CN1116582C - 采用温膨胀器和冷膨胀器的空气分离法 - Google Patents

采用温膨胀器和冷膨胀器的空气分离法 Download PDF

Info

Publication number
CN1116582C
CN1116582C CN99101344A CN99101344A CN1116582C CN 1116582 C CN1116582 C CN 1116582C CN 99101344 A CN99101344 A CN 99101344A CN 99101344 A CN99101344 A CN 99101344A CN 1116582 C CN1116582 C CN 1116582C
Authority
CN
China
Prior art keywords
fluid
expander
tower
pressure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN99101344A
Other languages
English (en)
Other versions
CN1230679A (zh
Inventor
R·阿格拉沃
D·M·赫伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of CN1230679A publication Critical patent/CN1230679A/zh
Application granted granted Critical
Publication of CN1116582C publication Critical patent/CN1116582C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明涉及空气在蒸馏塔***中低温蒸馏的方法,蒸馏塔***包括至少一个在较高压力条件下操作的蒸馏塔,和一个在较低压力条件下操作的蒸馏塔,其中给料空气冷却并送到较高压力塔,其中在生产氧制品较低压力塔底部的沸腾是通过冷凝氮浓度等于或大于给料空气流体氮浓度的一种流体提供的,且其中采用至少两个膨胀器对蒸馏塔***提供冷冻作用,其中第一个膨胀器是在进口温度接近室温或大于室温条件下操作,和第二个膨胀器是在进口温度低于室温条件下操作,其特征在于两个膨胀器至少一个采用至少一个如下步骤:(a)作功膨胀部分给料空气;(b)作功膨胀氮含量等于或大于给料空气氮含量的一种工艺流体,且冷凝至少部分该膨胀流体,其方法是对以下两种液体至少一种进行潜热交换:(i)较低压力塔中间高度的一种液体和(ii)低压塔液体给料之一,其氧浓度为至少给料空气氧浓度;(c)冷凝氮含量等于或大于给料空气氮含量的至少一种工艺流体,其方法包括通过潜热交换蒸发至少部分富氧液态流体,富氧液态流体其氧浓度为至少给料空气氧浓度,且其压力大于较低压力塔压力,作功膨胀至少部分获得的蒸气流体;和(d)作功膨胀来自较高压力塔的一种工艺流体,其氮含量等于或大于给料空气氮含量,并引出该膨胀流体作为气态产品流体。

Description

采用温膨胀器和冷膨胀器的空气分离法
技术领域
本发明涉及利用低温空气分离有效制备氧的几种方法。特别是,本发明涉及低温空气分离工艺,其中具有吸引力的是制备至少一部分总氧,其纯度低于99.5%,且优选低于97%。
背景技术
有几篇美国专利,教导有效制备纯度低于99.5%的氧。两个例子是美国专利4,704,148和4,936,099。
美国专利No.2,753,698公开了一种用于分馏空气的方法,其中要分离的总空气在复式分馏器的高压塔中预分馏,以制备粗(不纯)液态氧(粗LOX)塔底液和气态氮塔顶馏出物。如此制备的粗LOX膨胀至中等压力,并靠氮冷凝热交换而完全蒸发。蒸发的粗氧然后稍微温热,对生产动力负载膨胀,并在复式分馏器的低压塔中用高压塔内冷凝氮洗涤,然后进入低压塔的顶部。低压塔的底部用来自高压塔的氮再沸腾。提供冷冻作用的这种方法以后就称作CGOX膨胀法。该专利不使用其它冷冻源。因此,对低压塔的常规空气膨胀法要用所提出的CGOX膨胀法代替。实际上,该专利引用了因额外空气送入高压塔达到的改进效果(如对低压塔没有气态空气要膨胀),而这导致高压塔顶部产生的额外氮回流。这说明额外氮回流量等于送入高压塔空气中额外氮量。为克服低压塔下部蒸出物不足,主张改进低压塔上部用液态氮洗涤的效率。
美国专利No.4,410,343,公开了一种采用低压和中压塔制备低纯度氧的方法,其中低压塔的塔底液靠冷凝空气再沸腾,而获得的空气送入中压和低压塔两者。
美国专利No.4,704,148公开了一种方法,利用高压和低压蒸馏塔分离空气,制备低纯度氧和废氮流体。主热交换器冷端的给料空气,用于再沸腾低压蒸馏塔,并蒸发低纯度氧制品。用于塔再沸腾和氧制品蒸发的热功,靠冷凝空气馏分提供。该专利中,空气给料分成三路子流体。一路子流体全部冷凝,并用于为低压和高压蒸馏塔两者提供回流。第二路子流体部分冷凝,该部分冷凝子流体的气体部分送入高压蒸馏塔底部,而液体部分为低压蒸馏塔提供回流。第三路子流体膨胀以回收冷冻作用,然后作为塔给料送入低压蒸馏塔。此外,高压塔冷凝器在低压塔中用作中间再沸腾器。
在国际专利申请#TCT/US87/01665(美国专利No.4,796,431)中,Erickson提出一种从高压塔引出氮流体的方法,部分膨胀这种氮至中等压力,然后将其冷凝,其方法是对高压塔底部粗LOX,或对低压塔中间高度液体进行热交换。这种冷冻方法如今就称为后跟冷凝氮膨胀(NEC)。通常,NEC提供冷箱的全部冷冻需要。Erickson指出只有单独NEC不能提供冷冻作用的那些应用,才需要通过膨胀某些空气来提供补充的冷冻作用。然而,没有指出采用这种补充冷冻作用来降低能量消耗。这种补充冷冻作用是针对一种流程提出的,其中对流程作了其它改进以降低空气供给压。这降低了氮对膨胀器的压力,并因此降低了从NEC可获得的冷冻量。
在美国专利No.4,936,099中,Woodward等人采用与制备低纯度氧有关的CGOX膨胀。这种情况,气态氧制品制备方法是,对部分给料空气进行热交换,蒸发低压塔底部的液态氧。
在丹麦专利28 54 508中,一部分在高压塔压力下的空气给料,利用对冷箱提供冷冻作用的膨胀器作功能量,在温热水平上再压缩。这种再压缩空气流然后部分冷却,并在同一驱动压缩机的膨胀器中膨胀。在这种设计中,要再压缩然后膨胀用于冷冻的部分给料空气流是相同的。结果,已知部分给料空气在冷箱中产生更多冷冻作用。该专利提出两种方法利用这种过量冷冻作用:(i)从冷箱制备更多的液态产品;(ii)降低通过压缩机和膨胀器的流量,并因此增加到高压塔的流量。据认为,增加到高压塔的流量,会使冷箱产品产率更高。
美国专利No.5,309,721中,复式塔工艺的低压塔,是在比大气压高得多的压力下操作。从低压塔顶部获得的氮流体分成两路流体,每一路流体是在不同温度水平下操作的不同膨胀器中膨胀。
美国专利No.5,146,756也提出采用两个膨胀器,在冷却蒸馏给料空气流体的主热交换器内,在冷却和温热流体之间造成大的温差。这么做是为了减少主热交换器芯的数目。然而,为了操作两个膨胀器,低压塔是在大于2.5bar压力下运行,且离开低压塔顶部的部分氮在一个膨胀器内膨胀。部分给料空气在第二个膨胀器内膨胀到低压塔。
美国专利No.4,543,115提出一种复式塔工艺,通过压缩产生两种不同压力给料空气流体,并送到冷箱用于分离。较低压力空气流体送到低压蒸馏塔,而较高压力空气流体送到高压塔。复式塔工艺生产低纯度氧和氮制品。
美国专利No.4,964,901,也提出将两种压力空气给料用于冷箱分离。较低压力空气流体压力约为1.5-1.8bar,并从主空气压缩机级间引出。其余空气再压缩到较高压力并送到高压塔。较低压力空气送到低压塔。这种工艺的问题是,要采用一个单独的吸附剂床,以从较低压力空气流体中除去杂质如水和二氧化碳。由于较低的压力,大量水存在于较低压力空气流体中,这不仅增加吸附剂床尺寸,也增加这些床再生所需能量。这使方法变得昂贵。
发明内容
本发明涉及空气在蒸馏塔***中低温蒸馏的方法,蒸馏塔***包括至少一个在较高压力条件下操作的蒸馏塔,和一个在较低压力条件下操作的蒸馏塔,其中给料空气冷却并送到较高压力塔,其中在氧制品生产蒸馏塔底部的沸腾是通过冷凝其氮浓度等于或大于给料空气流体氮浓度的一种流体提供的,且其中采用至少两个膨胀器对蒸馏塔***提供冷冻作用,其中第一个膨胀器是在进口温度接近室温或大于室温条件下操作,和第二个膨胀器是在进口温度低于室温条件下操作,其特征在于,两个膨胀器的至少一个采用如下至少一个步骤:(a)作功膨胀部分给料空气;(b)作功膨胀氮含量等于或大于给料空气氮含量的一种工艺流体,然后冷凝至少部分该膨胀流体,方法是对以下两种液体至少一种进行潜热交换:(i)较低压力塔的中间高度的一种液体和(ii)低压塔液体给料之一,其氧浓度为至少给料空气氧浓度;(c)冷凝氮含量等于或大于给料空气氮含量的至少一种工艺流体,方法是通过潜热交换,蒸发至少部分富氧液态流体,富氧液态流体其氧浓度为至少给料空气氧浓度,且其压力大于较低压力塔压力,作功膨胀至少一部分获得的蒸气流体;和(d)作功膨胀来自较高压力塔的,氮含量等于或大于给料空气氮含量的一种工艺流体,并引出该膨胀流体作为气态产品流体。
附图说明
图1-5描绘了本发明不同实施方案的示意图。在图1-5中,相同的流体使用同一流体代号。
图6描绘了本发明回收低级热有用设计的示意图。
图7和8描绘了两种先有技术工艺示意图。
具体实施方式
本发明提出用于制备低纯度氧,能量更有效和费用更节省的低温工艺。低纯度氧定义为氧浓度低于99.5%且优选低于97%的一种产品流体。该方法中,给料空气用包括至少两个蒸馏塔的蒸馏***进行蒸馏。一个蒸馏塔在较高压力下操作(HP塔),而另一个塔在较低压力下操作(LP塔)。在LP蒸馏塔底部的沸腾是通过冷凝氮浓度等于或大于给料空气流体氮浓度的一种流体提供的。本发明在该工艺中采用至少两个膨胀器,其中第一个膨胀器在进口温度接近室温或大于室温的条件下操作,而第二个膨胀器在进口温度低于室温的条件下操作。本发明中,两个膨胀器的至少一个采用如下至少一个步骤:
(a)作功膨胀部分给料空气;
(b)作功膨胀氮含量等于或大于给料空气氮含量的一种工艺流体,然后冷凝至少部分该膨胀流体,其方法是对以下两种液体至少一种进行潜热交换:(i)较低压力塔的中间高度的一种液体和(ii)低压塔液体给料之一,其氧浓度为至少给料空气氧浓度;
(c)冷凝氮含量等于或大于给料空气氮含量的至少一种工艺流体,方法是通过潜热交换,蒸发至少部分富氧液态流体,富氧液态流体其氧浓度为至少给料空气氧浓度,且其压力大于较低压力塔压力,作功膨胀至少一部分获得的蒸气流体;和
(d)作功膨胀来自较高压力塔,氮含量等于或大于给料空气氮含量的一种工艺流体,并引出该膨胀流体作为气态产品流体。
本发明工艺中,采用至少两个膨胀器,任何上述可替代步骤都可用于或一个或两个膨胀器,以使第一个膨胀器进口流体温度或接近室温或大于室温,且第二个膨胀器提供至少部分工厂所需冷冻作用。
通常,提供工厂冷冻作用的第二个膨胀器,其进口流体温度比室温低得多。本说明书中,这种膨胀器称为冷膨胀器。类似地,其进口流体温度接近室温或高于室温的第一个膨胀器,称为温膨胀器。
在大多数优选模式中,蒸馏***包括由较高压力(HP)塔和较低压力(LP)塔组成的复式塔***。至少部分给料空气送入HP塔。制品氧由LP塔底部产生。可替代步骤(a)中工艺流体或可替代步骤(c)中工艺流体,通常是HP塔引出的高压富氮蒸气流。若采用可替代步骤(a)的作功膨胀法,则高压富氮蒸气流体膨胀,且随后冷凝,其方法包括对LP塔中间高度液态流体,或对HP塔底部产生的粗液态氧(粗LOX)流体进行潜热交换。该方法,粗LOX流体压力降到LP塔压力附近。高压富氮流体在膨胀之前可以部分温热。若采用可替代步骤(c)的作功膨胀法,则高压富氮流体冷凝,其方法包括对压力高于LP塔压力的至少部分粗LOX流体进行潜热交换,由粗LOX至少部分蒸发获得的蒸气作功膨胀到LP塔。作功膨胀之前,由至少部分蒸发粗LOX获得的蒸气可以部分温热。作为粗LOX蒸发的一种可替代方法,氧浓度大于空气的富氧液体可以从LP塔引出,并用泵送到大于LP塔压力的所需压力,然后至少部分蒸发。
作功膨胀,它意味着当工艺流体在膨胀器内膨胀时,产生功。这种功可以在油制动器中分散,或用于发电,或用于直接压缩另一种工艺流体。
其它制品也可以同低纯度氧一起生产。这包括高纯度氧(纯度等于或大于99.5%)、氮、氩、氪和氙。需要时,也可副产液态制品。
现在参照图1对本发明进行详细说明。不含较重组分如水和二氧化碳的压缩给料空气流体表示为流体100。给料空气流体分成三路流体102、106和116。主要部分流体106再分成两路流体107和112。流体112在主热交换器190中冷却,然后作为流体114送入高压(HP)塔196的底部。高压塔给料蒸馏成顶部的高压氮蒸气流体150,和底部的粗液态氧(粗LOX)流体130。粗LOX流体在再冷却器192中再冷却并送入低压(LP)塔198,在那蒸馏产生顶部的较低压力氮蒸气流体160,和底部的液态氧制品流体170。另外,氧制品也可以作为蒸气从LP塔底部引出。液态氧制品流体170用泵171打到所需的压力,然后靠对适当加压工艺流体进行热交换而蒸发,以提供气态氧制品流体172。图1中,适当加压工艺流体是管线118中部分给料空气。在LP塔底部的沸腾是通过冷凝管线150中高压氮流体提供的,从而提供高压液态氮流体153。一部分该高压液态氮流体为HP塔提供回流,而另一部分在再冷却器192中再冷却,以提供再冷却液态氮流体158。该再冷却液态氮流体158则作为回流送到LP塔。
图1中,为了蒸发来自泵171的泵送液态氧,给料空气流体100的一部分,流体116在一个任选增压器180中再增压,并靠冷水(图中未标出)冷却,然后在主热交换器190中冷却,方法是对泵送液态氧流体进行热交换。部分冷却的液态空气流体118送到HP塔(流体120),而另一部分(流体122)在再冷却器192中再冷却一些后送到LP塔。
图1的本发明中,所采用的两个膨胀器是139和182,且在两个膨胀器中,根据膨胀步骤(a)采用部分给料空气流体。于是,稍高于室温的部分给料空气流体102,在温膨胀器182中作功膨胀至压力接近LP塔压力。该膨胀流体103然后在主热交换器190中冷却,并送到LP塔适当位置。在优选模式中,作功膨胀之前流体102的温度应当比室温高得多。通过流体102和适当热源之间热交换可以达到这种较高的温度。若在温膨胀器182膨胀后,流体103温度比室温高,则应该将其冷却到温度类似于到主热交换器去的其它空气流体(117或112)温度。
根据本发明图1第二个膨胀器是冷膨胀器139。该冷膨胀器为工厂提供冷冻作用。为此,部分给料空气流体107用增压器184增压。该增压流体首先用冷水(图中未标出)热交换进行冷却,然后在主热交换器190中再冷却以提供流体108。该再冷却流体108在冷膨胀器139中膨胀,并送到LP塔适当位置。注意,通常冷膨胀器139进口流体108的温度比室温低得多。由冷膨胀器139提取的作功能量用于驱动增压器184。在另一种模式中,可以不用增压器184增压空气流体107,而流体107可以不经任何增压直接送到主热交换器,以提供再冷却流体108。
几种已知的改进可以应用到图1的实例流程。例如,到LP塔的液态氮回流可以不从高压液态氮流体153获得,而从HP塔中间位置获得。这种情况,氮制品流体可以从HP塔顶部引出。它可以是部分高压气态氮流体150,和/或部分高压液态氮流体153。
图2表示工艺流体按照膨胀步骤(d),在一个膨胀器中作功膨胀的另一种实施方案。虽然人们可以选择,或在温膨胀器或在冷膨胀器中,膨胀从HP塔引出的工艺流体,但图2中,这种膨胀是在温膨胀器中进行的。于是,为获得图2的***,去掉图1中温膨胀器182及其有关的空气流体,并在其位置上加上温膨胀器277。获得用于温膨胀器277的给料流体276的方法包括,从HP塔顶部引出部分高压氮蒸气流体(流体274)并在主热交换器内使其温热。膨胀的流体278可以用作产品流体。在图2的优选模式中,高压氮流体276在膨胀之前,应该用另一个热源热交换进行再温热。这可以增加温膨胀器277的输出功。在另一个模式中,高压流体274可以不从HP塔顶部引出,而从该塔顶部以下位置引出。
图3表示本发明的一种工艺,其中由采用膨胀步骤(c)的冷膨胀器339取代图1工艺的冷膨胀器139。于是根据本发明,氧浓度大于给料空气的至少部分粗LOX流体,经过阀门335后,其压力降低到HP塔和LP塔压力的中间一个压力。图3中,粗LOX降压之前,在再冷却器192中再冷却,方法是对LP塔返回的气态氮流体进行热交换。该再冷却是任选的。压力降低的粗LOX流体336送到再沸腾器/冷凝器394,在那它至少部分沸腾,方法是对管线150管线354的第二部分高压氮流体(膨胀步骤(c)的工艺流体)进行潜热交换,以提供第二路高压液态氮流体356。第一和第二路高压液态氮流体为HP和LP塔提供所需回流。管线337中蒸发了的部分压力降低粗LOX流体(迄今称为粗GOX流体),在主热交换器190内部分温热,然后在冷膨胀器339内作功膨胀到LP塔,作为额外给料。粗GOX流体337部分温热是任选的,且类似地,作功膨胀后流体340可以再冷却,然后送到LP塔。
几种已知的改进可以应用于图3的实例流程。例如,HP塔所有粗LOX流体都送到LP塔,且一点也不送到再沸腾器/冷凝器394。代替这种做法是,从LP塔中间高度引出液体,然后用泵将其送入HP塔和LP塔压力的中间压力,并送到再沸腾器/冷凝器394。在再沸腾器/冷凝器394内其余处理类似于早先解释的流体334。另一个改进是,在再沸腾器/冷凝器193和394中分别冷凝的两路高压氮流体152和354,可以不从HP塔同一点产生。各自可以从HP塔不同高度获得,并在其再沸腾器(193和394)内冷凝后,各自送到蒸馏***适当位置。作为一个例子,流体354可以从高压塔顶部位置以下位置引出,并在再沸腾器/冷凝器394内冷凝后,其部分返回到HP塔中间位置,而其它部分送到LP塔。
图4表示另一个实施方案,其中工艺流体根据膨胀步骤(b)(ii)在冷膨胀器内作功膨胀。这里再冷却的粗LOX流体334,经过阀门335后压力降低到非常接近LP塔压力,然后送到再沸腾器/冷凝器394。管线354中第二部分高压氮流体(如今是膨胀步骤(a)的工艺流体),在主热交换器内部分温热(任选),然后在膨胀器439内作功膨胀,以提供较低压力氮流体440。流体440则在再沸腾器/冷凝器394内经潜热交换而冷凝,以提供流体442,它再冷却一些后送到LP塔。再沸腾器/冷凝器394的蒸发流体337和液态流体342送到LP塔适当位置。若需要,管线442内部分冷凝氮流体可以用泵送到HP塔。两路氮流体,一路在再沸腾器/冷凝器193内冷凝,另一路在再沸腾器/冷凝器394内冷凝,再次可以从HP塔不同高度引出,并因此可以具有不同成分。
根据膨胀步骤(b)(ii),也可以采用图4的另一种变化,采用冷膨胀器。这种设计中,所有HP塔底部粗LOX流体,未经任何蒸发送到LP塔。在LP塔中间高度采用一个中间再沸腾器/冷凝器,来代替再沸腾器/冷凝器394。如今,来自膨胀器439的作功膨胀氮流体440,在该中间再沸腾器/冷凝器内冷凝,方法是对LP塔中间高度液体进行潜热交换。冷凝的氮流体按图4类似方式处理。
图5工艺说明温膨胀器和冷膨胀器的工艺流体如何可以互换。图4中,部分给料空气流体在温膨胀器内膨胀,而HP塔的高压氮流体在冷膨胀器内膨胀。图5中,高压氮流体在温膨胀器内膨胀,而部分给料空气流体在冷膨胀器内膨胀。于是,管线102中部分空气流体,如今在主热交换器内部分冷却,然后在冷膨胀器539内膨胀并送到LP塔。来自HP塔顶部的高压氮流体554,在主热交换器内温热到温度接近室温(流体538),然后在温膨胀器582内膨胀。温膨胀器的膨胀流体然后在主热交换器内再冷却,提供流体540。流体540的进一步处理类似于图4中流体440。为了从温膨胀器582提取更多的功,高压氮流体538在温膨胀器内膨胀之前,应当用另外的热源进一步加热。
如早先所述,温膨胀器进口流体可以被加热,方法是对适当热源进行热交换。这会增加温膨胀器的输出功。热源的某些实例包括流体、热水、热气流和燃烧器等。这种温膨胀器可有利地回收低级热。回收低级热的一种有用设计如图6所示。这里,由离开压缩机的温热气流可获得的热,可用于预热到温膨胀器去的流体。图6中,来自图1增压器180的再增压空气流体的热量用于此目的。于是,来自增压器180的管线662中温热再增压空气流体,在热交换器695中冷却,方法是对管线602内工艺流体进行热交换。温热的工艺流体684则在温膨胀器682内作功膨胀。管线664内再增压的冷空气流体,用冷水再冷却(流体666),并可以直接送到主热交换器,以蒸发泵送液态氧。然而,图6中的一种选择,表示管线666中流体,靠利用温膨胀器682作功能量由增压器667再次增压。若需要,图6中离开温膨胀器682的流体686,可以用冷水冷却。该图中,流体602代表要在温膨胀器内作功膨胀的任何工艺流体。于是,流体602就如同图1流体102、或图2流体276、或图5流体538等。
图1、3和4表明,到温膨胀器去的空气流体与到HP塔去的给料空气流体具有相同的压力。虽然这是优选模式,但不必两个压力相同。例如,图1流体102压力可以低于或高于流体106的压力。然而,通常,流体102压力或者低于流体106压力,或者与其相同。
迄今,所有实例流程都显示出或一个或两个再沸腾器/冷凝器。然而,应当强调,本发明不排除在LP塔中采用比图1-5所显示的更多的附加再沸腾器/冷凝器。若需要,可以在LP塔底部区段采用更多的再沸腾器/冷凝器,以便在该区段里再分配蒸气的形成。任何适宜的工艺流体都可以在这些额外的再沸腾器/冷凝器中或部分或全部冷凝。也可以考虑,在位于LP塔内的再沸腾器/冷凝器中,冷凝从HP塔中间高度引出的蒸气流体的可能性。
总之,本发明利用膨胀步骤(b)提取功的工艺设计中,作功膨胀后全部工艺流体,都可以不靠如该变换所指出的潜热交换而冷凝。该流体一部分可以作为产品流体回收,或用于该工艺设计的某些其它目的。例如,图4所示的工艺设计中,来自高压塔的至少部分高压氮流体在膨胀器439内,根据本发明膨胀步骤(b)作功膨胀。离开膨胀器439的部分流体可以在主热交换器内再温热,并作为中等压力氮制品回收。
从本发明温膨胀器提取的全部功常常要用于冷箱之外。由冷膨胀器提取的全部功,通常,但也不是必须用于冷箱之外,然而,至少一部分这种提取功必须用于冷箱之外。为此,或者一个或者两个膨胀器可以是发电机负载用以发电,或是用温热压缩机负载的,用以压缩室温或大于室温的工艺流体。可以在这种温热压缩机中压缩的工艺流体,某些实例为:最终要靠泵送液态氧热交换而冷凝的再加压空气流体(图1流体117)、产品氮流体(图1全部或部分流体164)和气态氧流体(图1管线172)。
本发明方法也能从HP塔有效副产高压氮制品流体。这种高压氮制品流体可以从HP塔任何适当位置引出。图1-5任何一个流程都未表示出的这种特点,但它是本发明的基本部分。
最终,当除了氧含量低于99.5%低纯度氧之外,还存在副产品时,可以采用本发明提出的方法。例如,高纯度氧(氧含量99.5%或更高)可以从该蒸馏***副产。完成这个任务的一个方法是,从LP塔在其底部上方位置引出低纯度氧,而从HP塔底部引出高纯度氧。若高纯度氧流体以液态形式引出,则可以用泵再增压,然后靠对适当工艺流体热交换而蒸发。类似地,在提高压力条件下可以副产高纯度氮制品流体。完成该任务的一个方法就是,从一个适当的再沸腾器/冷凝器取一部分冷凝液态氮流体,并用泵将其打到所要求的压力,然后靠适当工艺流体使其蒸发。
本发明的价值在于它使能量消耗大大较低。将其与下列某些已知先有技术工艺比较,这一点就可以很容易理解:
第一个先有技术工艺如图7所示。这是一个常规复式塔工艺,带有一个到LP塔的冷空气膨胀器。空气膨胀器的作功能量作为电能回收。由图1工艺去掉温膨胀器182、增压器184和有关管线,便获得图7工艺。流体107直接送到主热交换器,部分冷却并送到冷膨胀器。
第二个先有技术工艺是根据丹麦专利DE-2854508得出,如图8所示。由图1去掉温膨胀器182和有关管线,便获得该工艺。该工艺除了要膨胀的流体,首先在与膨胀器械连结的压缩机中压缩外,类似于图7所示工艺。
将图1工艺与图7和8两个先有技术工艺进行比较,本发明比先有技术工艺优越的性能就变得清楚了。对于已知给料空气压力,图1和8之间唯一区别是采用温膨胀器182。图1通过在温膨胀器182内膨胀部分给料空气,回收作功能量。该作功能量可以用于或者发电,或者压缩适当的工艺流体。显然,这使工厂总能量需求下降。众所周知,特别是当LP塔压力接近周围压力时,大部分给料空气可以膨胀(达25%),而对氧的回收没有很大影响。因此,在温膨胀器中可以膨胀达25%,优选达15%的给料空气。额外要膨胀的量取决于特殊应用。例如,最适宜的冷膨胀器流量取决于热渗漏量和液体生产量。
本发明甚至更适合图3-5所示工艺。美国专利2,753,698,提出采用如图3冷膨胀器339所示的粗GOX膨胀。美国专利4,796,431提出图4的冷膨胀器技术。然而,这两个专利都没利用经温膨胀器回收能量的有利方面。在这些工艺中,LP塔可获得的总沸腾和回流量通常大于图7和8的工艺。结果,更大部分空气可以送到图3和4的温膨胀器。这就使甚至更多的能量得到节省。
与美国专利4,964,901比较,本发明不要求从1.5-1.8bar很低压力空气流体中除去水。这降低了吸附剂床尺寸和吸附剂床再生所需能量。此外,许多场合,本发明不需要拥有两套吸附剂床处理两种不同压力的空气给料。如今,所有空气给料都压缩到一种压力并送到一套吸附剂床。这使工艺进一步简化。
特别是,当HP塔压力大于约60磅/平方英寸绝对压力(4bar绝对压力)和小于约160磅/平方英寸绝对压力(11bar绝对压力)时,本发明更有用。通常,高压塔操作低于60磅/平方英寸绝对压力,正是部分给料空气流体需要在LP塔底部再沸腾器中冷凝的原因。这减少蒸馏塔可获得的液态氮回流量。温热空气膨胀器的使用,会进一步减少液态氮回流量。此外,因为膨胀器进口压力如今较低,所提取的功量不大。结果,当HP塔压力大大低于60磅/平方英寸绝对压力时,本发明工艺会没有吸引力。HP塔压力大于160磅/平方英寸绝对压力,蒸馏塔对液态氮回流的需要急剧增加,且这种情况下,对LP塔采用温热给料空气膨胀器就变得没有吸引力。
尽管本文参照某些特殊实施方案进行描述,但并不意味着本发明限于已做出的详细说明。更确切的说,详细说明可做出的各种改进都在本权利要求书的等同范围内,且没离开本发明的思想。

Claims (10)

1.一种在蒸馏塔***内低温蒸馏空气以生产主要是氧含量少于99.5%摩尔的气态氧产品的方法,其中蒸馏塔***包括至少一个在较高压力条件下操作的蒸馏塔和一个在较低压力条件下操作的蒸馏塔,其中给料空气冷却并送到较高压力塔,其中在生产氧制品的较低压力蒸馏塔底部的沸腾是通过冷凝氮浓度等于或大于给料空气流体氮浓度的一种流体提供的,且其中采用至少两个膨胀器对蒸馏塔***提供冷冻作用,其中第一个膨胀器是在进口温度接近室温或大于室温条件下操作,和第二个膨胀器是在进口温度低于室温条件下操作,其特征在于:
(A)第一个膨胀器采用至少一个以下步骤:
(a)作功膨胀部分给料空气;
(b)作功膨胀氮含量等于或大于给料空气氮含量的一种工艺流体,且通过对以下两种液体的至少一种进行潜热交换冷凝而至少部分该膨胀流体:(i)位于较低压力塔的中间高度的一种液体和(ii)低压塔液体给料之一,其氧浓度至少为给料空气氧浓度;
(c)通过潜热交换而冷凝氮含量等于或大于给料空气氮含量的至少一种工艺流体,其中潜热交换蒸发至少部分富氧液态流体,富氧液态流体其氧浓度至少为给料空气的氧浓度,且其压力大于较低压力塔压力,并作功膨胀至少部分获得的蒸汽流体;和
(d)作功膨胀来自较高压力塔的一种工艺流体,其氮含量等于或大于给料空气氮含量,并引出该膨胀流体作为气态产品流体;
(B)第二个膨胀器采用至少一个如下的步骤:
(a)作功膨胀部分给料空气,其中所述部分提取自已经被压缩和纯化但未被进一步压缩的空气;
(b)作功膨胀氮含量等于或大于给料空气氮含量的一种工艺流体,且通过对以下两种液体的至少一种进行潜热交换而冷凝至少部分该膨胀流体:(i)位于较低压力塔的中间高度的一种液体和(ii)低压塔液体给料之一,其氧浓度至少为给料空气氧浓度;
(c)通过潜热交换而冷凝氮含量等于或大于给料空气氮含量的至少一种工艺流体,其中潜热交换蒸发至少部分富氧液态流体,富氧液态流体其氧浓度至少为给料空气的氧浓度,且其压力大于较低压力塔压力,并作功膨胀至少部分获得的蒸汽流体;和
(d)作功膨胀来自较高压力塔的一种工艺流体,其氮含量等于或大于给料空气氮含量,并引出该膨胀流体作为气态产品流体。
2.根据权利要求1的方法,其中第一个膨胀器执行方法步骤(d)和第二个膨胀器执行方法步骤(a)。
3.根据权利要求1的方法,其中第一个膨胀器执行方法步骤(d)和第二个膨胀器执行方法步骤(b)。
4.根据权利要求1的方法,其中第一个膨胀器执行方法步骤(d)和第二个膨胀器执行方法步骤(c)。
5.根据权利要求1的方法,其中第一个膨胀器执行方法步骤(a)和第二个膨胀器执行方法步骤(b)。
6.根据权利要求1的方法,其中第一个膨胀器执行方法步骤(a)和第二个膨胀器执行方法步骤(c)。
7.根据权利要求1的方法,其中第一个膨胀器执行方法步骤(a)和第二个膨胀器执行方法步骤(a)。
8.根据权利要求1的方法,其中第一个膨胀器进口流体在膨胀之前要加热,方法是与外部热源进行间接热交换。
9.根据权利要求8的方法,其中外部热源是高于室温的压缩气流。
10.根据权利要求9的方法,其中高于室温的压缩气流是从压缩机排放的流体。
CN99101344A 1998-01-22 1999-01-21 采用温膨胀器和冷膨胀器的空气分离法 Expired - Fee Related CN1116582C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/010958 1998-01-22
US09/010,958 1998-01-22
US09/010,958 US5907959A (en) 1998-01-22 1998-01-22 Air separation process using warm and cold expanders

Publications (2)

Publication Number Publication Date
CN1230679A CN1230679A (zh) 1999-10-06
CN1116582C true CN1116582C (zh) 2003-07-30

Family

ID=21748233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99101344A Expired - Fee Related CN1116582C (zh) 1998-01-22 1999-01-21 采用温膨胀器和冷膨胀器的空气分离法

Country Status (6)

Country Link
US (1) US5907959A (zh)
EP (1) EP0932001A3 (zh)
JP (1) JP3084683B2 (zh)
CN (1) CN1116582C (zh)
CA (1) CA2259079C (zh)
ZA (1) ZA99399B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6253576B1 (en) * 1999-11-09 2001-07-03 Air Products And Chemicals, Inc. Process for the production of intermediate pressure oxygen
EP1202012B1 (en) * 2000-10-30 2005-12-07 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Process and installation for cryogenic air separation integrated with an associated process
US6295840B1 (en) 2000-11-15 2001-10-02 Air Products And Chemicals, Inc. Pressurized liquid cryogen process
WO2009021350A1 (en) * 2007-08-10 2009-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
CN101779093A (zh) * 2007-08-10 2010-07-14 乔治洛德方法研究和开发液化空气有限公司 用于通过低温蒸馏分离空气的方法和设备
WO2009073838A1 (en) * 2007-12-07 2009-06-11 Dresser-Rand Company Compressor system and method for gas liquefaction system
US8063511B2 (en) * 2008-05-27 2011-11-22 Expansion Energy, Llc System and method for liquid air production, power storage and power release
US7821158B2 (en) * 2008-05-27 2010-10-26 Expansion Energy, Llc System and method for liquid air production, power storage and power release
ES2820436T3 (es) * 2010-07-05 2021-04-21 Air Liquide Aparato y procedimiento de separación de aire por destilación criogénica
US8907524B2 (en) 2013-05-09 2014-12-09 Expansion Energy Llc Systems and methods of semi-centralized power storage and power production for multi-directional smart grid and other applications
US20150093656A1 (en) * 2013-10-01 2015-04-02 Scott Clair Pockrandt Liquid nitrogen battery
CN113758151B (zh) * 2021-10-09 2022-10-21 乔治洛德方法研究和开发液化空气有限公司 低温分离空气的方法和空气分离设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2753698A (en) * 1952-03-05 1956-07-10 Linde Eismasch Ag Method and apparatus for fractionating air and power production
DE2854508C2 (de) * 1978-12-16 1981-12-03 Linde Ag, 6200 Wiesbaden Verfahren und Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches
US4410343A (en) * 1981-12-24 1983-10-18 Union Carbide Corporation Air boiling process to produce low purity oxygen
DE3307181A1 (de) * 1983-03-01 1984-09-06 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur zerlegung von luft
US4543115A (en) * 1984-02-21 1985-09-24 Air Products And Chemicals, Inc. Dual feed air pressure nitrogen generator cycle
US4796431A (en) * 1986-07-15 1989-01-10 Erickson Donald C Nitrogen partial expansion refrigeration for cryogenic air separation
US4704148A (en) * 1986-08-20 1987-11-03 Air Products And Chemicals, Inc. Cycle to produce low purity oxygen
DE3817244A1 (de) * 1988-05-20 1989-11-23 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
US4872893A (en) * 1988-10-06 1989-10-10 Air Products And Chemicals, Inc. Process for the production of high pressure nitrogen
US4936099A (en) * 1989-05-19 1990-06-26 Air Products And Chemicals, Inc. Air separation process for the production of oxygen-rich and nitrogen-rich products
GB9015377D0 (en) * 1990-07-12 1990-08-29 Boc Group Plc Air separation
US5257504A (en) * 1992-02-18 1993-11-02 Air Products And Chemicals, Inc. Multiple reboiler, double column, elevated pressure air separation cycles and their integration with gas turbines
GB9208645D0 (en) * 1992-04-22 1992-06-10 Boc Group Plc Air separation
FR2714721B1 (fr) * 1993-12-31 1996-02-16 Air Liquide Procédé et installation de liquéfaction d'un gaz.
US5396772A (en) * 1994-03-11 1995-03-14 The Boc Group, Inc. Atmospheric gas separation method
US5678427A (en) * 1996-06-27 1997-10-21 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity nitrogen
US5802873A (en) * 1997-05-08 1998-09-08 Praxair Technology, Inc. Cryogenic rectification system with dual feed air turboexpansion
US5839296A (en) * 1997-09-09 1998-11-24 Praxair Technology, Inc. High pressure, improved efficiency cryogenic rectification system for low purity oxygen production

Also Published As

Publication number Publication date
CN1230679A (zh) 1999-10-06
JPH11257847A (ja) 1999-09-24
ZA99399B (en) 2000-07-20
EP0932001A3 (en) 1999-10-20
US5907959A (en) 1999-06-01
CA2259079C (en) 2001-04-03
CA2259079A1 (en) 1999-07-22
EP0932001A2 (en) 1999-07-28
JP3084683B2 (ja) 2000-09-04

Similar Documents

Publication Publication Date Title
CN1119606C (zh) 制备氧的有效方法
US6962062B2 (en) Process and apparatus for the separation of air by cryogenic distillation
JP2865274B2 (ja) 酸素と窒素を気体及び/又は液体製品として同時に製造するための空気の低温蒸留法
AU690295B2 (en) Method and apparatus for producing oxygen
CN1233740A (zh) 制备氧的单膨胀器和冷压缩机法
CN1106563C (zh) 具有热透平循环***的低温空气分离
JPH087019B2 (ja) 空気の高圧低温蒸留方法
CN1116582C (zh) 采用温膨胀器和冷膨胀器的空气分离法
CN102047057B (zh) 分离空气的方法和设备
EP0518491B1 (en) Elevated pressure air separation cycles with liquid production
AU704118B2 (en) Air separation method and apparatus for producing nitrogen
CN1057380C (zh) 低温空气分离方法和设备
AU680472B2 (en) Single column process and apparatus for producing oxygen at above atmospheric pressure
CN1076134A (zh) 氩气热泵的低温精馏***
JP2009509120A (ja) 低温蒸留による空気の分離方法及び装置。
CN1784579A (zh) 通过低温空气蒸馏生产加压空气的方法和***
CN1045172A (zh) 精馏分离空气的工艺及装置
JP3063030B2 (ja) プロセス流れの圧縮のための廃棄物膨張の使用を伴う加圧空気分離方法
JPH10227560A (ja) 空気分離方法
CN1103157A (zh) 通过泵液氮生产高压氮的低温空气分离方法
JP3190013B2 (ja) 窒素を製造する空気原料の低温蒸留方法
CN1210964A (zh) 生产低纯氧的高压高效低温精馏***
CN1161583C (zh) 制备氧的多膨胀器法
JP3190016B2 (ja) 高圧窒素を製造する原料空気の低温蒸留方法
TW536615B (en) Air separation method to produce gaseous product

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee