CN111647863B - Li2FexSiO4正极薄膜的制备方法及应用 - Google Patents

Li2FexSiO4正极薄膜的制备方法及应用 Download PDF

Info

Publication number
CN111647863B
CN111647863B CN202010628630.9A CN202010628630A CN111647863B CN 111647863 B CN111647863 B CN 111647863B CN 202010628630 A CN202010628630 A CN 202010628630A CN 111647863 B CN111647863 B CN 111647863B
Authority
CN
China
Prior art keywords
film
sio
positive electrode
solid
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010628630.9A
Other languages
English (en)
Other versions
CN111647863A (zh
Inventor
刘磊
杨豹
赵***
吴冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University
Original Assignee
Hebei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University filed Critical Hebei University
Priority to CN202010628630.9A priority Critical patent/CN111647863B/zh
Publication of CN111647863A publication Critical patent/CN111647863A/zh
Application granted granted Critical
Publication of CN111647863B publication Critical patent/CN111647863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种Li2FexSiO4正极薄膜的制备方法及应用。其是以Fe补偿的Li2FeSiO4材料作为靶材,采用射频磁控溅射的方法沉积制备Li2FexSiO4薄膜,其中0.5≤x≤1.1;然后以Li2FexSiO4薄膜为正极依次制备固态电解质薄膜、负极薄膜、负极集流体薄膜,封装后得到多层结构的全固态薄膜锂离子电池。该多层膜结构的全固态锂离子具有高结构稳定性和界面特性、较高的放电比容量和循环特性。

Description

Li2FexSiO4正极薄膜的制备方法及应用
技术领域
本发明涉及锂离子电池技术领域,具体地说是一种Li2FexSiO4正极薄膜的制备方法及应用。
背景技术
锂离子电池作为常用的化学能源,其具有能量密度高、循环寿命长、无记忆效应和环境友好等优点,为规模化储能提供了更多可能,被广泛应用在电子产品、电动汽车和国防科技等领域。而随着科学技术的飞速发展,人们对锂离子电池的安全性能提出了更高的要求。传统锂离子电池普遍使用液体电解质,易造成锂离子电池的热失控,存在易燃易爆的安全隐患。因此,采用固态电解质替代有机液态电解液并制备全固态锂离子电池是解决当前锂离子电池安全问题的重要途径之一。
常规全固态锂离子电池是利用冷压的方式进行正极、电解质、负极的结合,但这种方式存在着严重的界面问题,因为挤压难以真正意义上实现固-固接触,膜层中间一般会存在气相界面(即固-气-固界面),大大增加了界面电阻。此外,常规固态电池电解质一般膜厚较厚,降低了离子的传输能力。因此,为了克服这些问题,制备全固态薄膜锂离子电池便成为了全固态锂离子电池研发的一大热点。
全固态薄膜锂离子电池,通过镀膜技术将材料气化并以原子或分子沉积的方式成膜,能有效解决固固界面的微观缺陷,实现固固界面的致密结合,为锂离子电池开辟了新的发展方向。全固态薄膜锂离子电池的性能极大取决于各层薄膜材料的选取和制备工艺。薄膜的制备有多种方法,如溶胶凝胶法、脉冲激光沉积法、磁控溅射法、真空蒸发镀膜等。
全固态薄膜锂离子电池的电化学性能取决于电池正负极、电解质材料及其之间的匹配。目前已报道过基于LiCoO2、LiMn2O4、LiFePO4、TiS2、V2O5等正极材料薄膜的全固态薄膜锂离子电池的制备方法,且具有良好的电化学性能。而且报道的与之匹配的常用的固体电解质有LiPON、LiSiPON、Li7La3Zr2O12、Li1.3Al0.3Ti1.7(PO4)3(LATP)、Li1.5Al0.5Ge1.5(PO4)3(LAGP) 等,负极材料有Li4Ti5O12、TiO2、Si、金属Li等。正极材料Li2FeSiO4不仅低成本,绿色无污染,安全性好,且拥有较高的理论比容量(333mAh·g-1),循环性能好等优势,因此可采用 Li2FeSiO4作为全固态薄膜锂离子电池的的正极材料。但是目前对于Li2FexSiO4正极薄膜的制备方法及其在全固态薄膜锂离子电池中的应用还没有相关报道。
发明内容
本发明的目的就是提供一种Li2FexSiO4正极薄膜的制备方法及应用,以提供一种适用于全固态薄膜锂离子电池的高比容量、高循环稳定性的正极薄膜层。
本发明的目的是这样实现的:一种Li2FexSiO4正极薄膜的制备方法,包括以下步骤:
(a)靶材的制备:将Fe补偿的Li2FeSiO4粉末在真空干燥箱中干燥,之后加入粘结剂进行球磨使之混合均匀,过筛后利用压片机以250~350kg/cm2的压力将定量的粉末压在铜模具中,制成厚度为1~3mm的铜背靶材,然后将制好的靶材放入管式炉中,在氩气气氛,550~650℃条件下煅烧2~4h,缓慢降至室温,制得靶材;
(b)薄膜的制备:利用步骤(a)所得靶材,采用射频磁控溅射法制备Li2FexSiO4正极薄膜,磁控溅射工艺参数为:腔室本底真空度在3×10-4Pa以下,靶间距为7~10cm,工作气体为Ar,气体流量为30~50sccm,工作压强为0.5~3Pa,溅射功率为70~180W,衬底温度为室温至200℃,预溅射25~35min,沉积时间5~10h;所得Li2FexSiO4正极薄膜的厚度为0.5~3μm;
(c)薄膜的后处理:在氩气气氛,300~800℃条件下对Li2FexSiO4正极薄膜进行退火处理,退火时间为0.5~1h。
步骤(a)中,Li2FexSiO4薄膜制备所用的靶材原料为高纯Li2FeSiO4与Fe粉的混合物, Li2FeSiO4与Fe粉的质量比为(7~15)∶1。
步骤(a)中,真空干燥温度为65~75℃,干燥时间为20~28h;所述粘结剂为聚乙烯醇,添加量为靶材原料的1wt%。
步骤(b)中,0.5≤x≤1.1。
上述的Li2FexSiO4正极薄膜在全固态薄膜锂离子电池中的应用。
所述应用为在生长了正极集流体薄膜的衬底上制备Li2FexSiO4正极薄膜,然后在Li2FexSiO4正极薄膜上依次制备生长固体电解质层、负极层和负极集流体薄膜,从而构成衬底 /正极集流体薄膜/Li2FexSiO4薄膜/固体电解质/负极/负极集流体薄膜/钝化保护膜结构的全固态薄膜锂离子电池。
本发明的有益效果在于:本发明提供了一种Li2FexSiO4正极薄膜制备方法,制备的Li2FexSiO4正极薄膜结构完整,且具有良好的电化学特性能。本发明制备的基于Li2FexSiO4正极薄膜的多层膜结构的全固态锂离子电池具有高结构稳定性和界面特性、较高的放电比容量和循环特性。
附图说明
图1为本发明实施例1在硅衬底上室温溅射和经500℃退火处理后的Li2Fe1.1SiO4薄膜的X射线衍射图。
图2为本发明实施例1在500℃退火处理后Li2Fe1.1SiO4薄膜的SEM图。
图3为本发明实施例1在硅衬底上制备的Li2Fe1.1SiO4薄膜的EDS图。
图4为本发明实施例1制备的基于Li2Fe1.1SiO4正极薄膜的全固态薄膜锂离子电池的充放电曲线图。
图5为本发明实施例2在硅衬底上200℃溅射和经700℃退火处理后的Li2FeSiO4薄膜的 X射线衍射图。
图6为本发明实施例2在200℃下溅射后得到的Li2FeSiO4薄膜的SEM图。
图7为本发明实施例2在700℃退火处理后的Li2FeSiO4薄膜的SEM图。
图8为本发明实施例2在硅衬底上制备的Li2FeSiO4薄膜的EDS图。
图9为本发明实施例2制备的全固态薄膜锂离子电池结构示意图。图中:1、衬底;2、正极集流体;3、Li2FexSiO4正极薄膜;4、固体电解质层;5、负极层;6、负极集流体。
图10为本发明实施例2制备的基于Li2FeSiO4正极薄膜的全固态薄膜锂离子电池的充放电曲线图。
图11为本发明实施例3在硅衬底上100℃溅射和经600℃退火处理后Li2Fe0.9SiO4薄膜的 X射线衍射图。
图12为本发明实施例3在100℃下溅射后得到Li2Fe0.9SiO4薄膜的SEM图。
图13为本发明实施例3在600℃退火处理后Li2Fe0.9SiO4薄膜的SEM图。
图14为本发明实施例3在硅衬底上制备的Li2Fe0.9SiO4薄膜的EDS图。
图15为本发明实施例3制备的基于Li2Fe0.9SiO4正极薄膜的全固态薄膜锂离子电池的充放电曲线图。
图16为本发明实施例4在硅衬底上制备经600℃退火处理后Li2Fe0.7SiO4薄膜的X射线衍射图。
图17为本发明实施例4制备的基于Li2Fe0.7SiO4正极薄膜的全固态薄膜锂离子电池的充放电曲线图。
图18为本发明实施例5在硅衬底上制备经600℃退火处理后Li2Fe0.5SiO4薄膜的X射线衍射图。
图19为本发明实施例5在硅衬底上制备的Li2Fe0.5SiO4薄膜的EDS图。
图20为本发明实施例5制备的基于Li2Fe0.5SiO4正极薄膜的全固态薄膜锂离子电池的充放电曲线图。
具体实施方式
下面通过实施例对本发明进行更进一步的详细说明,实施例中未详细描述的各种操作和方法均是本领域中公知的常规方法,所用试剂为市售分析纯和化学纯。
实施例1:Li2Fe1.1SiO4正极薄膜制备方法及其在全固态薄膜锂离子电池中的应用,包括:
(1)靶材的制备:首先将质量比为8∶1的高纯Li2FeSiO4与Fe粉混合材料在真空干燥箱中70℃干燥24h,加入1%粘结剂(PVA)进行球磨使之混合均匀,球磨4h后用150目筛子筛取10g,利用压片机以300kg/cm2的压力将筛取的粉末压在直径为50mm铜模具中,制成厚度为2mm的铜背靶材,然后将制好的的靶材放入管式炉,在氩气气氛中600℃煅烧3h,缓慢降至室温,制得Li2FeSiO4·0.125Fe正极材料靶材。
(2)薄膜的制备:采用射频磁控溅射法,磁控溅射工艺参数为:腔室本底真空度在3×10-4Pa以下,靶间距为7cm,工作气体为Ar,气体流量为40sccm,工作压强为1Pa,溅射功率为130W,衬底温度为室温,预溅射30min,沉积时间6h,在预先进行镀Au薄膜(厚度为0.25μm)的硅衬底上得到Li2Fe1.1SiO4正极薄膜,厚度为1.2μm。
(3)薄膜的后期热处理:在500℃条件下氩气气氛中对Li2Fe1.1SiO4正极薄膜进行退火处理,退火时间为1h。
(4)依次在Li2Fe1.1SiO4正极薄膜的基础上射频磁控溅射制备LiPON电解质薄膜,真空热蒸镀法制备Li负极薄膜和Cu负极集流体薄膜,之后在最外层覆盖一层钝化保护膜,加以封装即得到(硅衬底/Au薄膜/Li2Fe1.1SiO4薄膜/LiPON薄膜/Li薄膜/Cu薄膜/钝化保护膜)结构的全固态薄膜锂离子电池。在此过程中控制固体电解质薄膜厚度在2μm,负极薄膜厚度为1μm,负极集流体薄膜厚度为0.25μm,保护膜厚度为0.8μm。
图1为本实施例在硅衬底上室温溅射沉积得到的和经500℃退火处理后的Li2Fe1.1SiO4薄膜的X射线衍射图。图2为本实施例经500℃退火处理后的Li2Fe1.1SiO4薄膜的SEM图。图3 为本实施例在硅衬底上制备的Li2Fe1.1SiO4薄膜的EDS图。图4为本实施例制备的基于 Li2Fe1.1SiO4正极薄膜的全固态薄膜锂离子电池的充放电曲线图。
实施例2:Li2FeSiO4正极薄膜制备方法及其在全固态薄膜锂离子电池中的应用,包括:
(1)靶材的制备:首先将质量比为10∶1的高纯Li2FeSiO4与Fe粉混合材料在真空干燥箱中70℃干燥24h,加入1%粘结剂(PVA)进行球磨使之混合均匀,球磨4h后用150目筛子筛取10g,利用压片机以300kg/cm2的压力将筛取的粉末压在直径为50mm铜模具中,制成厚度为2mm的铜背靶材,然后将制好的的靶材放入管式炉,在氩气气氛中600℃煅烧3h,缓慢降至室温,制得Li2FeSiO4·0.1Fe正极材料靶材。
(2)薄膜的制备:采用射频磁控溅射法,磁控溅射工艺参数为:腔室本底真空度在3×10-4Pa以下,靶间距为7cm,工作气体为Ar,气体流量为40sccm,工作压强为1Pa,溅射功率为120W,衬底温度为200℃,预溅射30min,沉积时间7h,在预先进行镀Au薄膜(厚度为0.25μm)的硅衬底上得到Li2FeSiO4正极薄膜,厚度为1.2μm。
(3)薄膜的后期热处理:在700℃条件下氩气气氛中对Li2FeSiO4正极薄膜进行退火处理,退火时间为1h。
(4)依次在Li2FeSiO4正极薄膜的基础上射频磁控溅射制备LiPON电解质薄膜,真空热蒸镀法制备Li负极薄膜和Cu负极集流体薄膜,之后在最外层覆盖一层钝化保护膜,加以封装即得到(硅衬底/Au薄膜/Li2FeSiO4薄膜/LiPON薄膜/Li薄膜/Cu薄膜/钝化保护膜)结构的全固态薄膜锂离子电池。在此过程中控制固体电解质薄膜厚度在2μm,负极薄膜厚度为1μm,负极集流体薄膜厚度为0.25μm,保护膜厚度为0.8μm。
图5为本实施例在硅衬底上200℃溅射沉积得到的和经700℃退火处理后的Li2FeSiO4薄膜的X射线衍射图。图6为本实施例在200℃下溅射得到的Li2FeSiO4薄膜的SEM图。图7 为本实施例经700℃退火处理后的Li2FeSiO4薄膜的SEM图。图8为本实施例在硅衬底上制备的Li2FeSiO4薄膜的EDS图。图9为本发明制备的全固态薄膜锂离子电池结构示意图。图 10为本实施例制备的基于Li2FeSiO4正极薄膜的全固态薄膜锂离子电池的充放电曲线图。
实施例3:Li2Fe0.9SiO4正极薄膜制备方法及其在全固态薄膜锂离子电池中的应用,包括:
(1)靶材的制备:首先将质量比为11∶1的高纯Li2FeSiO4与Fe粉混合材料在真空干燥箱中70℃干燥24h,加入1%粘结剂(PVA)进行球磨使之混合均匀,球磨4h后用150目筛子筛取10g,利用压片机以300kg/cm2的压力将筛取的粉末压在直径为50mm铜模具中,制成厚度为2mm的铜背靶材,然后将制好的的靶材放入管式炉,在氩气气氛中600℃煅烧3h,缓慢降至室温,制得Li2FeSiO4·0.091Fe正极材料靶材。
(2)薄膜的制备:采用射频磁控溅射法,磁控溅射工艺参数为:腔室本底真空度在3×10-4Pa以下,靶间距为7cm,工作气体为Ar,气体流量为40sccm,工作压强为1Pa,溅射功率为110W,衬底温度为100℃,预溅射30min,沉积时间8h,在预先进行镀Au(厚度为 0.25μm)薄膜的硅衬底上得到Li2Fe0.9SiO4正极薄膜,厚度为1.2μm。
(3)薄膜的后期热处理:在600℃条件下氩气气氛中对Li2Fe0.9SiO4正极薄膜进行退火处理,退火时间为1h。
(4)依次在Li2Fe0.9SiO4正极薄膜的基础上射频磁控溅射制备LiPON电解质薄膜,真空热蒸镀法制备Li负极薄膜和Cu负极集流体薄膜,之后在最外层覆盖一层钝化保护膜,加以封装即得到(硅衬底/Au薄膜/Li2Fe0.9SiO4薄膜/LiPON薄膜/Li薄膜/Cu薄膜/钝化保护膜)结构的全固态薄膜锂离子电池。在此过程中控制固体电解质薄膜厚度在2μm,负极薄膜厚度为1μm,负极集流体薄膜厚度为0.25μm,保护膜厚度为0.8μm。
图11为本实施例在硅衬底上100℃溅射沉积得到的和经600℃退火处理后的Li2Fe0.9SiO4薄膜的X射线衍射图。图12为本实施例在100℃下溅射得到的Li2Fe0.9SiO4薄膜的SEM图。图13为本实施例在600℃退火处理后的Li2Fe0.9SiO4薄膜的SEM图。图14为本实施例在硅衬底上制备的Li2Fe0.9SiO4薄膜的EDS图。图15为本实施例制备的基于Li2Fe0.9SiO4正极薄膜的全固态薄膜锂离子电池的充放电曲线图。
实施例4:Li2Fe0.7SiO4正极薄膜制备方法及其在全固态薄膜锂离子电池中的应用,包括:
(1)靶材的制备:首先将质量比为13∶1的高纯Li2FeSiO4与Fe粉混合材料在真空干燥箱中70℃干燥24h,加入1%粘结剂(PVA)进行球磨使之混合均匀,球磨4h后用150目筛子筛取10g,利用压片机以300kg/cm2的压力将筛取的粉末压在直径为50mm铜模具中,制成厚度为2mm的铜背靶材,然后将制好的的靶材放入管式炉,在氩气气氛中600℃煅烧3h,缓慢降至室温,制得Li2FeSiO4·0.077Fe正极材料靶材。
(2)薄膜的制备:采用射频磁控溅射法,磁控溅射工艺参数为:腔室本底真空度在3×10-4Pa以下,靶间距为7cm,工作气体为Ar,气体流量为40sccm,工作压强为1Pa,溅射功率为100W,衬底温度为100℃,预溅射30min,沉积时间8h,在预先进行镀Au薄膜(厚度为0.2μm)的硅衬底上得到Li2Fe0.7SiO4正极薄膜,厚度为1μm。
(3)薄膜的后期热处理:在600℃条件下氩气气氛中对Li2Fe0.7SiO4正极薄膜进行退火处理,退火时间为1h。
(4)依次在Li2Fe0.7SiO4正极薄膜的基础上射频磁控溅射制备LAGP电解质薄膜,真空热蒸镀法制备Li负极薄膜和Cu负极集流体薄膜,之后在最外层覆盖一层钝化保护膜,加以封装即得到(硅衬底/Au薄膜/Li2Fe0.7SiO4薄膜/LAGP薄膜/Li薄膜/Cu薄膜/钝化保护膜)结构的全固态薄膜锂离子电池。在此过程中控制固体电解质薄膜厚度在1.5μm,负极薄膜厚度为1μm,负极集流体薄膜厚度为0.2μm,保护膜厚度为0.6μm。
图16为本实施例在硅衬底上制备的经600℃退火处理后的Li2Fe0.7SiO4薄膜的X射线衍射图。图17为本实施例制备的基于Li2Fe0.7SiO4正极薄膜的全固态薄膜锂离子电池的充放电曲线图。
实施例5:Li2Fe0.5SiO4正极薄膜制备方法及其在全固态薄膜锂离子电池中的应用,包括:
(1)靶材的制备:首先将质量比为15∶1的高纯Li2FeSiO4与Fe粉混合材料在真空干燥箱中70℃干燥24h,加入1%粘结剂(PVA)进行球磨使之混合均匀,球磨4h后用150目筛子筛取10g,利用压片机以300kg/cm2的压力将筛取的粉末压在直径为50mm铜模具中,制成厚度为2mm的铜背靶材,然后将制好的的靶材放入管式炉,在氩气气氛中600℃煅烧3h,缓慢降至室温,制得Li2FeSiO4·0.067Fe正极材料靶材。
(2)薄膜的制备:采用射频磁控溅射法,磁控溅射工艺参数为:腔室本底真空度在3×10-4Pa以下,靶间距为7cm,工作气体为Ar,气体流量为40sccm,工作压强为1Pa,溅射功率为90W,衬底温度为100℃,预溅射30min,沉积时间10h,在预先进行镀Ti薄膜(厚度为0.2μm)的硅衬底上得到Li2Fe0.5SiO4正极薄膜,厚度为1μm。
(3)薄膜的后期热处理:在600℃条件下氩气气氛中对Li2Fe0.5SiO4正极薄膜进行退火处理,退火时间为1h。
(4)依次在Li2Fe0.5SiO4正极薄膜基础上射频磁控溅射制备LiSiPON电解质薄膜,射频磁控溅射制备Si负极薄膜和Ti负极集流体薄膜,之后在最外层覆盖一层钝化保护膜,加以封装即得到(硅衬底/Ti薄膜/Li2Fe0.5SiO4薄膜/LiSiPON薄膜/Si薄膜/Ti薄膜/钝化保护膜)结构的全固态薄膜锂离子电池。在此过程中控制固体电解质薄膜厚度在1.5μm,负极薄膜厚度为 1μm,负极集流体薄膜厚度为0.2μm,保护膜厚度为0.6μm。
图18本实施例在硅衬底上制备的经600℃退火处理后的Li2Fe0.5SiO4薄膜的X射线衍射图。图19为本实施例在硅衬底上制备的Li2Fe0.5SiO4薄膜的EDS图。图20为本实施例制备的基于Li2Fe0.5SiO4正极薄膜的全固态薄膜锂离子电池的充放电曲线图。
由上述试验结果可知,在本发明保护范围内,所制备的基于Li2FexSiO4正极薄膜的多层膜结构的全固态锂离子电池具有高结构稳定性和界面特性、较高的放电比容量和循环特性。

Claims (4)

1.一种Li2FexSiO4正极薄膜的制备方法,其特征是,包括以下步骤:
(a)靶材的制备:将Fe补偿的Li2FeSiO4粉末在真空干燥箱中干燥,之后加入粘结剂进行球磨使之混合均匀,过筛后利用压片机以250~350kg / cm2的压力将定量的粉末压在铜模具中,制成厚度为1~3mm的铜背靶材,然后将制好的靶材放入管式炉中,在氩气气氛,550~650℃条件下煅烧2~4h,缓慢降至室温,制得靶材;所用的靶材原料为高纯Li2FeSiO4与Fe粉的混合物,Li2FeSiO4与Fe粉的质量比为8~15∶1;
(b)薄膜的制备:利用步骤(a)所得靶材,采用射频磁控溅射法制备Li2FexSiO4正极薄膜,其中,0.5≤x≤1.1;磁控溅射工艺参数为:腔室本底真空度在3×10-4Pa以下,靶间距为7~10cm,工作气体为Ar,气体流量为30~50sccm,工作压强为0.5~3Pa,溅射功率为70~180W,衬底温度为室温至200℃,预溅射25~35min,沉积时间5~10h;所得Li2FexSiO4正极薄膜的厚度为0.5~3μm;
(c)薄膜的后处理:在氩气气氛,300~800℃条件下对Li2FexSiO4正极薄膜进行退火处理,退火时间为0.5~1h。
2.根据权利要求1所述的Li2FexSiO4正极薄膜的制备方法,其特征是,步骤(a)中,真空干燥温度为65~75℃,干燥时间为20~28h;所述粘结剂为聚乙烯醇,添加量为靶材原料的1wt%。
3.权利要求1或2所述的Li2FexSiO4正极薄膜在全固态薄膜锂离子电池中的应用。
4.根据权利要求3所述的应用,其特征是,在生长了正极集流体薄膜的衬底上制备Li2FexSiO4正极薄膜,然后在Li2FexSiO4正极薄膜上依次制备生长固体电解质层、负极层和负极集流体薄膜,从而构成衬底/正极集流体薄膜/Li2FexSiO4薄膜/固体电解质/负极/负极集流体薄膜/钝化保护膜结构的全固态薄膜锂离子电池。
CN202010628630.9A 2020-07-02 2020-07-02 Li2FexSiO4正极薄膜的制备方法及应用 Active CN111647863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010628630.9A CN111647863B (zh) 2020-07-02 2020-07-02 Li2FexSiO4正极薄膜的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010628630.9A CN111647863B (zh) 2020-07-02 2020-07-02 Li2FexSiO4正极薄膜的制备方法及应用

Publications (2)

Publication Number Publication Date
CN111647863A CN111647863A (zh) 2020-09-11
CN111647863B true CN111647863B (zh) 2022-03-25

Family

ID=72350189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010628630.9A Active CN111647863B (zh) 2020-07-02 2020-07-02 Li2FexSiO4正极薄膜的制备方法及应用

Country Status (1)

Country Link
CN (1) CN111647863B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116732482B (zh) * 2023-05-16 2024-01-26 河南固锂电技术有限公司 一种复合多层镁离子电池正极材料及制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540394A (zh) * 2009-04-09 2009-09-23 西安建筑科技大学 锂离子电池正极材料硅酸亚铁锂的制备方法
CN101635345A (zh) * 2009-06-17 2010-01-27 深圳市贝特瑞新能源材料股份有限公司 锂离子电池用硅酸盐正极材料及其制备方法
US7736724B1 (en) * 2005-05-13 2010-06-15 The University Of Tulsa Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof
CN101794878A (zh) * 2010-01-29 2010-08-04 北大先行科技产业有限公司 一种制备聚阴离子型锂离子电池正极材料的方法
CN102219230A (zh) * 2011-05-17 2011-10-19 中南大学 锂离子电池正极材料硅酸亚铁锂的制备方法
JP2013086990A (ja) * 2011-10-14 2013-05-13 Toyota Industries Corp リチウムシリケート系化合物とリチウムイオン二次電池用正極活物質及びこれを用いたリチウムイオン二次電池
CN103650230A (zh) * 2011-07-20 2014-03-19 丰田自动车株式会社 全固体电池及其制造方法
CN105144441A (zh) * 2014-03-27 2015-12-09 古河电气工业株式会社 正极活性物质、二次电池用正极、二次电池、及正极活性物质的制造方法
CN105810886A (zh) * 2010-07-02 2016-07-27 株式会社半导体能源研究所 电极材料和形成电极材料的方法
EP3203548A1 (en) * 2014-09-29 2017-08-09 LG Chem, Ltd. Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode
CN107445174A (zh) * 2017-07-18 2017-12-08 宁夏大学 一种锂电池正极材料Li2FeSiO4及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917027B2 (ja) * 2010-06-30 2016-05-11 株式会社半導体エネルギー研究所 電極用材料の作製方法
KR102212898B1 (ko) * 2011-08-29 2021-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 전지용 양극 활물질의 제작 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736724B1 (en) * 2005-05-13 2010-06-15 The University Of Tulsa Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof
CN101540394A (zh) * 2009-04-09 2009-09-23 西安建筑科技大学 锂离子电池正极材料硅酸亚铁锂的制备方法
CN101635345A (zh) * 2009-06-17 2010-01-27 深圳市贝特瑞新能源材料股份有限公司 锂离子电池用硅酸盐正极材料及其制备方法
CN101794878A (zh) * 2010-01-29 2010-08-04 北大先行科技产业有限公司 一种制备聚阴离子型锂离子电池正极材料的方法
CN105810886A (zh) * 2010-07-02 2016-07-27 株式会社半导体能源研究所 电极材料和形成电极材料的方法
CN102219230A (zh) * 2011-05-17 2011-10-19 中南大学 锂离子电池正极材料硅酸亚铁锂的制备方法
CN103650230A (zh) * 2011-07-20 2014-03-19 丰田自动车株式会社 全固体电池及其制造方法
JP2013086990A (ja) * 2011-10-14 2013-05-13 Toyota Industries Corp リチウムシリケート系化合物とリチウムイオン二次電池用正極活物質及びこれを用いたリチウムイオン二次電池
CN105144441A (zh) * 2014-03-27 2015-12-09 古河电气工业株式会社 正极活性物质、二次电池用正极、二次电池、及正极活性物质的制造方法
EP3203548A1 (en) * 2014-09-29 2017-08-09 LG Chem, Ltd. Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode
CN107445174A (zh) * 2017-07-18 2017-12-08 宁夏大学 一种锂电池正极材料Li2FeSiO4及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High capacity nanostructured Li2FexSiO4/C with Fe hyperstoichiometry for Li-ion batteries;Haitao Zhou等;《Journal of Power Sources》;20130217;第235卷;第234-242页 *
锂离子电池正极材料Li2FeSiO4/C的改性研究;和兴广等;《高等学校化学学报》;20101110;第31卷(第11期);第2148-2152页 *

Also Published As

Publication number Publication date
CN111647863A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
CN104659412B (zh) 含平面三角形基团的锂碳硼氧化物固态电解质材料和电池
WO2018191843A1 (zh) 一种预锂化的硅基阳极及其制备方法
CN113745651B (zh) 一种包覆型硫化物固态电解质及其制备方法和应用
CN108365169A (zh) 一种锂金属负极结构组合及其制备方法、锂电池电芯
CN113346192B (zh) 一种锂离子电池复合隔膜及其制备方法和应用
CN109546076B (zh) 一种三明治结构型锂硫电池正极片的制备方法
CN107665974A (zh) 一种锂硫电池负极及其制备和应用
CN110112410B (zh) 一种改性锂离子电池正极材料及其制备方法
CN111647863B (zh) Li2FexSiO4正极薄膜的制备方法及应用
CN115395091A (zh) 一种高性能复合固态电解质膜片及其制备方法和应用
CN111129571A (zh) 一种具有自支撑结构全固态薄膜锂电池及制备方法
CN113066963B (zh) 一种全固态薄膜锂电池正极薄膜的制造方法及锂电池
CN116565214A (zh) 一种改性锂金属负极集流体及制备方法
CN114420932B (zh) 一种高性能含有变价金属离子氧化物微晶玻璃电极材料及制备方法和应用
CN113308677B (zh) 氮掺杂的非晶五氧化二铌薄膜的制备方法、全固态薄膜的锂离子电池正极以及锂离子电池
CN114865099A (zh) 一种具有合金界面-锂厚膜结构的全固态厚膜锂电池及其制备方法
CN113151790B (zh) 离子/电子共导体薄膜及其制备方法、固态电池及电动车
CN113437270A (zh) 双层包覆层改性锂离子电池正极材料粉体及其制备方法
CN110137428B (zh) 用于全固态锂离子电池的超薄锂负极膜的制备工艺
CN109935781B (zh) 正极结构及其制备方法、锂电池
CN109950528A (zh) 薄膜锂电池及其制备方法、正极薄膜材料、正极薄膜、正极组件及其制备方法、用电器
CN116169244B (zh) 一种固态电池负极及其制备方法
CN114552032B (zh) 一种锂离子储能器件正极预锂化添加剂的制作和使用方法
CN113224462B (zh) 一种用于硫锂电池的插层材料及其制备方法
Zhimin et al. Effect of annealing temperature on structure and electrochemical properties of LiCoO2 cathode thin films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant