48℃,例如恢复温度可以为38℃~48℃,由此可以保证***可靠运行,减小压缩机的停机频率;并且,可以提高空调器在高温杀菌模式的下的工作效率和杀菌效率。
在本发明的一些实施例中,如图2和图3所示,在压缩机重启之前,判断压缩机的停机次数是否大于最大停机次数,若是则控制空调器退出高温杀菌模式。若压缩机的停机次数大于最大停机次数,则控制空调器退出高温杀菌模式;若压缩机的停机次数不大于最大停机次数,则维持当前状态或室内风机送风或室内风机停止运行等待,且继续判断压缩机是否满足上述重启条件,在压缩机满足上述重启条件时重启。由此,可以避免压缩机频繁停机导致压缩机及***的损坏,延长空调器的使用寿命。
在本发明的一些实施例中,最大停机次数的取值范围为1~30,例如最大停机次数的取值范围为3~10。由此,可以更好地避免压缩机频繁停机导致压缩机及***的损坏,更好地延长空调器的使用寿命。并且,可以保证空调器在高温杀菌模式的下的工作效率和杀菌效率。
根据本发明的一些实施例,在空调器进入高温杀菌模式且空调器制热运行时,室内风机的转速初始值、压缩机的频率初始值F0、节流装置的开度初始值P0以及室外风机的转速初始值W0均不超过当前室外温度所对应的区间最大值。
因为制热模式下运行是抽取室外空气热量到室内加热室内换热器与室内空气,因此室外温度越高,室内就越容易升温,***压力提升越快,需要降低抽取热量来预防***压力过快或过高失控,故从可靠性角度考虑需根据室外温度对压缩机运行频率与室外风机转速进行相应限制,可以保证空调***的稳定可靠运行。
并且,可以将室内风机的转速初始值、压缩机的频率初始值、节流装置的开度初始值以及室外风机的转速初始值(W0)均设置为接近当前室外温度所对应的区间最大值,或可以将室内风机的转速初始值、压缩机的频率初始值(F0)、节流装置的开度初始值(P0)以及室外风机的转速初始值均设置为当前室外温度所对应的区间最大值。由此,通过各个参数的初始化设置且将各个参数的初始值设置的较大,可以加快***调节的效率,达到杀菌的稳定调节,改善高温与低温运行较宽范围可靠运行问题。
具体地,图7示出了压缩机的频率初始值F0与室外温度T4的关系;图8示出了室外风机的转速初始值W0与室外温度T4的关系;图9示出了节流装置的开度初始值P0与室外温度T4的关系。
例如,室内风机的转速初始值可以设置为室内风机额定转速的60%-100%。例如,节流装置的初始开度可以按照阀流量最大值或某一固定值先运行后调节,但考虑调节速度,也可以先根据室外环境温度下对应压缩机频率与室外风机转速限定值进行摸底确定,减少调节时间。
下面参照图7-图9举例说明上述一些参数在不同室外温度区间所对应的区间最大值。
第一室外温度区间为-10~0℃(参照图7-图9中的F区间),第二室外温度区间为0~10℃(参照图7-图9中的E区间),第三室外温度区间为10~20℃(参照图7-图9中的D区间),第四室外温度区间为20~30℃(参照图7-图9中的C区间),第五室外温度区间为30~40℃(参照图7-图9中的B区间)。压缩机在第一室外温度区间、第二室外温度区间、第三室外温度区间、第四室外温度区间、第五室外温度区间的区间最大频率Fmax分别为100Hz、90Hz、80Hz、60Hz、30Hz。室外风机的转速在第一室外温度区间、第二室外温度区间、第三室外温度区间、第四室外温度区间、第五室外温度区间的区间最大转速Wmax分别为850rpm、750rpm、660rpm、550rpm、450rpm。节流装置的开度在第一室外温度区间、第二室外温度区间、第三室外温度区间、第四室外温度区间、第五室外温度区间的区间最大开度Pmax分别为250PPM、300PPM、350PPM、400PPM、450PPM。
根据本发明的一些实施例,空调器进入高温杀菌模式时开始计时至累计运行第五设定时间之后退出高温杀菌模式,由此空调器在高温杀菌模式下累计运行第五设定时间之后可以自动退出,既可以保证杀菌消毒效果,同时可以减少或规避恶劣工况的长期运行带来的压缩机损坏,电控元器件寿命及塑料件的变形问题。或者,空调器接收退出高温杀菌模式信号之后退出高温杀菌模式。由此,用户可以根据需求选择空调器在高温杀菌模式下的运行时间。
在本发明的一些实施例中,第五设定时间大于10min,例如第五设定时间的取值范围为30~130min。由此,保证杀菌效果且可以保证空调器的稳定可靠运行。
在本发明的一些实施例中,参照图6,在室外温度为15℃以上时,第五设定时间t5的取值范围为35~50min;在室外温度为5~15℃时,第五设定时间的取值范围为40~70min;在室外温度为5℃以下时,第五设定时间的取值范围为50~90min。由此,根据室外温度确定第五设定时间,保证杀菌效果且可以保证空调器的稳定可靠运行。
无论室内换热器杀菌消毒或室外换热器的杀菌消毒,均受到室内外温度的影响,随温度的升高,换热器的升温更容易,杀菌消毒更容易实现,但是主要是受到室外温度的影响。因此可以结合室外温度进行杀菌消毒前期稳定时间及杀菌消毒的持续时间的分区控制。分区的温度可以根据空调***、能效等级、初始条件设定、杀菌消毒需求的不同进行差别化需求设置。具体地,图6示出了第五设定时间t5和室外温度T4的关系。
在一些实施例中,参照图1和图2,空调器在高温杀菌模式下运行过程中,满足上述第一设定时间、第二设定时间、第三设定时间和第五设定时间中的任一个即可退出高温杀菌模式。
根据本发明的一些实施例,参照图4和图5,空调器在整个高温杀菌模式过程中,导风件的角度始终在杀菌角度区间内,在导风件位于杀菌角度区间内时,导风件与竖直向上方向之间的夹角β的取值范围为0~120°,使得导风件在由后至前的方向上朝向上倾斜延伸或者在由后至前的方向上朝向下倾斜较小角度。由此,空调器在整个高温杀菌模式过程中,通过使得导风件的角度始终在杀菌角度区间内,可以避免高温风烫伤人的问题。其中,在导风件上形成有多个散风孔时,导风件可以关闭出风口,此时导风件与竖直向上方向之间的夹角β为0°;在导风件为实体结构时(即导风件上没有多个散风孔时),导风件打开出风口的至少一部分,此时导风件与竖直向上方向之间的夹角β大于0°。
在本发明的一些可选实施例中,在空调器为分体落地式空调器时,所述β的取值范围为0~75°,使得导风件在由后至前的方向上朝向上倾斜延伸。由此,在空调器为分体落地式空调器时,可以更好地避免高温风烫伤人的问题。其中,在导风件上形成有多个散风孔时,导风件可以关闭出风口,此时导风件与竖直向上方向之间的夹角β为0°;在导风件为实体结构时(即导风件上没有多个散风孔时),导风件打开出风口的至少一部分,此时导风件与竖直向上方向之间的夹角β大于0°。
例如,参照图4和图5,导风件位于杀菌角度区间的上限位置时(参照图4和图5中的位置A),导风件与竖直向上方向之间的夹角β为最小值βmin,上述的第一设定角度可以为最小值βmin;导风件位于杀菌角度区间的下限位置时(参照图4和图5中的位置B),导风件与竖直向上方向之间的夹角β为最大值βmax,上述的第二设定角度可以为最大值βmax。
根据本发明的一些实施例,空调器的杀菌控制方法还包括:检测室外换热器的温度,并判断室外换热器的温度是否大于等于预设温度或检测空调器的低压,并判断低压是否大于等于预设压力,若室外换热器的温度大于等于预设温度或低压大于等于预设压力,则进行降低室外风机转速、提高压缩机频率、减小节流装置开度和增大室内风机转速中的至少一项。
可以理解的是,通过降低室外风机转速、提高压缩机频率、减小节流装置开度和增大室内风机转速均可以降低空调器的低压压力以及降低室外换热器的温度,由此可以避免室外换热器的温度高于临界温度后发生损坏,也可以避免空调器的低压压力超过临界压力后损坏,从而可以提升空调器工作的可靠性和使用寿命。
其中,空调器制冷***的高压主要是与高温侧对应,低压与低温侧对应,制冷时的高压侧是室外侧,低压侧是室内侧;制热时的高压侧是室内侧,低压侧是室外侧。空调器制冷***的压力可以在高低压侧预置压力传感器进行测试,或者可以通过测试高压侧与低压侧的换热器温度进行查表或换算获得对应的高压与低压。
在进行调节室外风机转速、压缩机频率、节流装置开度和室内风机转速中的至少一项时,可以调节其中的一项或多项。在调节室外风机转速、压缩机频率、节流装置开度和室内风机转速中的一项时,可以仅降低室外风机转速;或者仅提高压缩机频率;或者仅减小节流装置开度;或者增大室内风机转速。在调节室外风机转速、压缩机频率、节流装置开度和室内风机转速中的多项时,可以是多项同时调节,也可以是多项依次调节。例如,可以同时降低室外风机转速、提高压缩机频率和减小节流装置开度;例如,可以先后依次降低室外风机转速、提高压缩机频率和减小节流装置开度。
需要解释的是,本发明所述的多项(多个)是指两项(两个)或两项(两个)以上。
可选地,预设温度的取值范围为-24~71℃。由此可以更好的保证室外换热器和空调器运行在可靠的范围内,避免室外换热器和空调器在恶劣工况下运行时的损坏。在本发明的一些实施例中,R32为冷媒,-24℃≤预设温度≤42℃,优选-9.15℃~25.5℃,优先设置18Hz以下低压上限不超过25.5℃,18~45Hz不超过17+F*(25.5-17)/(45-18)℃,45~90Hz不超过17℃,120Hz以上不超过3.5℃,其中F为频率。
在本发明的另一些实施例中,R410A为冷媒,-23.5℃≤预设温度≤43℃,优选-9℃~26.5℃,优先设置118Hz以下低压上限不超过26.5℃,18~45Hz不超过18+F*(26.5-18)/(45-18)℃,45~90Hz不超过18℃,120Hz以上不超过4℃。
在本发明的另一些实施例中,R290为冷媒,-10℃≤预设温度≤71℃,优选8℃~50℃,优先设置118Hz以下低压上限不超过50℃,18~45Hz不超过39.5+F*(50-39.5)/(45-18)℃,45~90Hz不超过39.5℃,120Hz以上不超过23℃。
在本发明的一些实施例中,预设压力的取值范围为0.25~2.5MPa。由此可以更好的保证空调器运行在可靠的范围内,避免空调器在恶劣工况下运行时的损坏。空调器的***高压与低压是受到压缩机与冷媒的限制的,压缩***的低压(表压)的上限0.25MPa≤PeH≤2.5MPa,优选0.5~1.6MPa,优先设置18Hz以下低压上限不超过1.6MPa,18~45Hz不超过1.25+F*(1.6-1.25)/(45-18)MPa,45~90Hz不超过1.25MPa,120Hz以上不超过0.8MPa,其中F为频率。
根据本发明的一些实施例,空调器的杀菌控制方法还包括:检测空调器的高压和低压,并判断高压和低压的压比是否大于等于预设比值或判断高压和低压的压差是否大于等于预设差值,若压比大于等于预设比值或压差大于等于预设差值,则进行提高室外风机转速、降低压缩机频率、增大节流装置开度和增大室内风机转速中的至少一项。
其中,空调器制冷***的高压主要是与高温侧对应,低压与低温侧对应,制冷时的高压侧是室外侧,低压侧是室内侧;制热时的高压侧是室内侧,低压侧是室外侧。空调器制冷***的压力可以在高低压侧预置压力传感器进行测试,或者可以通过测试高压侧与低压侧的换热器温度进行查表或换算获得对应的高压与低压。
在进行调节室外风机转速、压缩机频率、节流装置开度和室内风机转速中的至少一项时,可以调节其中的一项或多项。其中提高室外风机转速、降低压缩机频率、增大节流装置开度和增大室内风机转速中任一个调节手段均可以降低压比和压差。在调节室外风机转速、压缩机频率、节流装置开度和室内风机转速中的一项时,可以使仅提高室外风机转速,可以是降低压缩机频率,可以是仅增大节流装置开度,可以是仅增大室内风机转速。在调节室外风机转速、压缩机频率、节流装置开度和室内风机转速中的多项时,可以是多项同时调节,也可以是多项依次调节。例如,可以同时提高室外风机的转速、降低压缩机的频率和增大节流装置的开度;例如,可以先后依次提高室内风机的转速、降低压缩机的频率和增大节流装置的开度。
可选地,预设比值PR的取值范围为1~18。由此可以更好的保证空调器在低温环境杀菌时运行在可靠的范围内,避免压缩机在低温环境(如超低温-7℃)杀菌的恶劣工况下运行时的损坏。其中,单级压缩***的压比为1~12,优选7.5以下,双级压缩***的压比为1~18,优选13以下。
可选地,预设差值PD的取值范围为0.5~4.1MPa,优选3.5MPa以下。由此可以更好的保证空调器在低温环境杀菌时运行在可靠的范围内,避免压缩机在低温环境(如超低温-7℃)杀菌的恶劣工况下运行时的损坏。
高温杀菌模式还包括进入高温杀菌模式时对空调器进行初始化处理。根据当前的室内外环境温度,对空调器进行初始化,以满足不同环境下快速进入高温杀菌模式。
其中,初始化处理包括,多空调器的室内风机、室外风机、压缩机、节流元件以及导风角度中的一个或多个进行调节。
以室内风机初始化为例,可以根据室内温度T0初始化室内风机转速R0,例如,室内风机初始转速R0与室内温度正相关。也就是说,室内温度越高,则室内风机的初始转速R0越大。当然,对室内风机的初始化操作也可以为,设置室内风机初始转速R0为低档风速。也就是说,在进入高温杀菌模式时,将室内风机的转速调整为低档风速。其中,当室内风机具有多个档位时,将室内风机调整至较低的档位。
举例而言,当室内风机具有高档位和低档位两个档位,则室内风机处于低档位时即室内风机的转速处于低档风速;当室内风机具有三个以上的档位时,室内风机的转速处于较低的档位。具体而言,当室内风机具有从低到高的一到五档时,低档风速可以为室内风机处于一档或二挡,优选地,室内风机处于一档时室内风机转速处于低档风速。
其中,图10示出了一个实施例的高温杀菌模式下,室内风机初始转速R0与室内温度T0的对应关系示意图。
另外,还可以在进入高温杀菌模式时,将室内风机调整至较低的转速范围(例如最高转速的预定百分比范围(例如转速范围在最高转速的5%-80%的范围内)),并在这个范围内根据室内温度T0调整室内风机转速。通过对室内风机的初始化调节,可以促进室内换热器快速地达到杀菌温度,有效地缩短高温杀菌的时间。
以室外风机初始化为例,可以根据室外温度T4初始化室外风机转速,室外风机初始转速与室外温度T4反相关。也就是说,室外温度T4越高,室外风机初始转速W0越低;反之,室外温度T4越低,室外风机初始转速W0越高。从而可以在高温杀菌的情形下,维持***的稳定。
其中,图8示出了一个实施例的高温杀菌模式下,室外风机初始转速W0与室外温度T4的对应关系示意图。
以压缩机初始化为例,可以根据室外温度T4初始化压缩机频率,压缩机初始频率F0与室外温度T4反相关;也就是说,室外温度T4越高,压缩机初始频率F0越低;反之,室外温度T4越低,压缩机初始频率F0越高。从而可以在高温杀菌的情形下,维持***的稳定,促使压缩机以及空调***可以稳定运行。
其中,图7示出了一个实施例的高温杀菌模式下,压缩机初始频率F0与室外温度T4的对应关系示意图。
以节流元件初始化为例,根据室外温度T4初始化节流元件开度,节流元件初始开度P0与室外温度T4正相关。也就是说,室外温度T4越高,节流元件初始开度P0越大;反之,室外温度T4越低,节流元件初始开度P0越小。从而可以在高温杀菌的情形下,维持***的稳定,促使压缩机以及空调***可以稳定运行。
其中,图9示出了一个实施例的高温杀菌模式下,节流元件初始开度P0与室外温度T4的对应关系示意图。
以导风角度初始化为例,初始化空调器的的导风角度至杀菌角度。其中杀菌角度可以为空调器打开较小的角度,从而可以降低室内换热器表面的空气流通,以便于室内换热器快速地达到杀菌温度。
下面参考附图描述根据本发明实施例的空调器。
根据本发明实施例的空调器,空调器具有进风口和出风口,空调器包括室内风机、室内换热器、节流装置、压缩机、室外风机、室外换热器和控制模块,其中压缩机、室外换热器、节流装置和室内换热器依次相连且构成制冷剂循环,出风口处设有可转动的导风件,空调器的工作模式包括高温杀菌模式,在空调器进入高温杀菌模式后,控制模块控制空调器按照上述控制方法进行工作。
根据本发明实施例的空调器,具有高温杀菌模式,通过设置的控制模块控制空调器在高温杀菌模式下按照上述的杀菌控制方法进行,不仅可以实现杀菌杀毒,并且通过优先增大室外风机的转速,再进一步调节其他参数,解决多参数同步调节时的超调震荡问题,使得空调器在高温杀菌模式下稳定可靠地工作。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (45)

1.一种空调器的杀菌控制方法,其特征在于,包括:
控制所述空调器进入高温杀菌模式;
控制所述空调器制热运行;
检测室内换热器的温度并判断所述室内换热器的温度是否高于第一杀菌温度,
若是则先控制室外风机的转速降低,在所述室外风机的转速调节至第一设定转速后,再进行调节导风件的角度以增大所述出风口的出风面积、降低压缩机的频率、增大节流装置的开度、增大室内风机的转速和逐渐退出无风感中的至少一项,以降低所述室内换热器的温度。
2.根据权利要求1所述的空调器的杀菌控制方法,其特征在于,在判断所述室内换热器的温度是否高于所述第一杀菌温度的同时,判断所述室内换热器的温度是否低于第二杀菌温度,若所述室内换热器的温度低于所述第二杀菌温度,则先控制所述室外风机的转速增大,然后进行调节导风件的角度以减小出风口的出风面积、提高压缩机的频率、减小节流装置的开度、降低室内风机的转速和开启电辅热中的至少一项,以提高所述室内换热器的温度。
3.根据权利要求1所述的空调器的杀菌控制方法,其特征在于,所述第一杀菌温度的取值范围为56~96℃。
4.根据权利要求2所述的空调器的杀菌控制方法,其特征在于,所述第二杀菌温度的取值范围为56~94℃。
5.根据权利要求2所述的空调器的杀菌控制方法,其特征在于,按照第一设定规则控制所述室外风机的转速增大,在所述室内风机的转速按照所述第一设定规则调节至第二设定转速后,再进行调节所述导风件的角度以减小出风口的出风面积、提高所述压缩机的频率、减小所述节流装置的开度、降低所述室内风机的转速和开启所述电辅热中的至少一项,以提高室所述内换热器的温度。
6.根据权利要求5所述的空调器的杀菌控制方法,其特征在于,在所述室外风机的转速按照所述第一设定规则调节至所述第二设定转速时开始计时至所述空调器运行第一设定时间后退出所述高温杀菌模式。
7.根据权利要求6所述的空调器的杀菌控制方法,其特征在于,所述第一设定时间的取值范围为30~90min,所述第二设定转速的取值范围为700rpm~1100rpm。
8.根据权利要求5所述的空调器的杀菌控制方法,其特征在于,按照所述第一设定规则调节所述室外风机的转速,所述第一设定规则为第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个,其中所述第一调节规则为按照步长为调节步幅逐步调节,所述第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,所述第三调节规则为按照当前值的百分比为调节步幅逐步调节,所述第四调节规则为按照额定值的百分比为调节步幅逐步调节,其中所述换热器温度差值是指所述室内换热器的当前温度与所述第二杀菌温度的差值的绝对值。
9.根据权利要求2所述的空调器的杀菌控制方法,其特征在于,按照第二设定规则控制所述室外风机的转速降低,在所述室外风机的转速按照所述第二设定规则调节至所述第一设定转速后,再进行调节所述导风件的角度以增大出风面积、降低所述压缩机的频率、增大所述节流装置的开度和增大所述室内风机的转速中的至少一项,以降低室内换热器的温度。
10.根据权利要求9所述的空调器的杀菌控制方法,其特征在于,在所述室外风机的转速按照所述第二设定规则调节至所述第一设定转速时开始计时至所述空调器运行第二设定时间后退出所述高温杀菌模式。
11.根据权利要求10所述的空调器的杀菌控制方法,其特征在于,所述第二设定时间的取值范围为10~60min,所述第一设定转速的取值范围为150~600rpm。
12.根据权利要求9所述的空调器的杀菌控制方法,其特征在于,按照所述第二设定规则调节所述室外风机的转速,所述第二设定规则为第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个,其中所述第一调节规则为按照步长为调节步幅逐步调节,所述第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,所述第三调节规则为按照当前值的百分比为调节步幅逐步调节,所述第四调节规则为按照额定值的百分比为调节步幅逐步调节,其中所述换热器温度差值是指所述室内换热器的当前温度与所述第一杀菌温度的差值的绝对值。
13.根据权利要求9所述的空调器的杀菌控制方法,其特征在于,若判断所述室内换热器的温度在所述第二杀菌温度和所述第一杀菌温度之间时,维持所述空调器当前运行状态,并开始计时至所述空调器运行第三设定时间后退出所述高温杀菌模式。
14.根据权利要求13所述的空调器的杀菌控制方法,其特征在于,所述第三设定时间的取值大于10min。
15.根据权利要求2所述的空调器的杀菌控制方法,其特征在于,所述第一杀菌温度与所述第二杀菌温度的差值不小于0.5℃。
16.根据权利要求15所述的空调器的杀菌控制方法,其特征在于,所述第一杀菌温度与所述第二杀菌温度的差值的取值范围为1~3℃。
17.根据权利要求1所述的空调器的杀菌控制方法,其特征在于,所述导风件的角度、所述压缩机的频率、所述节流装置的开度和所述室内风机的转速中的任一个的调节均是按照调节步幅逐步调节,在调节所述导风件的角度、所述压缩机的频率、所述节流装置的开度和所述室内风机的转速中的任一个的过程中,增加***压力的调节步幅不大于降低***压力的调节步幅。
18.根据权利要求2所述的空调器的杀菌控制方法,其特征在于,所述导风件的角度、所述压缩机的频率、所述节流装置的开度和所述室内风机的转速中的任一项的调节规则为第一调节规则、第二调节规则、第三调节规则和第四调节规则中的一个,其中所述第一调节规则为按照步长为调节步幅逐步调节,所述第二调节规则为按照换热器温度差值与增益系数的乘积为调节步幅逐步调节,所述第三调节规则为按照当前值的百分比为调节步幅逐步调节,所述第四调节规则为按照额定值的百分比为调节步幅逐步调节,其中在判断所述室内换热器的温度低于所述第二杀菌温度时,所述换热器温度差值是指所述室内换热器的当前温度与所述第二杀菌温度的差值的绝对值;在判断所述室内换热器的温度高于所述第一杀菌温度时,所述换热器温度差值是指所述室内换热器的当前温度与所述第一杀菌温度的差值的绝对值。
19.根据权利要求2所述的空调器的杀菌控制方法,其特征在于,所述空调器在制热状态下运行第四设定时间之后,再判断所述室内换热器的温度是否低于所述第二杀菌温度。
20.根据权利要求19所述的空调器的杀菌控制方法,其特征在于,所述第四设定时间的取值范围为1~60min。
21.根据权利要求20所述的空调器的杀菌控制方法,其特征在于,在室外温度为15℃以上时,所述第四设定时间的取值范围为3~10min;在室外温度为5~15℃时,所述第四设定时间的取值范围为5~15min;在室外温度为5℃以下时,所述第四设定时间的取值范围为8~20min。
22.根据权利要求19所述的空调器的杀菌控制方法,其特征在于,所述空调器进入所述高温杀菌模式的同时检测所述空调器当前运行状态是否处在制热状态,
若是,则所述空调器保持制热运行,且所述第四设定时间的取值范围为1~30min;
若否,则控制所述空调器切换至制热状态运行,且所述第四设定时间的取值范围为1~60min。
23.根据权利要求19所述的空调器的杀菌控制方法,其特征在于,在判断所述室内换热器的温度是否低于所述第二杀菌温度之前,判断所述空调器在制热状态下是否运行所述第四设定时间,
若是,则判断所述室内换热器的温度是否低于所述第二杀菌温度;
若否,则判断所述室内换热器的温度是否大于等于第三杀菌温度,或者判断所述室内换热器的温度变化率是否大于等于设定变化率,其中所述第三杀菌温度大于所述第二杀菌温度,
若所述室内换热器的温度大于等于所述第三杀菌温度或所述室内换热器的温度变化率大于等于设定变化率,则调节所述室内风机的转速、所述压缩机的频率和所述节流装置中的至少一项,以降低所述室内换热器的温度或降低所述室内换热器的温度变化率;若所述室内换热器的温度小于所述第三杀菌温度或所述室内换热器的温度变化率小于设定变化率,则继续判断所述空调器在制热状态下是否运行所述第四设定时间。
24.根据权利要求23所述的空调器的杀菌控制方法,其特征在于,所述设定变化率的取值范围为0.5~5℃/min。
25.根据权利要求1所述的空调器的杀菌控制方法,其特征在于,在所述空调器处在所述高温杀菌模式的整个过程中,实时检测所述室内换热器的温度,并判断所述室内换热器的温度是否大于保护温度,若是则所述空调器的压缩机停机。
26.根据权利要求25所述的空调器的杀菌控制方法,其特征在于,所述保护温度的取值范围为62~96℃。
27.根据权利要求25所述的空调器的杀菌控制方法,其特征在于,在所述压缩机停机达到设定停机时间后重启所述压缩机;或者,在所述压缩机停机后继续检测所述室内换热器的温度,判断所述室内换热器的温度是否低于恢复温度,若是则重启所述压缩机。
28.根据权利要求27所述的空调器的杀菌控制方法,其特征在于,所述设定停机时间的取值范围为1~30min。
29.根据权利要求27所述的空调器的杀菌控制方法,其特征在于,所述恢复温度不大于48℃。
30.根据权利要求27所述的空调器的杀菌控制方法,其特征在于,在所述压缩机重启之前,判断所述压缩机的停机次数是否大于最大停机次数,若是则控制所述空调器退出所述高温杀菌模式。
31.根据权利要求30所述的空调器的杀菌控制方法,其特征在于,所述最大停机次数的取值范围为1~30。
32.根据权利要求1所述的空调器的杀菌控制方法,其特征在于,在所述空调器进入高温杀菌模式且所述空调器制热运行时,室内风机的转速初始值、压缩机的频率初始值、节流装置的开度初始值以及室外风机的转速初始值均不超过当前室外温度所对应的区间最大值。
33.根据权利要求1所述的空调器的杀菌控制方法,其特征在于,所述空调器进入所述高温杀菌模式时开始计时至累计运行第五设定时间之后退出所述高温杀菌模式;或者,所述空调器接收退出所述高温杀菌模式信号之后退出所述高温杀菌模式。
34.根据权利要求33所述的空调器的杀菌控制方法,其特征在于,所述第五设定时间的取值大于10min。
35.根据权利要求34所述的空调器的杀菌控制方法,其特征在于,在室外温度为15℃以上时,所述第五设定时间的取值范围为35~50min;在室外温度为5~15℃时,所述第五设定时间的取值范围为40~70min;在室外温度为5℃以下时,所述第五设定时间的取值范围为50~90min。
36.根据权利要求1-35中任一项所述的空调器的杀菌控制方法,其特征在于,所述空调器在整个所述高温杀菌模式过程中,所述导风件的角度始终在杀菌角度区间内,在所述导风件位于所述杀菌角度区间内时,所述导风件与竖直向上方向之间的夹角β的取值范围为0-120°。
37.根据权利要求36所述的空调器的杀菌控制方法,其特征在于,在所述空调器为分体落地式空调器时,所述β的取值范围为0-75°。
38.根据权利要求1所述的空调器的杀菌控制方法,其特征在于,还包括:检测室外换热器的温度,并判断所述室外换热器的温度是否大于等于预设温度或检测空调器的低压,并判断所述低压是否大于等于预设压力,
若所述室外换热器的温度大于等于所述预设温度或所述低压大于等于所述预设压力,则进行降低室外风机转速、提高压缩机频率、减小节流装置开度和增大室内风机转速中的至少一项。
39.根据权利要求38所述的空调器的杀菌控制方法,其特征在于,所述预设温度的取值范围为-24~71℃。
40.根据权利要求39所述的空调器的杀菌控制方法,其特征在于,所述预设压力的取值范围为0.25~2.5MPa。
41.根据权利要求1所述的空调器的杀菌控制方法,其特征在于,还包括:检测所述空调器的高压和低压,并判断所述高压和所述低压的压比是否大于等于预设比值或判断所述高压和所述低压的压差是否大于等于预设差值,若所述压比大于等于所述预设比值或所述压差大于等于所述预设差值,则进行提高室外风机转速、降低压缩机频率、增大节流装置开度和增大室内风机转速中的至少一项。
42.根据权利要求41所述的空调器的杀菌控制方法,其特征在于,所述预设比值的取值范围为1~18。
43.根据权利要求41所述的空调器的杀菌控制方法,其特征在于,所述预设差值的取值范围为0.5~4.1MPa。
44.根据权利要求1-43中任一项所述的空调器的杀菌控制方法,其特征在于,所述高温杀菌模式还包括进入所述高温杀菌模式时对空调器进行初始化处理,所述初始化处理包括:
根据室内温度T0初始化室内风机转速,室内风机转速初始值R0与室内温度正相关或设置所述室内风机初始转速R0为低档风速;
根据室外温度T4初始化室外风机转速,室外风机转速初始值W0与室外温度T4反相关;
根据室外温度T4初始化压缩机频率,压缩机频率初始值F0与室外温度T4反相关;
根据室外温度T4初始化节流装置开度,节流装置开度初始值P0与室外温度T4正相关;
初始化空调器的导风角度至杀菌角度。
45.一种空调器,其特征在于,所述空调器具有进风口和出风口,所述空调器包括室内风机、室内换热器、节流装置、压缩机、室外风机、室外换热器和控制模块,其中所述压缩机、所述室外换热器、所述节流装置和室内换热器依次相连且构成制冷剂循环,所述出风口处设有可转动的导风件,所述空调器的工作模式包括高温杀菌模式,在所述空调器进入所述高温杀菌模式后,所述控制模块控制所述空调器按照根据权利要求1-44中任一项的杀菌控制方法进行工作。
CN202010496213.3A 2020-03-13 2020-06-03 空调器的杀菌控制方法及空调器 Pending CN111692731A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020101765538 2020-03-13
CN202010176553 2020-03-13

Publications (1)

Publication Number Publication Date
CN111692731A true CN111692731A (zh) 2020-09-22

Family

ID=72479437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010496213.3A Pending CN111692731A (zh) 2020-03-13 2020-06-03 空调器的杀菌控制方法及空调器

Country Status (1)

Country Link
CN (1) CN111692731A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112902404A (zh) * 2021-03-24 2021-06-04 珠海格力电器股份有限公司 空调杀菌控制方法、装置和空调器
CN112944637A (zh) * 2021-03-23 2021-06-11 珠海格力电器股份有限公司 空调控制方法、装置、空调和存储介质
CN113124535A (zh) * 2021-04-25 2021-07-16 珠海格力电器股份有限公司 空调器的杀菌控制方法、装置、控制器和空调器
CN113405232A (zh) * 2021-06-25 2021-09-17 海信(山东)空调有限公司 空调器的高温杀菌控制方法及装置、空调器和存储介质
CN113405238A (zh) * 2021-06-25 2021-09-17 海信(山东)空调有限公司 空调器的杀菌控制方法及装置、空调器和存储介质
CN113405233A (zh) * 2021-06-25 2021-09-17 海信(山东)空调有限公司 空调器的杀菌控制方法及装置、空调器和存储介质
CN114459117A (zh) * 2022-01-24 2022-05-10 广州松下空调器有限公司 一种空调器的控制方法、装置及空调器
WO2024109235A1 (zh) * 2022-11-25 2024-05-30 青岛海尔空调器有限总公司 空调器的控制方法、装置与空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107576019A (zh) * 2017-10-12 2018-01-12 广东美的暖通设备有限公司 空调***及其压比控制方法和控制装置
CN107975919A (zh) * 2017-11-21 2018-05-01 广东美的暖通设备有限公司 空调***、空调***的控制方法和装置
CN109297101A (zh) * 2018-08-21 2019-02-01 珠海格力电器股份有限公司 空调器杀菌方法、***和空调器
JP2019045143A (ja) * 2014-12-17 2019-03-22 シャープ株式会社 空気調和機
CN109682010A (zh) * 2018-12-19 2019-04-26 广东美的制冷设备有限公司 制冷装置散热控制方法和装置、制冷装置以及存储介质
CN109959127A (zh) * 2019-04-28 2019-07-02 珠海格力电器股份有限公司 机组的控制方法及装置、空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045143A (ja) * 2014-12-17 2019-03-22 シャープ株式会社 空気調和機
CN107576019A (zh) * 2017-10-12 2018-01-12 广东美的暖通设备有限公司 空调***及其压比控制方法和控制装置
CN107975919A (zh) * 2017-11-21 2018-05-01 广东美的暖通设备有限公司 空调***、空调***的控制方法和装置
CN109297101A (zh) * 2018-08-21 2019-02-01 珠海格力电器股份有限公司 空调器杀菌方法、***和空调器
CN109682010A (zh) * 2018-12-19 2019-04-26 广东美的制冷设备有限公司 制冷装置散热控制方法和装置、制冷装置以及存储介质
CN109959127A (zh) * 2019-04-28 2019-07-02 珠海格力电器股份有限公司 机组的控制方法及装置、空调器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944637A (zh) * 2021-03-23 2021-06-11 珠海格力电器股份有限公司 空调控制方法、装置、空调和存储介质
CN112944637B (zh) * 2021-03-23 2022-08-16 珠海格力电器股份有限公司 空调控制方法、装置、空调和存储介质
CN112902404A (zh) * 2021-03-24 2021-06-04 珠海格力电器股份有限公司 空调杀菌控制方法、装置和空调器
CN113124535A (zh) * 2021-04-25 2021-07-16 珠海格力电器股份有限公司 空调器的杀菌控制方法、装置、控制器和空调器
CN113405232A (zh) * 2021-06-25 2021-09-17 海信(山东)空调有限公司 空调器的高温杀菌控制方法及装置、空调器和存储介质
CN113405238A (zh) * 2021-06-25 2021-09-17 海信(山东)空调有限公司 空调器的杀菌控制方法及装置、空调器和存储介质
CN113405233A (zh) * 2021-06-25 2021-09-17 海信(山东)空调有限公司 空调器的杀菌控制方法及装置、空调器和存储介质
CN113405232B (zh) * 2021-06-25 2022-04-08 海信(山东)空调有限公司 空调器的高温杀菌控制方法及装置、空调器和存储介质
CN114459117A (zh) * 2022-01-24 2022-05-10 广州松下空调器有限公司 一种空调器的控制方法、装置及空调器
WO2024109235A1 (zh) * 2022-11-25 2024-05-30 青岛海尔空调器有限总公司 空调器的控制方法、装置与空调器

Similar Documents

Publication Publication Date Title
CN111692730B (zh) 空调器的杀菌控制方法及空调器
CN111692731A (zh) 空调器的杀菌控制方法及空调器
CN111692725B (zh) 空调器的控制方法及空调器
CN111692727B (zh) 空调器的杀菌控制方法及空调器
CN111692724B (zh) 空调器的杀菌控制方法及空调器
CN112212480B (zh) 空气调节设备的控制方法和空气调节设备
CN111397095B (zh) 空调器的控制方法及空调器
CN111692732A (zh) 空调器的杀菌控制方法及空调器
EP3067635B1 (en) Air conditioning device
CN110332664A (zh) 一种空调器控制方法和空调器
WO2012046850A1 (ja) 空気調和機
CN113405230B (zh) 空调器的自清洁杀菌控制方法及装置、空调器和存储介质
CN111692726B (zh) 空调器的杀菌控制方法及空调器
CN113405231B (zh) 空调器的自清洁杀菌控制方法及装置、空调器和存储介质
CN113405229B (zh) 空调器的自清洁杀菌控制方法及装置、空调器和存储介质
CN111692729B (zh) 空调器的杀菌控制方法及空调器
CN111397128A (zh) 高温杀菌方法、频率控制方法和空调器
CN113405236B (zh) 空调器的自清洁杀菌控制方法及装置、空调器和存储介质
CN113865031A (zh) 湿度控制方法、装置及空调器
CN111692723B (zh) 空调器的控制方法
JP5403078B2 (ja) 空気調和機
CN111692728A (zh) 空调器的杀菌控制方法及空调器
KR20040012348A (ko) 인버터공기조화기의 운전제어방법
CN113405235A (zh) 空调器的杀菌控制方法及装置、空调器和存储介质
CN113405238A (zh) 空调器的杀菌控制方法及装置、空调器和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination