CN111646870A - 一种应用于低温启动单组元推进剂的催化剂及其制备方法 - Google Patents

一种应用于低温启动单组元推进剂的催化剂及其制备方法 Download PDF

Info

Publication number
CN111646870A
CN111646870A CN202010379656.4A CN202010379656A CN111646870A CN 111646870 A CN111646870 A CN 111646870A CN 202010379656 A CN202010379656 A CN 202010379656A CN 111646870 A CN111646870 A CN 111646870A
Authority
CN
China
Prior art keywords
catalyst
temperature
pore structure
freeze
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010379656.4A
Other languages
English (en)
Inventor
王青
罗玉宏
梁竞华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Aerospace Testing Technology
Original Assignee
Beijing Institute of Aerospace Testing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Aerospace Testing Technology filed Critical Beijing Institute of Aerospace Testing Technology
Priority to CN202010379656.4A priority Critical patent/CN111646870A/zh
Publication of CN111646870A publication Critical patent/CN111646870A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/04Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by auto-decomposition of single substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种应用于低温启动单组元推进剂的催化剂及其制备方法,主要解决现有的催化剂在肼基推进剂低温冷启动时因催化剂初始活性低导致孔道微***碎的问题。该催化剂是在高强度多维孔结构氧化铝载体上负载两种贵金属。利用贵金属之间的协同效应,提高催化剂在低温条件下的催化活性。本发明涉及的催化剂可应用的催化分解反应温度为‑55~100℃。

Description

一种应用于低温启动单组元推进剂的催化剂及其制备方法
技术领域
本发明涉及一种催化剂应用技术领域,特别涉及用于低温启动肼基单组元推进剂的催化剂及制备方法。
背景技术
单组元液体推进***具有***简单、可靠性高等特点,广泛应用于航天推进***,可用于航天飞行器调速、入轨、定点和姿控等。目前绝大部分运载火箭辅助动力***均采用单组元推进***,单组元推进剂在催化剂作用下进行稳定、高效分解是实现推进***正常工作的关键。自上世纪60年代,美国Shell公司研制出了用于催化分解肼基推进剂的Shell405催化剂,成功应用于各种小型姿态控制发动机上。继美国之后,英、法、德、日等国也相继研制出了Ir/Al2O3催化剂,如德国的KCIRGA、法国的CNESRO-1和英国的RPE72/1。我国自上世纪60年代开始研制肼分解催化剂,先后研制成功了812、814、816、818、819等系列肼分解催化剂,并在我国多种卫星及其他航天飞行器中得到使用。
随着深空探测等任务的推进,要求宇航动力***包括卫星、运载火箭飞船等航天器具有在低温苛刻环境条件工作的适用性,这对推进剂在低温快速启动提出了更高的要求。针对现用的肼分解催化剂,研究人员采用多种方法对催化剂活性的温度敏感性进行了研究。1968年,美国喷气实验室采用发动机试验研究了催化床温度对催化剂起活性能的影响,测试温度从-42℃到35℃,点火延迟期随催化床温度降低而增大,床温为19℃时点火延迟期5ms;床温-8℃时点火延迟期300ms。上世纪80年代,国内采用40N发动机和816催化剂,对DT-3推进剂进行了冷、热启动对比分解试验。1#发动机共进行21次冷启动,催化剂破碎9.1%,室压下降8.4%,床流阻增加60.9%。而2#、3#发动机经过连续热启动1249次,为1#发动机冷启动次数的60倍,催化剂破损仅6.7%,室压平均下降4.6%,床流阻平均增加45.1%。上世纪90年代,国内采用200N推力室,以多种比例装填国产816、814催化剂,在低温下分解H-70肼水推进剂,H70在-30℃以下未能成功实现低温启动,在-18℃~-26℃,H70起始分解时间是与温度有关的变量函数,温度越低,起始分解时间越长。
近年来,人们主要通过优化发动机结构改进推进***的低温启动性能,如采用加热保温装置提高催化床温度,设计喷注器缓冲装置减少进入催化剂床的推进剂量,延长推进剂与催化剂接触时间等措施。但这些发动机结构的改进方法将导致推进***复杂化,有效载荷降低。尤其对于已定型的发动机,结构改变成本较高。
本发明针对几种新型低温启动单组元肼基推进剂,有针对性地开发一种用于低温启动单组元肼基推进剂的催化剂,从根本上改善肼基催化剂的低温启动性能。
发明内容:
本发明的目的是针对背景技术中存在的现用肼分解催化剂低温活性低的问题,而提供一种用于低冰点单组元肼基推进剂的催化剂及其制备方法。
本发明解决其问题可以通过如下技术方案来达到:
(1)在载体上浸渍氯铱酸,经低温冷冻干燥、焙烧处理样品。
(2)交替浸渍氯金酸或氯铂酸或氯化铑或氯化钌,经液氮冷冻0.5-2h后冷冻干燥4-24h,在200-600℃范围内焙烧0.5-4h,重复(1)-(2)步,直至负载量达到5-40wt.%,停止浸渍过程,经还原及稳定化处理后得到目标催化剂。
本发明有益效果体现在:
(1)该催化剂的多维孔道结构,有利于低温下推进剂及分解产物的在孔道内的快速流动及扩散,避免分解气体聚集导致催化剂破碎,工作性能下降,适用于单组元推进剂在-10℃~-55℃下的低温启动。
(2)该催化剂的双金属配方,利用双金属协同效应,在低温条件下具有高催化活性,适用于单组元推进剂在-10℃~-55℃下的低温启动。
附图说明:
具体实施方式:
实施例1
(1)在强度为35MPa、比表面为220m2/g、堆密度为0.8g/cm3、孔结构为0-2nm、2-6nm、100-150nm的氧化铝载体上,浸渍氯铱酸中,经液氮低温冷冻0.5h,冷冻干燥6h,在500℃焙烧2h。
(2)交替浸渍氯化钉,经液氮低温冷冻0.5h,冷冻干燥6h,在500℃焙烧2h,重复(1)-(2)步,直至负载量达到25%,停止浸渍过程,经还原及稳定化处理后得到目标催化剂。
实施例2
(1)在强度为38MPa、比表面为200m2/g、堆密度为0.7g/cm3、孔结构为0-2nm、2-8nm、100-200nm的氧化铝载体上,浸渍氯铱酸中,经液氮低温冷冻1h,冷冻干燥8h,在500℃焙烧2h。
(2)交替浸渍氯化铑,经液氮低温冷冻1h,冷冻干燥4h,在500℃焙烧2h,重复(1)-(2)步,直至负载量达到30%,停止浸渍过程,经还原及稳定化处理后得到目标催化剂。
实施例3
(1)在强度为50MPa、比表面为150m2/g、堆密度为0.8g/cm3、孔结构为0-2nm、3-7nm、150-200nm的氧化铝载体上,浸渍氯铱酸中,经液氮低温冷冻1h,冷冻干燥8h,在400℃焙烧2h。
(2)交替浸渍氯化铑,经液氮低温冷冻1h,冷冻干燥4h,在400℃焙烧2h,重复(1)-(2)步,直至负载量达到38%,停止浸渍过程,经还原及稳定化处理后得到目标催化剂。

Claims (7)

1.一种应用于低温启动单组元推进剂的催化剂的制备方法,其特征是在高强度多维孔结构氧化铝载体上负载两种贵金属A、B。主要包括以下步骤:
(1)在载体上浸渍贵金属前驱体A中,经低温冷冻干燥、焙烧处理样品。
(2)交替浸渍贵金属前驱体B,冷冻干燥后焙烧,重复(1)-(2)步,直至负载量达到目标,停止浸渍过程,经还原及稳定化处理后得到目标催化剂。
2.根据权利要求1所述的高强度多维孔结构氧化铝载体,其特征在于所述的多维孔结构为0-2nm、2-10nm、100-500nm三级孔道结构,比表面积为100-300m2/g,载体堆密度为0.6-1.0g/cm3
3.根据权利要求1所述的高强度多维孔结构氧化物载体,其特征在于所述的高强度为30-100MPa。
4.根据权利要求1所述的两种贵金属前驱体A、B,其特征在于所述的贵金属前驱体A为氯铱酸。贵金属前驱体B为氯金酸或氯铂酸或氯化铑或氯化钉。
5.根据权利要求1所述的冷冻干燥为经液氮冷冻0.5-2h处理后,冷干4-24h。
6.根据权利要求1所述的焙烧为在200-600℃范围内焙烧0.5-4h。
7.根据权利要求1所述的负载量目标为5-40wt.%。
CN202010379656.4A 2020-05-06 2020-05-06 一种应用于低温启动单组元推进剂的催化剂及其制备方法 Pending CN111646870A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010379656.4A CN111646870A (zh) 2020-05-06 2020-05-06 一种应用于低温启动单组元推进剂的催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010379656.4A CN111646870A (zh) 2020-05-06 2020-05-06 一种应用于低温启动单组元推进剂的催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN111646870A true CN111646870A (zh) 2020-09-11

Family

ID=72340767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010379656.4A Pending CN111646870A (zh) 2020-05-06 2020-05-06 一种应用于低温启动单组元推进剂的催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111646870A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950414A (zh) * 2022-03-31 2022-08-30 北京航天试验技术研究所 一种用于肼基复合燃料分解的催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732694A (en) * 1968-01-18 1973-05-15 Trw Inc Method for the catalytic decomposition of monopropellant hydrazine
US3929682A (en) * 1973-08-16 1975-12-30 Kali Chemie Ag Catalyst for decomposing hydrazine and its derivatives and process of making same
US4124538A (en) * 1964-05-28 1978-11-07 Shell Oil Company Catalyst comprising Ir or Ir and Ru for hydrazine decomposition
JPH0285224A (ja) * 1988-06-13 1990-03-26 Mitsui Toatsu Chem Inc ジメチルエーテルの製造方法
CN101357336A (zh) * 2007-08-03 2009-02-04 中国科学院成都有机化学有限公司 高温催化分解氧化亚氮(n2o)的方法
CN101411975A (zh) * 2007-10-19 2009-04-22 中国科学院大连化学物理研究所 一种炭载过渡金属碳化物催化剂在肼分解反应中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124538A (en) * 1964-05-28 1978-11-07 Shell Oil Company Catalyst comprising Ir or Ir and Ru for hydrazine decomposition
US3732694A (en) * 1968-01-18 1973-05-15 Trw Inc Method for the catalytic decomposition of monopropellant hydrazine
US3929682A (en) * 1973-08-16 1975-12-30 Kali Chemie Ag Catalyst for decomposing hydrazine and its derivatives and process of making same
JPH0285224A (ja) * 1988-06-13 1990-03-26 Mitsui Toatsu Chem Inc ジメチルエーテルの製造方法
CN101357336A (zh) * 2007-08-03 2009-02-04 中国科学院成都有机化学有限公司 高温催化分解氧化亚氮(n2o)的方法
CN101411975A (zh) * 2007-10-19 2009-04-22 中国科学院大连化学物理研究所 一种炭载过渡金属碳化物催化剂在肼分解反应中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
湛建阶等: "肼类分解催化剂研究进展", 《材料导报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950414A (zh) * 2022-03-31 2022-08-30 北京航天试验技术研究所 一种用于肼基复合燃料分解的催化剂及其制备方法
CN114950414B (zh) * 2022-03-31 2023-11-07 北京航天试验技术研究所 一种用于肼基复合燃料分解的催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN111646870A (zh) 一种应用于低温启动单组元推进剂的催化剂及其制备方法
US7137244B2 (en) Reactor for decomposition of ammonium dinitramide-based liquid monopropellants and process for the decomposition
US20090007541A1 (en) Thruster using nitrous oxide
Rodrigues et al. Nitride and carbide of molybdenum and tungsten as substitutes of iridium for the catalysts used for space communication
EP3324028A1 (en) Thruster for liquid low-temperature storable propellant blends and method of starting a thruster
Hurlbert et al. Nontoxic orbital maneuvering and reaction control systems for reusable spacecraft
RU2169853C2 (ru) Способ работы двигателя летательного аппарата, действующего по принципу реактивного движения, а также двигатель летательного аппарата
US3234729A (en) Hybrid rocket motor process using solid and liquid phases
Pakdehi et al. A thermodynamic study on catalytic decomposition of hydrazine in a space thruster
Kappenstein et al. Catalytic decomposition of energetic compounds-Influence of catalyst shape and ceramic substrate
EP2845642A1 (en) Hydrogen peroxide catalyst
KR20150008902A (ko) 암모늄 디니트라미드계 액체 단일추진제용 개선된 반응기 및 이 반응기를 포함하는 분사기
EP3985241A1 (en) Motor and fuel-powered hybrid system for a rocket thruster
Kim et al. Study on endurance and performance of impregnated ruthenium catalyst for thruster system
CN113348742B (zh) 一种亚纳米分散IrRh双金属催化剂及其应用
Eloirdi et al. Catalytic decomposition of different monopropellants
CN101556129A (zh) 一种火箭
Astuti et al. Recent progress in the direct synthesis of γ-valerolactone from biomass-derived sugars catalyzed by RANEY® Ni–Sn alloy supported on aluminium hydroxide
Babkin et al. Anomalous decomposition of dinitramide metal salts in the solid phase
Kappenstein et al. Ceramics as catalysts and catalyst supports for propulsion applications-the objectives and the challenges
Scharlemann Development of miniaturized green propellant based mono-and bipropellant thrusters
Zhu et al. SUPERIOR PERFORMANCE OF IRIDIUM-HEXAALUMINATE CATALYSTS FOR NITROUS OXIDE DECOMPOSITION
CN117402024B (zh) 一种自发型绿色液体推进剂及其制备方法
Masseni Optimal battery selection for hybrid rocket engine
Smith et al. Zero-carbon Ammonia-Powered Turboelectric Propulsion System (ZAPturbo)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200911