CN111647851A - 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法 - Google Patents

兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法 Download PDF

Info

Publication number
CN111647851A
CN111647851A CN202010541310.XA CN202010541310A CN111647851A CN 111647851 A CN111647851 A CN 111647851A CN 202010541310 A CN202010541310 A CN 202010541310A CN 111647851 A CN111647851 A CN 111647851A
Authority
CN
China
Prior art keywords
coating
nano composite
target
composite coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010541310.XA
Other languages
English (en)
Other versions
CN111647851B (zh
Inventor
王铁钢
许人仁
张雅倩
李壮
刘艳梅
曹凤婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Original Assignee
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology and Education China Vocational Training Instructor Training Center filed Critical Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority to CN202010541310.XA priority Critical patent/CN111647851B/zh
Publication of CN111647851A publication Critical patent/CN111647851A/zh
Application granted granted Critical
Publication of CN111647851B publication Critical patent/CN111647851B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Abstract

本发明公开了一种兼具高硬度和高韧性Zr‑B‑N纳米复合涂层及其制备方法,属于纳米复合涂层制备技术领域。所述Zr‑B‑N纳米复合涂层包括非晶BN相和ZrB2晶相,其中ZrB2相沿(001)晶面择优生长。采用脉冲直流磁控溅射技术在金属或合金基体上沉积Zr‑B‑N纳米复合涂层。为提高涂层与基体的结合力,镀膜前先通入Ar气,利用电弧离子镀Cr靶对基体表面进行离子轰击清洗,然后通入N2和H2的混合气体,沉积CrN过渡层。之后关闭Cr靶电源,将ZrB2靶连接到脉冲直流磁控溅射阴极,并在Ar、N2和H2的混合气氛中沉积Zr‑B‑N涂层。本发明涉及的Zr‑B‑N纳米复合涂层制备重复性好,并且容易工业化生产;制备出的Zr‑B‑N涂层具有较高的硬度和弹性模量,良好的耐磨性能,且组织结构致密、涂层与基体间的结合力强。

Description

兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
技术领域
本发明涉及复合涂层及其制备技术领域,具体涉及一种兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法。
背景技术
随着现代化材料制造技术的快速发展,各种高硬度、高韧性的难加工材料日益增多,虽然工程材料的性能得到提升,但也导致了加工材料时刀具磨损加剧。而刀具涂层技术的发展,显著提高了刀具的耐磨性和抗冲击韧性,改善了刀具的切削性能,提高了刀具的加工效率和使用寿命。ZrB2涂层为密排六方晶体结构,具有高的热导率和良好的抗热震性能,同时ZrB2涂层还具有高硬度、高熔点、高抗氧化性、低阻率、良好的导电性能等优点。但是ZrB2在高温时易与氧气反应生成ZrO2/B2O3氧化层,单晶相ZrB2无法在高于1200℃的氧化环境中使用。并且涂层中的柱状晶(001)织构使其具有各向异性,且为垂直于表面的晶界提供了短的裂纹扩展路径,使其韧性大大降低。因此为提高涂层的韧性和耐磨性能,可以通过向ZrB2涂层中添加N元素,形成具有纳米复合结构的Zr-B-N涂层。
经研究发现,真空室内的真空度只有在10-8Pa时,涂层中才检测不到氧杂质的存在,而真空室中残余的氧杂质易与B发生反应生成非晶相B2O3,导致非晶骨架不致密降低非晶/纳米晶层的结合力,破坏纳米复合结构,从而使涂层性能大幅度下降。并且生成的B2O3在高温环境下极易挥发,会严重降低涂层的高温性能。
发明内容
本发明的目的在于提供一种兼具高硬度和高韧性的Zr-B-N纳米复合涂层及其制备方法,通过向真空室中通入还原性气体,利用还原反应去除真空室中残余O杂质,抑制氧杂质对涂层性能的影响,从而提高涂层耐磨性能及韧性。
为实现上述目的,本发明所采用的技术方案如下:
一种兼具高硬度和高韧性Zr-B-N纳米复合涂层,制备于金属、合金或陶瓷材料基体上,所述Zr-B-N纳米复合涂层与基体之间沉积有CrN过渡层;其中,所述Zr-B-N纳米复合涂层包括非晶BN相和ZrB2晶相。
所述Zr-B-N纳米复合涂层,ZrB2相沿(001)晶面择优生长。
所述Zr-B-N纳米复合涂层与基体间的临界载荷大于41N,涂层硬度大于41GPa,涂层平均摩擦系数小于0.69,涂层的磨损率小于1.2×10-14m3/N·m。
所述Zr-B-N纳米复合涂层是采用脉冲直流磁控溅射技术在基体表面沉积获得,具体包括如下步骤:
(1)利用电弧离子镀技术蒸发金属Cr靶,对基体表面进行离子轰击清洗;
(2)通入高纯Ar、N2和H2的混合气体,沉积CrN过渡层,沉积完成后关闭Cr靶电源;
(3)在高纯Ar、N2和H2的混合气氛中,利用脉冲直流磁控溅射技术溅射ZrB2靶,反应沉积Zr-B-N纳米复合涂层。
上述步骤(1)离子轰击清洗前,先进行辉光放电清洗,具体过程如下:将真空室的本底真空抽至3.0×10-3Pa或以下,然后通入高纯氩气并加载-800V直流偏压对基体表面进行辉光放电清洗,工作压强保持在1.5Pa,辉光放电清洗时间15min。
上述步骤(1)中,所述离子轰击清洗过程为:向真空室内通入氩气流量100sccm,工作压强保持在6.0×10-1Pa,开启电弧离子镀电源,调节平均输出电流至90A,控制金属Cr靶起弧,输出电压为18~25V,偏压仍保持在-800V,进行离子轰击清洗8min。
上述步骤(2)中,沉积CrN过渡层的过程为:将基体偏压调至-150V,真空室内通入高纯Ar、N2和H2的混合气体,保持气体流量比(N2+H2)/(Ar+N2+H2)=4/5,控制工作压强为9.0×10-1Pa,沉积CrN过渡层10min,之后关闭Cr靶电源。
上述步骤(3)中,沉积Zr-B-N涂层的过程为:真空室内通入高纯Ar、N2和H2的混合气体,保持气体流量比(N2+H2)/(Ar+N2+H2)=1/11,工作压强调至6.0×10-1Pa,开启脉冲直流磁控溅射电源,控制ZrB2靶起辉,输出功率0.8kW,靶电流为2.5~2.8A,占空比为50%,基体偏压保持为-150V,开始正对靶材沉积Zr-B-N涂层;沉积时间根据涂层厚度要求而定。
上述步骤(2)沉积CrN过渡层过程中,靶基距保持在280mm,沉积温度400℃;步骤(3)沉积Zr-B-N涂层过程中,靶基距为75mm,沉积温度400℃。
上述步骤(2)和步骤(3)沉积涂层过程中,真空室内N2与H2的气体体积比为9:1。
本发明设计机理如下:
本发明采用脉冲直流磁控溅射技术,在还原性气氛下向金属或合金基体表面沉积Zr-B-N纳米复合涂层,在保证涂层硬度的前提下,进一步改善其韧性和摩擦性能。本发明实现了利用大量的两相(非晶和纳米晶)界面阻挡微裂纹的萌生和拓展,从而提高了涂层的韧性。并且还原性反应气体的引入,通过还原反应去除了真空室内残余氧杂质,抑制了氧杂质对涂层性能的破坏。
本发明采用脉冲直流磁控溅射技术在金属或合金基体上沉积Zr-B-N纳米复合涂层,为提高涂层与基体之间的结合强度,在沉积Zr-B-N涂层之前,先利用电弧离子镀技术轰击清洗基体,之后沉积约300nm厚的CrN过渡层,起缓冲内应力的作用。为增加涂层中硬质相的含量,选用化合物ZrB2靶作为脉冲直流磁控溅射靶,在反应气体N2中混入适量还原性气体H2,镀膜过程中通过还原反应去除镀膜室内残余氧杂质及N2中混有的氧杂质,并优化沉积工艺,抑制涂层中非晶B2O3的形成,减少O元素对非晶层的破坏,提高涂层纯度和硬度;向涂层内掺杂适量N元素,是为形成非晶BN相,利用纳米复合结构来改善涂层韧性。镀膜时严格控制反应气体流量和靶材的溅射功率,制备出结构致密、高硬度、高韧性的Zr-B-N纳米复合涂层。
本发明的优点如下:
1.本发明研制的Zr-B-N涂层化学性能稳定,不与常见的化学腐蚀介质反应,具有良好的耐腐蚀性能。涂层中的非晶BN相与纳米晶界面可有效阻挡微裂纹的萌生与拓展,极大地提高了涂层韧性。
2.本发明研制的Zr-B-N涂层具有较高的硬度和弹性模量,耐磨性能优异。还原性气氛的引入提高了涂层纯度,减少了氧杂质对涂层硬度的损伤。
3.本发明研制的Zr-B-N涂层抗冲击载荷性能良好,可用于高速切削与干切削领域。
4.本发明研制的Zr-B-N涂层厚度均匀且结构致密,与基体结合良好。
5.本发明研制的Zr-B-N涂层制备工艺简单,重复性好,应用范围广,实用性强。
附图说明
图1为实施例1制备的Zr-B-N涂层的表面形貌。
图2为实施例1制备的Zr-B-N涂层的断面形貌。
图3为实施例1制备的Zr-B-N涂层的X射线衍射谱(XRD)。
图4为实施例2制备的Zr-B-N涂层的硬度。
图5为实施例2制备的Zr-B-N涂层的划痕形貌。
图6为实施例2制备的Zr-B-N涂层的摩擦系数曲线。
具体实施方式
下面通过实例对本发明作进一步详细说明。
实施例1
本实施例为在已镜面抛光的单晶Si片((100)晶面)上沉积Zr-B-N涂层,基片尺寸为50mm×10mm×0.7mm。镀膜前先将基片在酒精溶液中超声清洗20分钟,然后用高纯氮气吹干,再正对靶材放置于真空室内试样架上。镀膜过程在V-TECH AS610型脉冲直流磁控溅射镀膜机上进行,该镀膜机上也配置有电弧离子镀阴极,靶材分别选用金属Cr靶和化合物ZrB2靶(纯度均为99.9wt.%),金属Cr靶用于基体表面的离子轰击清洗和沉积CrN过渡层,化合物ZrB2靶用于沉积Zr-B-N涂层;工作气体和反应气体分别选用高纯Ar(纯度99.999%)和N2+H2(气体体积比N2:H2=9:1)。
先将真空室的本底真空抽至3.0×10-3Pa,然后通入氩气对试样表面进行辉光放电清洗,工作压强保持在1.5Pa,加载-800V直流偏压,放电清洗时间15min;之后降低氩气流量,将工作压强调至6.0×10-1Pa,开启电弧离子镀电源,控制金属Cr靶起弧,平均输出电流为90A,输出电压为18~25V,偏压保持-800V,轰击清洗8min;然后降低偏压为-150V,通入N2和H2的混合气体(气体体积比N2:H2=9:1),保持气体流量比(N2+H2)/(Ar+N2+H2)=4/5,调节工作压强为9.0×10-1Pa,沉积CrN过渡层10min,靶基距保持在280mm,沉积温度400℃;随后关闭Cr靶电源,调节真空室内气体流量比至(N2+H2)/(Ar+N2+H2)=1/11,控制节流阀将工作压强调至6.0×10-1Pa,同时开启脉冲直流电源,输出功率0.8kW,靶电流为2.5~2.8A,占空比为50%,控制ZrB2靶起辉,开始正对靶材沉积Zr-B-N涂层,靶基距为75mm,基体偏压仍为-150V;连续镀膜60min。
Zr-B-N涂层的表面形貌和截面形貌如图1和图2所示,从图1可以看出,涂层表面组织结构均匀致密,无大颗粒和液滴出现。根据Zr-B-N涂层的截面形貌(图2),可知涂层内部组织无明显柱状晶存在,涂层/过渡层/基体间界面结合良好。图3为采用本实施例工艺制备的Zr-B-N涂层的X射线衍射分析结果,涂层主要由多晶ZrB2相组成,其中(001)晶面的ZrB2相衍射峰最强,为涂层的择优生长方向。未发现与N元素相关的衍射峰,根据元素化合价态分析,N元素主要以非晶BN相存在,形成非晶层包裹纳米晶的复合结构,并且两相(非晶和纳米晶)界面的存在可以阻挡微裂纹的萌生和拓展,从而提高涂层的韧性。
实施例2
本实施例为在镜面抛光的YG8硬质合金基片上沉积Zr-B-N涂层,基片尺寸为30mm×30mm×3mm。基片先经金相砂纸研磨、抛光后,再依次用丙酮、脱脂剂、超纯水和酒精溶液超声清洗,用高纯氮气吹干后,正对靶材放置于真空室内试样架上。沉积过程及工艺参数同实施例1。
图4为硬质合金基体上沉积Zr-B-N涂层的硬度测试结果。可以看出涂层硬度测试值波动较小,在39~43GPa范围内变化,5次测量的平均值为41.9±1.2GPa,涂层硬度较高。涂层与基体的结合强度采用划痕法进行测试,金刚石划头的针尖半径为200μm,法向载荷以2.67N/s的速率由0N逐渐增加到80N,划痕长度为15mm,测试速度0.5mm/s。选取不同位置测试5次取平均值,Zr-B-N涂层临界载荷为41.3±0.7N,图5为划痕测试后Zr-B-N涂层上的划痕形貌,从图中可以识别涂层完全从基体上剥离的位置,经能谱分析确认,灰色区域为残余的涂层,白色区域为硬质合金基体。图6为Zr-B-N涂层与直径为6mm的氧化铝陶瓷球对摩后的摩擦系数曲线,测试条件:法向载荷2N,滑动速度0.1m/s,采用干摩擦旋转式运动,磨痕轨道半径为9mm。根据摩擦系数曲线,经计算稳定摩擦阶段的平均摩擦系数为0.69,Zr-B-N涂层的平均磨损率为1.12×10-14m3/N·m,利用本发明制备的涂层具有良好的摩擦磨损性能。

Claims (10)

1.一种兼具高硬度和高韧性Zr-B-N纳米复合涂层,其特征在于:所述Zr-B-N纳米复合涂层制备于金属、合金或陶瓷材料基体上,所述Zr-B-N纳米复合涂层与基体之间沉积有CrN过渡层;其中,所述Zr-B-N纳米复合涂层包括非晶BN相和ZrB2晶相。
2.根据权利要求1所述的Zr-B-N纳米复合涂层,其特征在于:所述Zr-B-N纳米复合涂层中,ZrB2相沿(001)晶面择优生长。
3.根据权利要求1所述的Zr-B-N纳米复合涂层,其特征在于:所述Zr-B-N纳米复合涂层与基体间的临界载荷大于41N,涂层硬度大于41GPa,涂层平均摩擦系数小于0.69,涂层的磨损率小于1.2×10-14m3/N·m。
4.根据权利要求1-3任一所述的Zr-B-N纳米复合涂层的制备方法,其特征在于:该方法是利用脉冲直流磁控溅射技术在基体上沉积Zr-B-N涂层,具体包括如下步骤:
(1)利用电弧离子镀技术蒸发金属Cr靶,对基体表面进行离子轰击清洗;
(2)通入高纯Ar、N2和H2的混合气体,沉积CrN过渡层,沉积完成后关闭Cr靶电源;
(3)在高纯Ar、N2和H2的混合气氛中,利用脉冲直流磁控溅射技术溅射ZrB2靶,反应沉积Zr-B-N纳米复合涂层。
5.根据权利要求4所述的Zr-B-N纳米复合涂层的制备方法,其特征在于:步骤(1)离子轰击清洗前,先进行辉光放电清洗,具体过程如下:将真空室的本底真空抽至3.0×10-3Pa或以下,然后通入高纯氩气并加载-800V直流偏压对基体表面进行辉光放电清洗,工作压强保持在1.5Pa,辉光放电清洗时间15min。
6.根据权利要求4所述的Zr-B-N纳米复合涂层的制备方法,其特征在于:步骤(1)中,所述离子轰击清洗过程为:向真空室内通入氩气流量100sccm,工作压强保持在6.0×10-1Pa,开启电弧离子镀电源,调节平均输出电流至90A,控制金属Cr靶起弧,输出电压为18~25V,偏压仍保持在-800V,进行离子轰击清洗8min。
7.根据权利要求4所述的Zr-B-N纳米复合涂层的制备方法,其特征在于:步骤(2)中,沉积CrN过渡层的过程为:将偏压调至-150V,真空室内通入高纯Ar、N2和H2的混合气体,保持气体流量比(N2+H2)/(Ar+N2+H2)=4/5,控制工作压强为9.0×10-1Pa,沉积CrN过渡层10min,之后关闭Cr靶电源。
8.根据权利要求7所述的Zr-B-N纳米复合涂层的制备方法,其特征在于:步骤(3)中,沉积Zr-B-N涂层的过程为:真空室内通入高纯Ar、N2和H2的混合气体,保持气体流量比(N2+H2)/(Ar+N2+H2)=1/11,工作压强调至6.0×10-1Pa,开启脉冲直流磁控溅射电源,控制ZrB2靶起辉,输出功率0.8kW,靶电流为2.5~2.8A,占空比为50%,基体偏压保持为-150V,开始正对靶材沉积Zr-B-N涂层;沉积时间根据涂层厚度要求而定。
9.根据权利要求8所述的Zr-B-N纳米复合涂层的制备方法,其特征在于:步骤(2)沉积CrN过渡层过程中,靶基距保持在280mm,沉积温度400℃;步骤(3)沉积Zr-B-N涂层过程中,靶基距为75mm,沉积温度400℃。
10.根据权利要求4所述的Zr-B-N纳米复合涂层的制备方法,其特征在于:步骤(2)和步骤(3)沉积涂层过程中,真空室内N2与H2的气体体积比为9:1。
CN202010541310.XA 2020-06-15 2020-06-15 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法 Active CN111647851B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010541310.XA CN111647851B (zh) 2020-06-15 2020-06-15 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010541310.XA CN111647851B (zh) 2020-06-15 2020-06-15 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN111647851A true CN111647851A (zh) 2020-09-11
CN111647851B CN111647851B (zh) 2022-07-19

Family

ID=72345568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010541310.XA Active CN111647851B (zh) 2020-06-15 2020-06-15 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN111647851B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025979A (zh) * 2021-02-26 2021-06-25 沈阳三聚凯特催化剂有限公司 一种纳米晶非晶复合涂层及其制备方法
CN114105662A (zh) * 2021-10-29 2022-03-01 航天材料及工艺研究所 一种多层界面涂层、制备方法及陶瓷基复合材料制备方法
CN115161606A (zh) * 2022-06-20 2022-10-11 中国科学院金属研究所 一种Al改性WB2涂层及其制备方法
CN116162917A (zh) * 2023-04-26 2023-05-26 赣州澳克泰工具技术有限公司 一种多层涂层刀具及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928637A (zh) * 2015-05-19 2015-09-23 上海新弧源涂层技术有限公司 高硬度CrAlSiN纳米复合结构保护性涂层及其制备方法
CN105887012A (zh) * 2016-01-11 2016-08-24 天津职业技术师范大学 一种Zr-B-N纳米复合涂层制备工艺
CN106987816A (zh) * 2017-04-06 2017-07-28 天津职业技术师范大学 一种高铝含量超致密Al‑Cr‑Si‑N涂层制备工艺
WO2017136969A1 (zh) * 2016-02-11 2017-08-17 广东工业大学 氮化硼系复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
CN110438442A (zh) * 2019-07-23 2019-11-12 江西科技师范大学 一种纳米氮化铌铝钇/非晶氮化硅双相超硬涂层及其沉积方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928637A (zh) * 2015-05-19 2015-09-23 上海新弧源涂层技术有限公司 高硬度CrAlSiN纳米复合结构保护性涂层及其制备方法
CN105887012A (zh) * 2016-01-11 2016-08-24 天津职业技术师范大学 一种Zr-B-N纳米复合涂层制备工艺
WO2017136969A1 (zh) * 2016-02-11 2017-08-17 广东工业大学 氮化硼系复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
CN106987816A (zh) * 2017-04-06 2017-07-28 天津职业技术师范大学 一种高铝含量超致密Al‑Cr‑Si‑N涂层制备工艺
CN110438442A (zh) * 2019-07-23 2019-11-12 江西科技师范大学 一种纳米氮化铌铝钇/非晶氮化硅双相超硬涂层及其沉积方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025979A (zh) * 2021-02-26 2021-06-25 沈阳三聚凯特催化剂有限公司 一种纳米晶非晶复合涂层及其制备方法
CN113025979B (zh) * 2021-02-26 2022-06-03 沈阳三聚凯特催化剂有限公司 一种纳米晶非晶复合涂层及其制备方法
CN114105662A (zh) * 2021-10-29 2022-03-01 航天材料及工艺研究所 一种多层界面涂层、制备方法及陶瓷基复合材料制备方法
CN115161606A (zh) * 2022-06-20 2022-10-11 中国科学院金属研究所 一种Al改性WB2涂层及其制备方法
CN116162917A (zh) * 2023-04-26 2023-05-26 赣州澳克泰工具技术有限公司 一种多层涂层刀具及制备方法
CN116162917B (zh) * 2023-04-26 2023-07-14 赣州澳克泰工具技术有限公司 一种多层涂层刀具及制备方法

Also Published As

Publication number Publication date
CN111647851B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN107130222A (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN109402564B (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN106987816A (zh) 一种高铝含量超致密Al‑Cr‑Si‑N涂层制备工艺
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN102534493B (zh) 一种纳米复合结构的V-Al-N硬质涂层及其制备方法
CN110453190B (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN110004409B (zh) 具有高硬度和高结合力的CrAlN纳米梯度涂层及其制备工艺
WO2019128904A1 (zh) 一种离子源增强的Si含量和晶粒尺寸梯度变化的AlCrSiN涂层
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
CN112410728B (zh) 高Cr含量CrB2-Cr涂层的制备工艺
US6451180B1 (en) Method of making a PVD Al2O3 coated cutting tool
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
CN108977781A (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
CN112501553B (zh) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN111471973B (zh) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
CN111304612B (zh) 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法
CN111500990B (zh) 一种Zr-Ti-B-N纳米复合涂层及其制备方法
CN111647859B (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺
CN112391593B (zh) 一种高Cr含量、韧性好的CrB2-Cr涂层及其制备工艺
CN114000115B (zh) 一种Ti-B-N纳米复合涂层及其制备方法
CN112941463A (zh) 一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN110484881A (zh) 一种致密二硼化钛涂层及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200911

Assignee: TIANJIN HUIZHU PETROLEUM EQUIPMENT TECHNOLOGY Co.,Ltd.

Assignor: TIANJIN University OF TECHNOLOGY AND EDUCATION (CHINA VOCATIONAL TRAINING INSTRUCTOR TRAINING CENTER)

Contract record no.: X2024980004373

Denomination of invention: Zr-B-N nanocomposite coating with high hardness and toughness and its preparation method

Granted publication date: 20220719

License type: Common License

Record date: 20240412