CN111662446A - 一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜及其制备方法 - Google Patents

一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜及其制备方法 Download PDF

Info

Publication number
CN111662446A
CN111662446A CN202010555627.9A CN202010555627A CN111662446A CN 111662446 A CN111662446 A CN 111662446A CN 202010555627 A CN202010555627 A CN 202010555627A CN 111662446 A CN111662446 A CN 111662446A
Authority
CN
China
Prior art keywords
fluorine
exchange membrane
anion exchange
containing polyarylether
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010555627.9A
Other languages
English (en)
Inventor
陈栋阳
李艳琰
陈煜�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202010555627.9A priority Critical patent/CN111662446A/zh
Publication of CN111662446A publication Critical patent/CN111662446A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4018(I) or (II) containing halogens other than as leaving group (X)
    • C08G65/4025(I) or (II) containing fluorine other than as leaving group (X)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • C08G2650/48Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜及其制备方法。本发明将四胺基双酚芴、双酚芴与十氟联苯在室温下缩聚合成四胺基含氟聚芳醚化合物,然后将其与溴己基季铵盐化合物QA‑6C反应,得到密集双季铵盐离子侧链型含氟聚芳醚化合物;再将所得密集双季铵盐离子侧链型含氟聚芳醚化合物溶解于极性非质子溶剂后,采用溶液浇铸法浇铸成膜,即得所述低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜。该含氟聚芳醚基阴离子交换膜在相似离子交换容量下的面电阻率比普通聚芳醚基阴离子交换膜低,氧化稳定性比普通聚芳醚基阴离子交换膜高,在全钒液流电池中有广阔的应用前景。

Description

一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换 膜及其制备方法
技术领域
本发明属于阴离子交换膜材料制备领域,具体涉及一种低面电阻率和高氧化稳定性含氟聚芳醚基阴离子交换膜及其制备方法。
背景技术
近年来,全钒液流电池以其低成本、快速响应、高能量效率、良好的循环稳定性、绿色环保、安全性及灵活性在大规模储能应用中备受关注。阴离子交换膜是一类重要的全钒液流电池隔膜。阴离子交换膜在全钒液流电池中主要起到选择通过电解液中的载电离子以构成电池回路,同时隔离两极电解液的作用。目前,全钒液流电池用阴离子交换膜主要存在面电阻率高和氧化稳定性差的问题,阻碍了其商业化的发展。
在膜厚度不变的情况下,阴离子交换膜的面电阻率与离子传导率成正比。阴离子交换膜的离子传导率一般随着离子交换容量的增加而增加,但过高的离子交换膜容量会导致膜过度吸水溶胀,降低其机械性能和化学稳定性。在保持适当离子交换容量的条件下,提高离子传导率的一个直接、有效的方法是调节离子基团在聚合物骨架上的分布方式。离子基团分布越密集,越容易形成亲水通道,膜的离子传导率越高,在特定膜厚度的条件下膜的面电阻率越低。
阴离子交换膜的氧化稳定性与其化学组成密切相关。氟原子由于电负性高且有屏蔽效应,可提高聚合物的氧化稳定性。因此,含氟聚芳醚被广泛用作全钒液流电池和燃料电池的质子交换膜的骨架材料。但是,关于含氟聚芳醚用作全钒液流电池阴离子交换膜骨架材料的报道较少。
将氧化稳定性优异的含氟聚芳醚骨架与密集分布的离子基团结合起来,是设计开发具有低面电阻率和高氧化稳定性的全钒液流电池阴离子交换膜的一种潜在策略。
发明内容
本发明的目的是为了克服现有技术的不足,提供一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜。所述含氟聚芳醚基阴离子交换膜具有面电阻率低、钒离子透过率低、机械性能好、氧化稳定性高等优点,在全钒液流电池用阴离子交换膜领域有重要的应用前景。
为实现上述目的,本发明采用如下技术方案:
一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜,其以四胺基含氟聚芳醚化合物和溴己基季铵盐化合物为原料,通过一步反应制得密集双季铵盐离子侧链型含氟聚芳醚化合物,然后利用所得密集双季铵盐离子侧链型含氟聚芳醚化合物经溶液浇铸法制得所述含氟聚芳醚基阴离子交换膜;其制备方法包括以下步骤:
(1)将四胺基双酚芴、双酚芴、十氟联苯、氢化钙和氟化铯加入到极性非质子溶剂中,通惰性气体保护,室温下搅拌反应10~40小时,然后将粘稠的混合物倒入去离子水中析出沉淀(所用去离子水的体积为极性非质子溶剂体积的10~100倍);将沉淀物过滤并于60 ℃真空烘箱中干燥12~48小时,然后溶于二氯甲烷中配成1~20 wt.%的溶液;将该溶液缓慢倒入甲醇中析出沉淀(所用甲醇的体积为二氯甲烷体积的10~100倍);过滤收集沉淀并于60 ℃真空烘箱中干燥12 ~ 48小时,得四胺基含氟聚芳醚化合物;
所述四胺基双酚芴的化学结构式为:
Figure 100002_DEST_PATH_IMAGE002
(2)将步骤(1)所得四胺基含氟聚芳醚化合物溶解于极性非质子溶剂中,制成1~10wt.%的溶液A;将溴己基季铵盐化合物QA-6C溶于极性非质子溶剂中,配制成1~10 wt.%的溶液B;将溶液B缓慢逐滴加入溶液A中,在-20~100 ℃下搅拌5~50小时,然后缓慢倒入去离子水中析出沉淀(所用去离子水的体积为极性非质子溶剂体积的10~100倍);过滤收集沉淀并在40~120 ℃恒温烘箱中干燥5~24小时,得到密集双季铵盐离子侧链型含氟聚芳醚化合物;
所述溴己基季铵盐化合物QA-6C的化学结构式为:
Figure 100002_DEST_PATH_IMAGE004
所述密集双季铵盐离子侧链型含氟聚芳醚化合物的化学结构式为:
Figure 100002_DEST_PATH_IMAGE006
式中n为1~400;m为10~400;
(3)将步骤(2)所制得的密集双季铵盐离子侧链型含氟聚芳醚化合物溶解于极性非质子溶剂中制成1 ~ 10 wt.%的溶液,然后浇铸到水平放置的玻璃板上,于60 ~ 100 ℃恒温烘箱中干燥10 ~100小时,再于40~120 ℃真空干燥12~40小时,使玻璃板表面形成一层致密膜;将膜从玻璃板表面揭下,即得低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜。
步骤(1)中所用四胺基双酚芴、双酚芴、十氟联苯、氢化钙和氟化铯的摩尔比为x:(1-x):1:(0.01~1):(3~6),其中0<x<1。
步骤(1)中极性非质子溶剂的用量为每克十氟联苯加入5~50mL。
为了更好的实现本发明,以上步骤中所述极性非质子溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜、1,3-二甲基-2-咪唑啉酮中的任意一种。
步骤(2)中所用QA-6C的摩尔量为四胺基含氟聚芳醚化合物中所含叔胺基摩尔量的1.5~5倍。
所得含氟聚芳醚基阴离子交换膜的厚度为30~110微米。
本发明所得低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜可用于作为全钒液流电池隔膜材料。
与现有技术相比,本发明具有如下效果:
(1)本发明所采用的化工原料价格低廉且容易获得;
(2)本发明通过溴己基季铵盐与四胺基含氟聚芳醚的反应引入季铵盐基团,反应方法简单,条件温和,并且通过调节聚芳醚中四胺基双酚芴单元的含量可控制膜的离子交换容量;
(3)本发明阴离子交换膜采用含氟聚芳醚骨架,具有优秀的机械性能和化学稳定性;
(4)本发明所制备的密集双季铵盐离子侧链型含氟聚芳醚具有密集分布的柔性双阳离子侧链,有利于阳离子基团在成膜过程中相互聚集,形成离子传输通道,提升离子传导性能;
(5)本发明所制备的含氟聚芳醚基阴离子交换膜与传统阴离子交换膜相比具有更高的氧化稳定性,同时在相似离子交换容量下具有更低的面电阻率,在全钒液流电池中有广阔的应用前景。
附图说明
图1为实施例1中制备的含氟聚芳醚化合物FPAE-10的核磁氢谱图;
图2为实施例1中制备的含氟聚芳醚化合物FPAE-10的红外光谱图;
图3为实施例3中制备的含双季铵盐侧链的含氟聚芳醚化合物DQA-6C-FPAE-10的核磁氢谱图;
图4为实施例3中制备的含双季铵盐侧链的含氟聚芳醚化合物DQA-6C-FPAE-10的红外光谱图;
图5为对比例1中制备的含双季铵盐侧链的含氟聚芳醚化合物DQA-3C-FPAE-10的核磁氢谱图;
图6为对比例1中制备的含双季铵盐侧链的含氟聚芳醚化合物DQA-3C-FPAE-10的红外光谱图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
所用四胺基双酚芴参照文献(J Polym Sci Pol Chem, 2016, 54: 935–944)所述方法合成,其化学结构式为:
Figure 187817DEST_PATH_IMAGE002
所用溴己基季铵盐化合物QA-6C参考文献(Synthetic Commun, 1999, 29: 2393-2398)所述方法合成,其化学结构式为:
Figure DEST_PATH_IMAGE007
实施例1含氟聚芳醚化合物FPAE-10的制备
向装有磁石的25 mL三颈圆底烧瓶中加入0.2315g(0.40 mmol)四胺基双酚芴,1.2615g(3.60 mmol)双酚芴,1.3500 g(4.00 mmol)十氟联苯和8.50 mL N-甲基吡咯烷酮,搅拌待固体完全溶解后,加入0.1250 g(3 mmol)氢化钙和2.50 g(17 mmol)氟化铯,在氩气保护下室温搅拌反应24小时。反应结束后,将粘稠的混合物倒入500 mL去离子水中,边倒边搅拌,使聚合物沉淀析出,收集所得白色长条状聚合物,并在真空烘箱中于60 ℃干燥12小时,然后将2.50 g所得聚合物溶于30 mL二氯甲烷中,再倒入500 mL甲醇中,收集析出的絮状聚合物,在真空烘箱中于60 ℃下干燥12小时,得到四胺基含氟聚芳醚化合物FPAE-10,其产率为97%。该化合物的核磁共振氢谱的数据为: 1H NMR (600 MHz, Chloroform-d) δ 7.77(q,20H),7.38(q, 40H),7.31(t, 20H),7.22(t, 2H),7.11(s, 18H),6.9(s, 9H),3.32(s,4H),2.05(s, 12H)。红外光谱数据为:FT-IR(cm-1) υ 3063,2943,2668,1645,1597,1501,1400,1353,1325,1272,1208,1175,1122,1069,1036,994,919,818,732,679,620,567。
实施例2 含氟聚芳醚化合物FPAE-20的制备
将实施例1中四胺基双酚芴的投料量替换为0.4630g(0.8 mmol),双酚芴的投料量替换为1.1213g(3.2 mmol),其余步骤同实施例1,制得四胺基含氟聚芳醚化合物FPAE-20,其产率为95%。
实施例3 密集双季铵盐离子侧链型含氟聚芳醚化合物DQA-6C-FPAE-10的制备
将1.00g(0.6 mmol)实施例1中所得的含氟聚芳醚化合物FPAE-10溶解在20 mL N-甲基吡咯烷酮中,制成5 wt.%的溶液A;接着将2.73g(0.9 mmol)QA-6C溶解于30 mL N-甲基吡咯烷酮,制成9 wt.%的溶液B;将溶液B缓慢滴加入溶液A中,将混合物在室温下搅拌反应24小时,然后缓慢倒入去离子水中析出沉淀,接着过滤并倒入表面皿中,于80 ℃下干燥12小时,即得到密集双季铵盐离子侧链型含氟聚芳醚化合物DQA-6C-FPAE-10,其产率为96%,化学结构式为:
Figure DEST_PATH_IMAGE008
,式中n为1~400;m为10~400。
该化合物的核磁共振氢谱的数据为:1HNMR (600MHz, DMSO-d6) δ 7.96(s,10H),7.44(d, 25H),7.34(s, 10H),7.14(s, 10H),4.46(s, 1H),3.34(d, 4H),3.12(s,15H),1.73(d, 4H),1.30(d, 4H)。红外光谱数据为:FT-IR(cm-1) υ 3412,3063,3037,2941,1649,1601,1490,1398,1330,1307,1280,1208,1111,1096,1071,1033,1003,982,916,822,745,728,613,570。
实施例4 密集双季铵盐离子侧链型含氟聚芳醚化合物DQA-6C-FPAE-20的制备
将实施例3中1.00g(0.6 mmol)的含氟聚芳醚化合物FPAE-10替换为1.00g(0.58 mmol)的含氟聚芳醚化合物FPAE-20,QA-6C的投料量替换为2.64g(0.87 mmol),其余步骤同实施例3,制得密集双季铵盐离子侧链型含氟聚芳醚化合物DQA-6C-FPAE-20,其产率为96.5%。
对比例1 密集双季铵盐离子侧链型含氟聚芳醚化合物DQA-3C-FPAE-10的制备
将实施例3中使用的溴己基季铵盐化合物原料替换为QA-3C,其化学结构式为:
Figure DEST_PATH_IMAGE010
;并确定其投料量为2.34g(0.9 mmol),其余步骤同实施例3,制得密集双季铵盐离子侧链型含氟聚芳醚化合物DQA-3C-FPAE-10,其产率为98%,化学结构式为:
Figure DEST_PATH_IMAGE012
,式中n为1~400;m为10~400。
该化合物的核磁共振氢谱的数据为:1HNMR (600MHz, DMSO-d6) δ 7.94(s,10H),7.44(d, 25H),7.32(s, 10H),7.12(s, 10H),4.80(s, 1H),3.15(d, 4H),3.03(s,15H),1.24(s, 4H)。红外光谱数据为FT-IR(cm-1) υ 3412,3063,3035,2941,1649,1601,1490,1449,1398,1281,1208,1111,1096,1071,1033,1003,982,916,822,745,728,613,570。
对比例2 密集双季铵盐离子侧链型含氟聚芳醚化合物DQA-3C-FPAE-20的制备
将对比例1中1.00g(0.6 mmol)的含氟聚芳醚化合物FPAE-10替换为1.00g(0.58 mmol)的含氟聚芳醚化合物FPAE-20,其余步骤同对比例1,制得密集双季铵盐离子侧链型含氟聚芳醚化合物DQA-3C-FPAE-20。其产率为97%。
应用实施例1 基于密集双季铵盐离子侧链型含氟聚芳醚化合物制备阴离子交换膜
取0.5g制备的密集双季铵盐离子侧链型含氟聚芳醚化合物,溶解于10 mL N-甲基吡咯烷酮中制成5 wt%溶液,然后浇铸于水平放置的平板玻璃上,在恒温烘箱中80 ℃干燥12小时,再在60 ℃真空干燥20小时,冷却后浸入去离子水中使膜与玻璃板剥离,即制得目标阴离子交换膜。所得阴离子交换膜于去离子水中洗涤3次并浸入去离子水中保存备用。
应用实施例2密集双季铵盐离子侧链型含氟聚芳醚阴离子交换膜的性能测试
采用酸碱滴定法测量离子交换容量,交流阻抗法测量面电阻率,拉伸实验评价膜的机械性能。通过紫外光谱检测透过膜的VO2+离子的浓度变化来评价膜的钒离子透过率。氧化稳定性通过将膜浸泡在1.5 M VO2 + + 3.0 M H2SO4溶液60天后的重量保持率进行评价。所制备的密集双季铵盐离子侧链型含氟聚芳醚离子交换膜与已报道的阴离子交换膜的性能对比如表1所示。
表1密集双季铵盐离子侧链型含氟聚芳醚阴离子交换膜与已报道的离子交换膜的性能对比
Figure DEST_PATH_IMAGE014
表1测试结果表明,双季铵盐离子侧链型含氟聚芳醚阴离子交换膜具有优秀的氧化稳定性,膜在酸性电解液中浸泡60天后几乎未见降解。在相近的离子交换容量下,DQA-6C-FPAE膜与作为对比的DQA-3C-FPAE膜具有相近的钒离子透过率和机械性能。同时,DQA-6C-FPAE膜具有比DQA-3C-FPAE膜更低的面电阻率。这一结果表明,长双季铵盐离子侧链相较于短侧链更有利于成膜过程中离子相互聚集形成离子传输通道,提升离子传导性能。此外,在相似离子交换容量和厚度下,双季铵盐离子侧链型含氟聚芳醚阴离子交换膜与已报道的全钒液流电池用离子交换膜相比具有更低的面电阻率在的性能和更高的氧化稳定性,展现了其在全钒液流电池中的应用潜力。
应用实施例3 密集双季铵盐离子侧链型含氟聚芳醚阴离子交换膜DQA-6C-FPAEs的全钒液流电池性能测试
将密集双季铵盐离子侧链型含氟聚芳醚阴离子交换膜DQA-6C-FPAEs装入全钒液流电池中,在80 mA cm-2的电流密度下评估其电池性能。同时,通过测试电池在120 mA cm-2的电流密度下循环50圈后的放电容量保持率评价膜的循环稳定性。所制备密集双季铵盐离子侧链型含氟聚芳醚阴离子交换膜与文献报道的阴离子交换膜制备的全钒液流电池性能对比如表2所示。
表2 密集双季铵盐离子侧链型含氟聚芳醚阴离子交换膜与已报道的阴离子交换膜的全钒液流电池性能对比
Figure DEST_PATH_IMAGE016
表2结果表明,双季铵盐离子侧链型含氟聚芳醚阴离子交换膜DQA-6C-FPAEs所组装的全钒液流电池与其它已报道的阴离子交换膜组装的全钒液流电池相比具有较高的电压效率和能量效率,这一结果可归因于其较低的面电阻率。电池循环稳定性测试结果表明,得益于DQA-6C-FPAE膜的高氧化稳定性,由其组装的全钒液流电池相对于传统阴离子交换膜组装的全钒液流电池在循环50圈后具有更高的放电容量保持率。由此可见,双季铵盐离子侧链型含氟聚芳醚阴离子交换膜在全钒液流电池中具有较大的应用潜力。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

1.一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜,其特征在于,所述阴离子交换膜是由密集双季铵盐离子侧链型含氟聚芳醚化合物制成;所述密集双季铵盐离子侧链型含氟聚芳醚化合物的化学结构式为:
Figure DEST_PATH_IMAGE002
式中n为1~400;m为10~400。
2.一种如权利要求1所述的含氟聚芳醚基阴离子交换膜的制备方法,其特征在于,包括以下步骤:
(1)将四胺基双酚芴、双酚芴、十氟联苯、氢化钙和氟化铯加入到极性非质子溶剂中,通惰性气体保护,室温下搅拌反应10~40小时,然后将粘稠的混合物倒入去离子水中析出沉淀;将沉淀物过滤并于60 ℃真空干燥12~48小时,然后溶于二氯甲烷中配成1~20 wt.%的溶液;将该溶液缓慢倒入甲醇中析出沉淀;过滤收集沉淀并于60 ℃真空干燥12~48小时,得四胺基含氟聚芳醚化合物;
所述四胺基双酚芴的化学结构式为:
Figure DEST_PATH_IMAGE004
(2)将步骤(1)所得四胺基含氟聚芳醚化合物溶解于极性非质子溶剂中,制成1~10wt.%的溶液A;将溴己基季铵盐化合物QA-6C溶于极性非质子溶剂中,配制成1~10 wt.%的溶液B;将溶液B缓慢逐滴加入溶液A中,在-20~100 ℃下搅拌5~50小时,然后缓慢倒入去离子水中析出沉淀;过滤收集沉淀并于40~120 ℃干燥5~24小时,得到密集双季铵盐离子侧链型含氟聚芳醚化合物;
所述溴己基季铵盐化合物QA-6C的化学结构式为:
Figure DEST_PATH_IMAGE006
(3)将步骤(2)所制得的密集双季铵盐离子侧链型含氟聚芳醚化合物溶解于极性非质子溶剂中制成1 ~ 10 wt.%的溶液,然后浇铸到水平放置的玻璃板上,于60 ~ 100 ℃干燥10 ~100小时,再于40~120 ℃真空干燥12~40小时,使玻璃板表面形成一层致密膜;将膜从玻璃板表面揭下,即得低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜。
3.根据权利要求2所述的含氟聚芳醚基阴离子交换膜的制备方法,其特征在于,步骤(1)中所用四胺基双酚芴、双酚芴、十氟联苯、氢化钙和氟化铯的摩尔比为x:(1-x):1:(0.01~1):(3~6),其中0<x<1。
4.根据权利要求2所述的含氟聚芳醚基阴离子交换膜的制备方法,其特征在于,步骤(1)中极性非质子溶剂的用量为每克十氟联苯加入5~50mL。
5.根据权利要求2或4所述的含氟聚芳醚基阴离子交换膜的制备方法,其特征在于,所述极性非质子溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜、1,3-二甲基-2-咪唑啉酮中的任意一种。
6.根据权利要求2所述的含氟聚芳醚基阴离子交换膜的制备方法,其特征在于,步骤(2)中所用QA-6C的摩尔量为四胺基含氟聚芳醚化合物中所含叔胺基摩尔量的1.5~5倍。
7.根据权利要求2所述的含氟聚芳醚基阴离子交换膜的制备方法,其特征在于,所得含氟聚芳醚基阴离子交换膜的厚度为30~110微米。
8.一种如权利要求1所述的低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜在制备全钒液流电池隔膜上的应用。
CN202010555627.9A 2020-06-17 2020-06-17 一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜及其制备方法 Pending CN111662446A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010555627.9A CN111662446A (zh) 2020-06-17 2020-06-17 一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010555627.9A CN111662446A (zh) 2020-06-17 2020-06-17 一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜及其制备方法

Publications (1)

Publication Number Publication Date
CN111662446A true CN111662446A (zh) 2020-09-15

Family

ID=72388617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010555627.9A Pending CN111662446A (zh) 2020-06-17 2020-06-17 一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111662446A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133555A (zh) * 2021-12-09 2022-03-04 福州大学 一种交联型含氟聚芴醚阴离子交换膜的制备方法
CN114230831A (zh) * 2022-01-13 2022-03-25 福州大学 一种高氧化稳定性和高离子传导率的交联型阴离子交换膜的制备方法
CN114920967A (zh) * 2022-05-18 2022-08-19 中盐金坛盐化有限责任公司 一种柔性多胺官能化阴离子交换膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628979A (zh) * 2009-07-03 2010-01-20 中山大学 用于全钒液流电池的质子交换膜的磺化含芴聚芳醚砜及其制备方法和应用
WO2013027758A1 (ja) * 2011-08-22 2013-02-28 東洋紡株式会社 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
JP2016033199A (ja) * 2014-07-31 2016-03-10 ダイハツ工業株式会社 陰イオン交換樹脂、燃料電池用電解質層、燃料電池および陰イオン交換樹脂の製造方法
CN109232936A (zh) * 2018-09-17 2019-01-18 福州大学 一种全钒液流电池用阴离子交换膜及其制备方法
CN110372902A (zh) * 2019-07-25 2019-10-25 福州大学 一种侧链双季铵盐离子型含氟聚芴醚阴离子交换膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628979A (zh) * 2009-07-03 2010-01-20 中山大学 用于全钒液流电池的质子交换膜的磺化含芴聚芳醚砜及其制备方法和应用
WO2013027758A1 (ja) * 2011-08-22 2013-02-28 東洋紡株式会社 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
JP2016033199A (ja) * 2014-07-31 2016-03-10 ダイハツ工業株式会社 陰イオン交換樹脂、燃料電池用電解質層、燃料電池および陰イオン交換樹脂の製造方法
CN109232936A (zh) * 2018-09-17 2019-01-18 福州大学 一种全钒液流电池用阴离子交换膜及其制备方法
CN110372902A (zh) * 2019-07-25 2019-10-25 福州大学 一种侧链双季铵盐离子型含氟聚芴醚阴离子交换膜

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133555A (zh) * 2021-12-09 2022-03-04 福州大学 一种交联型含氟聚芴醚阴离子交换膜的制备方法
CN114133555B (zh) * 2021-12-09 2023-05-16 福州大学 一种交联型含氟聚芴醚阴离子交换膜的制备方法
CN114230831A (zh) * 2022-01-13 2022-03-25 福州大学 一种高氧化稳定性和高离子传导率的交联型阴离子交换膜的制备方法
CN114230831B (zh) * 2022-01-13 2023-06-09 福州大学 一种高氧化稳定性和高离子传导率的交联型阴离子交换膜的制备方法
CN114920967A (zh) * 2022-05-18 2022-08-19 中盐金坛盐化有限责任公司 一种柔性多胺官能化阴离子交换膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110336052B (zh) 一种混合基质型阳离子交换膜及其制备方法
Wang et al. Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries
CN111662446A (zh) 一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜及其制备方法
CN111193065B (zh) 一种固态电解质膜、制备方法和用途与包含它的锂电池
CN104829814B (zh) 一种含季铵化哌啶基团的聚合物、制备方法及阴离子交换膜、制备方法
Chen et al. Synthesis and properties of novel sulfonated poly (arylene ether sulfone) ionomers for vanadium redox flow battery
Li et al. Novel polymeric ionic liquid membranes as solid polymer electrolytes with high ionic conductivity at moderate temperature
CN104804207B (zh) 一种可用于钒电池的含咪唑盐侧基的聚醚醚砜阴离子交换膜及其制备方法
KR101351280B1 (ko) 레독스-흐름 전지용 음이온교환막 및 이의 제조방법
CN110372902B (zh) 一种侧链双季铵盐离子型含氟聚芴醚阴离子交换膜
Khataee et al. Asymmetric cycling of vanadium redox flow batteries with a poly (arylene piperidinium)-based anion exchange membrane
Ju et al. Construction of alkali-stable anion exchange membranes with hydrophilic/hydrophobic microphase separation structure by adjusting side chain length
CN114133555A (zh) 一种交联型含氟聚芴醚阴离子交换膜的制备方法
CN113078339A (zh) 一种含poss和嵌段共聚物的阴离子交换膜及其制备方法
KR20150051082A (ko) 이온 교환막, 그 제조방법 및 그것을 포함한 레독스 플로우 전지
CN107573501A (zh) 一种可交联含氟磺化聚芳醚化合物及其制备方法
CN106543439B (zh) 燃料电池用交联型含氨基磺化聚芴醚砜腈质子交换膜材料、制备方法及其应用
CN110372857A (zh) 一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法
Ju et al. Construction of effective transmission channels by anchoring metal‐organic framework on side‐chain sulfonated poly (arylene ether ketone sulfone) for fuel cells
KR102022676B1 (ko) 비수계 바나듐 레독스 흐름전지용 거대 사이즈의 이온 채널을 가진 음이온 교환막 및 이의 제조방법
CN111871222A (zh) 一种基于柱[5]芳烃的季铵盐功能化含氟聚芴醚阴离子交换膜的制备方法
WO2007125845A1 (ja) スルホンイミド型モノマー及びその重合体
CN116613362A (zh) 一种用于钒电池的复合两性离子交换膜及其制备方法
US20120296065A1 (en) Polyarylene ionomers membranes
CN115521445A (zh) 一种支化聚芳基哌啶聚合物及阴离子交换膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200915