CN111630247A - 用于膨胀封隔器的可膨胀金属 - Google Patents

用于膨胀封隔器的可膨胀金属 Download PDF

Info

Publication number
CN111630247A
CN111630247A CN201880087588.5A CN201880087588A CN111630247A CN 111630247 A CN111630247 A CN 111630247A CN 201880087588 A CN201880087588 A CN 201880087588A CN 111630247 A CN111630247 A CN 111630247A
Authority
CN
China
Prior art keywords
sealing element
metal
packer
swellable
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880087588.5A
Other languages
English (en)
Inventor
M·L·夫瑞普
Z·W·沃尔顿
P·C·达格奈斯
斯蒂芬·M·格雷奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of CN111630247A publication Critical patent/CN111630247A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means

Abstract

本发明提供了包括可膨胀金属密封元件的膨胀封隔器以及用于在井眼中形成密封的方法。一种示例性方法包括提供膨胀封隔器,所述膨胀封隔器包括可膨胀金属密封元件;其中所述膨胀封隔器设置在井眼中的导管上,将所述可膨胀金属密封元件暴露于盐水中,并且允许或使得允许所述可膨胀金属密封元件膨胀。

Description

用于膨胀封隔器的可膨胀金属
技术领域
本公开涉及可膨胀金属与膨胀封隔器一起使用的用途,更具体地,涉及可膨胀金属作为用于在井眼中形成环形密封的膨胀封隔器的非弹性体可膨胀材料的用途。
背景技术
除了其他原因之外,在井眼环境中可使用膨胀封隔器在导管中和导管周围形成环形密封。如果与特定的引起膨胀的流体接触,膨胀封隔器会随着时间而扩张。膨胀封隔器包含可膨胀材料,该可膨胀材料可以膨胀以在围绕导管的环带中形成环形密封。膨胀封隔器可用于在裸眼和套管井眼中形成这些环形密封。该密封可以限制在密封界面处的流体和/或压力连通的全部或一部分。在钻井、完井和生产的所有阶段,形成密封可能是井眼作业的重要组成部分。
膨胀封隔器通常用于区域隔绝,由此可以将地下地层的一个或多个区域与地下地层和/或其他地下地层的其他区域隔绝。膨胀封隔器的一种特定用途是隔绝通常在流动井中使用的各种流入控制装置、筛网或其他此类井下工具中的任一种。
用于密封的许多种类的可膨胀材料包括弹性体。弹性体(诸如橡胶)在高盐度和/或高温环境中可能会降解。另外,弹性体会随着时间的推移而失去弹性,从而导致失效并且/或者需要重复更换。一些密封材料可能还需要精密加工,以确保优化密封元件界面处的表面接触。这样,不具有良好表面光洁度(例如具有间隙、凸起或任何其他轮廓变化的粗糙或不规则表面)的材料可能无法被这些材料充分密封。这种材料的一个具体示例是井眼壁。井眼壁可能包括各种轮廓变化,并且通常不是可以在其上容易地形成密封的光滑表面。
如果膨胀封隔器发生故障,例如,由于高盐度和/或高温环境导致可膨胀材料的降解,则可能必须停止井眼作业,从而导致生产时间的损失,并且需要额外支出来减轻损坏并纠正出现故障的膨胀封隔器。或者,区域之间可能失去隔绝,这可能导致回收效率降低或者水和/或气体过早突破。
附图说明
本公开的说明性实例参考附图在下文中进行详细描述,所述附图以引用方式并入本文,并且其中:
图1是根据本文所公开的实例的设置在导管上的示例性膨胀封隔器的等距图;
图2是根据本文所公开的实例的设置在导管上的另一个示例性膨胀封隔器的等距图;
图3是根据本文所公开的实例的设置在导管上的又一个示例性膨胀封隔器的等距图;
图4是根据本文所公开的实例的设置在井眼中的导管上的另一个示例性膨胀封隔器的截面图;
图5是根据本文所公开的实例的设置在井眼中的导管上并设置在深处的图1的膨胀封隔器的等距图;
图6示出了根据本文所公开的实例的设置在导管上的膨胀封隔器的附加实例的截面图;
图7示出了根据本文所公开的实例的设置在导管上的膨胀封隔器的另一附加实例的截面图;
图8示出了根据本文所公开的实例的设置在包括脊的导管上的图1的膨胀封隔器的截面图;
图9是根据本文所公开的实例的密封元件的一部分的截面图,该密封元件包含粘结剂,该粘结剂中分散有可膨胀金属;
图10是示出根据本文所公开的实例的两个样品可膨胀金属杆和管件的俯视图的照片;
图11是示出根据本文公开的实例的***管件中的图10的样品可膨胀金属杆的侧视图并进一步示出样品可膨胀金属杆与管件之间的挤压间隙的照片;
图12是示出根据本文所公开的实例的在密封管件之后的图10和图11的膨胀的样品可膨胀金属杆的侧视图的照片;
图13是绘制根据本文所公开的实例的实验部分的压力对时间的曲线图,其中图12的管内的压力斜升至足以将膨胀的金属杆从管中移出的压力;
图14是示出根据本文所公开的实例的在膨胀之前设置在塑料管的节段内的若干样品金属杆的等距视图的照片;以及
图15是示出根据本文所公开的实例的膨胀的样品金属杆的等距视图的照片,该膨胀的样品金属杆已膨胀到足以使图14的塑料管的节段破裂的程度。
所示附图仅仅是示例性的,而无意断言或暗示关于可以实施不同实例的环境、架构、设计或过程的任何限制。
具体实施方式
本公开涉及可膨胀金属与膨胀封隔器一起使用的用途,更具体地,涉及可膨胀金属作为用于在井眼中形成环形密封的膨胀封隔器的非弹性体可膨胀材料的用途。
除非另外指明,否则在本说明书和相关权利要求中使用的所有表示成分数量、特性(诸如分子量)、反应条件等的数字在任何情况下均应理解为由术语“约”修饰。因此,除非有相反的指示,否则以下说明书和所附权利要求中列出的数字参数是可根据本发明的实例想要获得的所需特性而变化的近似值。至少,并非试图将等同原则的应用限制在权利要求的范围内,每个数字参数至少应根据所报告的有效数字的数目并通过应用普通的舍入技术来解释。应当指出的是,当“约”在数字列表的开头时,“约”修饰数字列表的每个数字。此外,在一些范围的数字列表中,列出的一些下限可能大于列出的一些上限。本领域的技术人员将认识到,所选子集将需要选择超出所选下限的上限。
本文描述的方法和***的实例涉及包含可膨胀金属的非弹性体密封元件的使用。如本文所用,“密封元件”是指用于形成密封的任何元件。可膨胀金属可在盐水中膨胀,并且在密封元件与相邻表面的界面处形成密封。所谓“膨胀”或“可膨胀”意指可膨胀金属增加其体积。有利地,非弹性体密封元件可用于具有轮廓变化的表面,例如,粗加工的表面、被腐蚀的表面、3-D印刷的零件等。可具有轮廓变化的表面的实例是井眼壁。另一个优点是可膨胀金属可以在高盐度和/或高温环境中膨胀,在该环境中使用弹性体材料(诸如橡胶)可能表现较差。可膨胀金属包括多种金属和金属合金,并且可通过形成金属氢氧化物而膨胀。可膨胀金属密封元件可用作井下工具中其他类型的密封元件(即,不可膨胀的金属密封元件、弹性体密封元件等)的替代品,也可以用作井下工具中其他类型的密封元件的备用品。
可膨胀金属通过在盐水的存在下进行金属水合反应而膨胀,以形成金属氢氧化物。金属氢氧化物比贱金属反应物占据更多的空间。这种体积扩张允许可膨胀金属在可膨胀金属与任何相邻表面的界面处形成密封。例如,一摩尔镁的摩尔质量为24g/mol,密度为1.74g/cm3,因此体积为13.8cm3/mol。氢氧化镁的摩尔质量为60g/mol,密度为2.34g/cm3,因此体积为25.6cm3/mol。25.6cm3/mol比13.8cm3/mol多85%的体积。又如,一摩尔钙的摩尔质量为40g/mol,密度为1.54g/cm3,因此体积为26.0cm3/mol。氢氧化钙的摩尔质量为76g/mol,密度为2.21g/cm3,因此体积为34.4cm3/mol。34.4cm3/mol比26.0cm3/mol多32%的体积。又如,一摩尔铝的摩尔质量为27g/mol,密度为2.7g/cm3,因此体积为10.0cm3/mol。氢氧化铝的摩尔质量为63g/mol,密度为2.42g/cm3,因此体积为26cm3/mol。26cm3/mol比10cm3/mol多160%的体积。可膨胀金属包括可进行水合反应以形成比贱金属或金属合金反应物更大体积的金属氢氧化物的任何金属或金属合金。在水合反应过程中,金属可能会变成单独的颗粒,这些单独的颗粒会锁定或键合在一起,形成所谓的可膨胀金属。
适用于可膨胀金属的金属的实例包括但不限于镁、钙、铝、锡、锌、铍、钡、锰或它们的任何组合。优选的金属包括镁、钙和铝。
适用于可膨胀金属的金属合金的实例包括但不限于镁、钙、铝、锡、锌、铍、钡、锰或它们的任何组合的任何合金。优选的金属合金包括镁锌、镁铝、钙镁或铝铜的合金。在一些实例中,金属合金可包含非金属的合金元素。这些非金属元素的实例包括但不限于石墨、碳、硅、氮化硼等。在一些实例中,金属被合金化以增大反应性并且/或者控制氧化物的形成。
在一些实例中,金属合金还与促进腐蚀或抑制钝化并因此增加氢氧化物形成的掺杂金属形成合金。掺杂金属的实例包括但不限于镍、铁、铜、碳、钛、镓、汞、钴、铱、金、钯或它们的任何组合。
在可膨胀金属包含金属合金的实例中,金属合金可以由固溶体工艺或粉末冶金工艺生产。包含金属合金的密封元件可以由金属合金生产工艺或通过金属合金的后续加工来形成。
如本文所用,术语“固溶体”是指由单一熔体形成的合金,其中合金(例如,镁合金)中的所有组分在铸件中一起熔融。随后可以将铸件挤压、锻造、热等静压或加工以形成可膨胀金属的密封元件的期望形状。优选地,合金组分均匀地分布在整个金属合金中,但在不脱离本公开的范围的情况下可以存在颗粒内夹杂物。应当理解,合金颗粒的分布可能会发生一些微小的变化,但优选的是,该分布使得产生金属合金的均匀固溶体。固溶体是一种或多种溶质在溶剂中的固态溶液。当通过添加溶质使溶剂的晶体结构保持不变时,以及当混合物保持在单一均相中时,这样的混合物被认为是溶液而不是化合物。
粉末冶金工艺通常包括获得或生产粉末形式的易熔合金基体。然后将粉末状易熔合金基体置于模具中,或者与至少一种其他类型的颗粒共混,然后置于模具中。向模具施加压力以将粉末颗粒压紧在一起,将它们融合以形成可用作可膨胀金属的固体材料。
在一些另选实例中,可膨胀金属包括氧化物。例如,氧化钙在能量反应中与水反应以生成氢氧化钙。1摩尔氧化钙占9.5cm3,而1摩尔氢氧化钙占34.4cm3,体积膨胀率为260%。金属氧化物的实例包括本文所公开的任何金属的氧化物,所述金属包括但不限于镁、钙、铝、铁、镍、铜、铬、锡、锌、铅、铍、钡、镓、铟、铋、钛、锰、钴或它们的任何组合。
应当理解,所选可膨胀金属将被选择为使得所形成的密封元件不会降解到盐水中。这样,可优选将形成相对不溶于水的水合产物的金属或金属合金用于可膨胀金属。例如,氢氧化镁和氢氧化钙在水中具有低溶解度。另选地或除此之外,密封元件可以定位在井下工具中,使得由于设置有密封元件的区域的几何形状而限制了向盐水中的降解,并因此导致密封元件的暴露减少。例如,设置有密封元件的区域的体积小于可膨胀金属的扩张体积。在一些实例中,该区域的体积小于扩张体积的至多50%。另选地,可设置密封元件的区域的体积可以小于扩张体积的90%、小于扩张体积的80%、小于扩张体积的70%或小于扩张体积的60%。
在一些实例中,金属水合反应可包括中间步骤,在该中间步骤中金属氢氧化物是小颗粒。受到限制时,这些小颗粒可能会锁定在一起以形成密封。因此,在作为固体金属与形成密封的步骤之间,可存在中间步骤,在该中间步骤中可膨胀金属形成一系列细小颗粒。小颗粒的最大尺寸小于0.1英寸,通常最大尺寸小于0.01英寸。在一些实施方案中,小颗粒包含1至100个晶粒(冶金晶粒)。
在一些另选实例中,可膨胀金属被分散到粘结剂材料中。粘结剂可以是可降解的或不可降解的。在一些实例中,粘结剂可以是可水解降解的。粘结剂可以是可膨胀的或不可膨胀的。如果粘结剂是可膨胀的,则粘结剂可以是可油膨胀的、可水膨胀的或可油且可水膨胀的。在一些实例中,粘结剂可以是多孔的。在一些另选实例中,粘结剂可以不是多孔的。粘结剂的一般实例包括但不限于橡胶、塑料和弹性体。粘结剂的具体实例可包括但不限于聚乙烯醇、聚乳酸、聚氨酯、聚乙醇酸、丁腈橡胶、异戊二烯橡胶、PTFE、有机硅、含氟弹性体、乙烯基橡胶和PEEK。在一些实施方案中,分散的可膨胀金属可以是由机加工过程获得的切屑。
在一些实例中,由可膨胀金属形成的金属氢氧化物可以在足够的膨胀压力下脱水。例如,如果金属氢氧化物阻止由另外的氢氧化物形成引起的运动,则可能产生升高的压力,这可能使金属氢氧化物脱水。该脱水可导致由可膨胀金属形成金属氧化物。作为一个实例,氢氧化镁可以在足够的压力下脱水以形成氧化镁和水。作为另一个实例,氢氧化钙可以在足够的压力下脱水以形成氧化钙和水。作为又一个实例,氢氧化铝可以在足够的压力下脱水以形成氧化铝和水。可膨胀金属的氢氧化物形式的脱水可允许可膨胀金属形成另外的金属氢氧化物并继续膨胀。
可膨胀金属密封元件可用于在密封元件与具有轮廓变化、粗糙光洁度等的相邻表面的界面处形成密封。这些表面在将进行密封的区域处不光滑、不均匀和/或不一致。这些表面可具有任何类型的凹陷或凸起,例如,裂缝、间隙、凹部、凹坑、孔、凹痕等。可包括这些凹陷或凸起的表面的实例是井眼壁,诸如套管壁或地层的壁。井眼壁可以不是光滑的表面,并且可包括各种不规则性,这些不规则性要求密封元件是自适应的以便提供足够的密封。另外,通过增材制造制成的部件,例如3-D印刷部件,可以与密封元件一起使用以形成密封。增材制造的部件可以不涉及精密加工,并且在一些实例中可具有粗糙的表面光洁度。在一些实例中,部件可以不被机加工并且可以仅包括铸造精加工。密封元件可以扩张以填充和密封这些相邻区域的不完美区域,从而允许在否则可能难以密封的表面之间形成密封。有利地,密封元件也可用于在密封元件与不规则表面部件的界面处形成密封。例如,可以密封被制造成段的或由嵌接接头、对接接头、拼接接头等分开的部件,并且可膨胀金属的水合过程可用于封闭不规则表面中的间隙。因此,可膨胀金属密封元件可以是难以密封的表面的可行密封选择。
可膨胀金属密封元件可用于在可在其间和/或其上设置膨胀封隔器的井眼中的任何相邻表面之间形成密封。不受限制地,膨胀封隔器可用于在导管、地层表面、水泥护套、井下工具等上形成密封。例如,膨胀封隔器可用于在导管的外径与地下地层的表面之间形成密封。或者,膨胀封隔器可用于在导管的外径与水泥护套(例如,套管)之间形成密封。又如,膨胀封隔器可用于在一个导管的外径与另一导管的内径(可以相同或不同)之间形成密封。此外,可使用多个膨胀封隔器在多根导管(例如,油田管子)之间形成密封。在一个具体实例中,膨胀封隔器可以在导管的内径上形成密封,以限制流体流过导管的内径,从而起到类似于桥塞的作用。应当理解,膨胀封隔器可用于在井眼中的任何相邻表面之间形成密封,并且本公开不限于本文所公开的明确实例。
如上所述,可膨胀金属密封元件由可膨胀金属制成,并且因此是非弹性体材料,还包含用于可膨胀金属的弹性体粘结剂的具体实例除外。作为非弹性体材料,可膨胀金属密封元件不具有弹性,因此,当与盐水接触时,它们会不可逆地膨胀。即使在不再与盐水接触后,可膨胀金属密封元件也不会恢复到其原始尺寸或形状。在包含弹性体粘结剂的实例中,弹性体粘结剂可以恢复到其原始尺寸或形状;然而,任何分散在其中的可膨胀金属则不会。
盐水可以是含盐的水(例如,包含溶解在其中的一种或多种盐的水)、饱和盐水(例如,从地下地层产生的盐水)、海水、清水或它们的任何组合。一般来讲,盐水可以来自任何来源。盐水可以是一价盐水或二价盐水。合适的一价盐水可包括例如氯化钠盐水、溴化钠盐水、氯化钾盐水、溴化钾盐水等。合适的二价盐水可包括例如氯化镁盐水、氯化钙盐水、溴化钙盐水等。在一些实例中,盐水的含盐率可超过10%。在所述实例中,弹性体密封元件的使用可能受到影响。有利地,本公开的可膨胀金属密封元件不受与高含盐率盐水接触的影响。受益于本公开,本领域的普通技术人员应当能够容易地为所选应用选择盐水。
密封元件可用于高温地层中,例如,用于具有温度等于或超过350℉的区域的地层中。在这些高温地层中,弹性体密封元件的使用可能受到影响。有利地,本公开的可膨胀金属密封元件不受在高温地层中使用的影响。在一些实例中,本公开的密封元件可用于高温地层和高含盐率盐水中。在一个具体实例中,可膨胀金属密封元件可以定位在膨胀封隔器上,并且用于通过在与含盐率为10%或更高的盐水接触之后膨胀并且同时还设置在温度等于或超过350℉的井眼区域中而形成密封。
图1是设置在导管10上的总体为5的膨胀封隔器的实例的等距图。膨胀封隔器5包括如本文所公开和描述的可膨胀金属密封元件15。膨胀封隔器5以井设计所指定的重量、等级和连接方式在导管10上缠绕或滑动。导管10可以是在井眼中使用的任何类型的导管,包括钻杆、卡管(stick pipe)、油管、连续油管等。膨胀封隔器5还包括端环20。端环20在可膨胀金属密封元件15下入到深处时保护可膨胀金属密封元件。端环20可形成挤压屏障,从而防止所施加的压力沿所述施加压力的方向挤压由可膨胀金属密封元件15形成的密封。在一些实例中,端环20可包括可膨胀金属,并且因此可以类似于可膨胀金属密封元件15作为可膨胀金属密封元件起到双重作用。在一些实例中,端环20可以不包含可膨胀金属或任何可膨胀材料。尽管图1和本文所示的一些其他实例可将端环20示出为膨胀封隔器5或膨胀封隔器的其他实例的部件,但应当理解,端环20在本文所述的所有实例中是任选部件,并且不是本文所述的任何膨胀封隔器按预期起作用所必需的。
当暴露于盐水中时,可膨胀金属密封元件15可以膨胀并在相邻井眼壁的界面处形成环形密封,如上所述。在另选实例中,环形密封可位于导管与套管、井下工具或另一导管的界面处。这种膨胀是通过可膨胀金属增大体积来实现的。这种体积的增大对应于膨胀封隔器5的直径的增大。可膨胀金属密封元件15可以继续膨胀,直到与井眼壁接触。在另选实例中,可膨胀金属密封元件15可包含其中分散有可膨胀金属的粘结剂,如上所述。粘结剂可以是本文所公开的任何粘结剂。
图2是如图1所示设置在导管10上的总体为100的膨胀封隔器的另一个实例的等距图。膨胀封隔器100包括如图1所示的可膨胀金属密封元件15。膨胀封隔器100以井设计所指定的重量、等级和连接方式在导管10上缠绕或滑动。膨胀封隔器100还包括如图1所示的任选的端环20。膨胀封隔器100还包括两个可膨胀非金属密封元件105,所述两个可膨胀非金属密封元件邻近端环20和可膨胀金属密封元件15设置。
可膨胀非金属密封元件105可包括本领域普通技术人员会想到的任何可油膨胀的、可水膨胀的和/或可组合膨胀的非金属材料。可膨胀非金属材料的具体实例是可膨胀弹性体。可膨胀非金属密封元件105可以在暴露于引起膨胀的流体(例如,油质或水性流体)中时膨胀。一般来讲,可膨胀非金属密封元件105可通过扩散而膨胀,由此引起膨胀的流体被吸收到可膨胀非金属密封元件105中。该流体可以继续扩散到可膨胀非金属密封元件105中,从而使得可膨胀非金属密封元件105膨胀直到它们接触到相邻的井眼壁,与可膨胀金属密封元件15协同工作以形成差动环形密封。
尽管图2示出了两个可膨胀非金属密封元件105,但应当理解,在一些实例中,可以提供仅一个可膨胀非金属密封元件105,并且可膨胀金属密封元件15可邻近端环20设置,或者另选地,如果不设置端环20,则可包括膨胀封隔器100的端部。
此外,尽管图2示出了单独地与可膨胀金属密封元件15的一端相邻的两个可膨胀非金属密封元件105,但应当理解,在一些实例中,取向可以相反,并且膨胀封隔器100可以替代地包括两个可膨胀金属密封元件15,所述两个可膨胀金属密封元件15各自单独地邻近端环20以及可膨胀非金属密封元件105的一端设置。
图3是当导管10在孔中下入时,如图1所示的设置在导管10上的总体为200的膨胀封隔器的另一个实例的等距图。膨胀封隔器200包括多个如图1所示的可膨胀金属密封元件15,以及多个如图2所示的可膨胀非金属密封元件105。膨胀封隔器200以井设计所指定的重量、等级和连接方式在导管10上缠绕或滑动。膨胀封隔器200还包括如图1所示的任选的端环20。膨胀封隔器200不同于分别如图1和图2所示的膨胀封隔器5和膨胀封隔器100,因为膨胀封隔器200交替使用可膨胀金属密封元件15和可膨胀非金属密封元件105。膨胀封隔器200可包括以任何模式(例如,交替,如图所示)布置的任意多个可膨胀金属密封元件15和可膨胀非金属密封元件105。多个可膨胀金属密封元件15和可膨胀非金属密封元件105可根据需要膨胀以形成如上所述的环形密封。在一些实例中,可膨胀金属密封元件15可包括不同类型的可膨胀金属,从而允许根据需要为井对膨胀封隔器200进行定制构造。
图4是如图1所示设置在导管10上的总体为300的膨胀封隔器的另一个实例的截面图。如上文结合图2的实例所述,膨胀封隔器300包括多个可膨胀金属密封元件15和可膨胀非金属密封元件105的替代布置。在该实例中,膨胀封隔器300包括两个可膨胀金属密封元件15,所述两个可膨胀金属密封元件单独地邻近端环20和可膨胀非金属密封元件105的一端设置。如图所示,任选的端环20可以在膨胀封隔器300在孔中下入时保护膨胀封隔器免受磨损。
图5示出了当下入到期望的深度并设置在地下地层400中时的如图1所示的膨胀封隔器5。在期望的设定深度处,膨胀封隔器5已暴露于盐水中,并且可膨胀金属密封元件15已膨胀以与相邻的井眼壁405接触,从而形成如图所示的环形密封。在所示的实例中,示出了多个膨胀封隔器5。当多个膨胀封隔器5密封井眼时,井眼410的在所述密封之间的部分可与井眼410的其他部分隔绝。尽管井眼410的隔绝部分被示出为无套管的,但应当理解,膨胀封隔器5可用于井眼410的任何下入套管的部分中,以在导管10与水泥护套之间的环空中形成环形密封。此外,在其他实例中,膨胀封隔器5还可用于在两个不同的导管10之间形成环形密封。最后,尽管图5示出了膨胀封隔器5的使用,但应当理解,本文所公开的任何膨胀封隔器或膨胀封隔器组合可用于本文所公开的任一实例中。
图6是如图1所示设置在导管10上的总体为500的膨胀封隔器的另一个实例的截面图。膨胀封隔器500包括如图1所示的可膨胀金属密封元件15。膨胀封隔器500还包括增强层505。增强层505可以设置在两层可膨胀金属密封元件15之间,如图所示。增强层505可以为可膨胀金属密封元件15提供抗挤压性,并且还可以为膨胀封隔器500的结构提供额外的强度并提高膨胀封隔器500的压力保持能力。增强层505可包含任何足以用于增强膨胀封隔器500的材料。增强材料的一个实例是钢。一般来讲,增强层505将包括不可膨胀材料。此外,增强层505可以是穿孔的或实心的。膨胀封隔器500未示出具有任选的端环(如上面图1所示)。然而,在一些实例中,膨胀封隔器500可包括任选的端环。在另选实例中,膨胀封隔器500可包括可膨胀金属密封元件15的层和可膨胀非金属密封元件的层(例如,如图2所示的可膨胀非金属密封元件105)。在一个具体实例中,外层可以是可膨胀金属密封元件15,并且内层可以是可膨胀非金属密封元件。在另一个具体实例中,外层可以是可膨胀非金属密封元件,并且内层可以是可膨胀金属密封元件15。
图7是如图1所示设置在导管10上的总体为600的膨胀封隔器的另一个实例的等距图。膨胀封隔器600包括至少两个如图1所示的可膨胀金属密封元件15。膨胀封隔器600以井设计所指定的重量、等级和连接方式在导管10上缠绕或滑动。膨胀封隔器600还包括如图1所示的任选的端环20。在膨胀封隔器600的实例中,示出了多个可膨胀金属密封元件15。可膨胀金属密封元件15被布置成带或板条,在各个可膨胀金属密封元件15之间设置有间隙605。在间隙605内,线路610可以下入。线路610可以从导管10的表面向下下入到导管的外部。线路610可以是控制线路、电源线、液压线路,或更一般地,可以是可将电力、数据、指令、压力、流体等从地面传送到井眼内的位置的传送线路。线路610可用于为井下工具供电、控制井下工具、向井下工具提供指令、获得井眼环境测量结果、注入流体等。当在可膨胀金属密封元件15中引起膨胀时,可膨胀金属密封元件15可膨胀并闭合间隙605,从而允许形成环形密封。可膨胀金属密封元件15可围绕可能存在的任何线路610膨胀,因此,即使在坐封之后,线路610仍可起作用并成功地跨越膨胀封隔器600。
图8是围绕导管700的如图1所示的膨胀封隔器5的截面图。膨胀封隔器5以井设计所指定的重量、等级和连接方式在导管700上缠绕或滑动。导管700包括轮廓变化,具体地,在其外表面的一部分上的脊705。膨胀封隔器5设置在脊705上方。随着可膨胀金属密封元件15膨胀,它可膨胀到脊705的中间空间中,从而当施加压差时允许可膨胀金属密封元件15甚至进一步压缩。除了脊705之外或作为其替代,导管700的外表面上的轮廓变化可包括在导管700的外表面上的螺纹、锥形、开缝间隙或允许可膨胀金属密封元件15在内部空间内膨胀的任何此类变化。尽管图8示出了膨胀封隔器5的使用,但应当理解,任何膨胀封隔器或膨胀封隔器组合可用于本文所公开的任一实例中。
图9是可膨胀金属密封元件15的一部分的截面图,并且如上所述进行使用。该具体可膨胀金属密封元件15包含粘结剂805,并且具有分散在其中的可膨胀金属810。如图所示,可膨胀金属810可分布在粘结剂805内。该分布可以是均匀的或不均匀的。可膨胀金属810可使用任何合适的方法分布在粘结剂805内。粘结剂805可以是如本文所述的任何粘结剂材料。粘结剂805可以是非膨胀的、可油膨胀的、可水膨胀的、或可油且可水膨胀的。粘结剂805可以是可降解的。粘结剂805可以是多孔的或无孔的。包含粘结剂805并具有分散在其中的可膨胀金属810的可膨胀金属密封元件15可用于本文所述和任一附图所示的任何实例中。在一个实施方案中,可膨胀金属810可以被机械地压缩,并且粘结剂805可以所需形状浇铸在被压缩的可膨胀金属810周围。在一些实例中,也可以将另外的非膨胀增强剂置于粘结剂中,诸如纤维、颗粒或编织物。
应当清楚地理解,图1至图9所示的实例实际上仅仅是本公开的原理的一般应用,并且各种其他实例也是可能的。因此,本公开的范围不以任何方式限于本文所述的任一附图的细节。
还应认识到,所公开的密封元件还可直接地或间接地影响在操作期间可与密封元件接触的各种井下设备和工具。此类设备和工具可包括但不限于井眼套管、井眼衬管、完井钻柱、***钻柱、司钻钻柱、连续油管、钢丝、钢丝绳、钻杆、钻铤、泥浆马达、井下马达和/或泵、表面安装的马达和/或泵、扶正器、涡流器、刮泥器、浮体(例如,浮靴、浮箍、浮阀等)、测井工具和相关遥测设备、致动器(例如,机电装置、液压机械装置等)、滑动套筒、生产套筒、塞子、筛网、过滤器、流量控制装置(例如,流入控制装置、自动流入控制装置、流出控制装置等)、联接器(例如,电动液压湿连接件、干连接件、电感耦合器等)、控制线路(例如电线、光纤线路、液压线路等)、监视线路、钻头和扩孔器、传感器或分布式传感器、井下换热器、阀门和对应的致动装置、工具密封元件、封隔器、水泥塞、桥塞以及其他井眼隔绝装置或部件等。这些部件中的任一者可包含在上文概述的***中,并且描绘于任一附图中。
本发明提供了根据本公开和所示附图的用于在井眼中形成密封的方法。一种示例性方法包括提供膨胀封隔器,该膨胀封隔器包括可膨胀金属密封元件;其中膨胀封隔器设置在井眼中的导管上,将可膨胀金属密封元件暴露于盐水中,并且允许或使得允许可膨胀金属密封元件膨胀。
除此之外或另选地,该方法可以单独地或组合地包括以下特征中的一个或多个。可膨胀金属密封元件可包含金属或含有金属的金属合金,所述金属选自由镁、钙、铝以及它们的任何组合组成的组。可膨胀金属密封元件可膨胀以抵靠井眼壁形成密封。导管可以是第一导管;其中可膨胀金属密封元件膨胀以在第一导管与第二导管之间形成密封。膨胀封隔器还可包括可膨胀非金属密封元件。膨胀封隔器还可包括非膨胀增强层。可膨胀金属密封元件可以至少两个板条的形式设置在膨胀封隔器上。可膨胀金属密封元件可包括间隙,并且其中可以在该间隙内设置线路。导管可在其外表面上包括轮廓变化;其中可膨胀金属密封元件可定位在轮廓变化上方。可膨胀金属密封元件可包含粘结剂。可膨胀金属密封元件可包含金属氧化物。膨胀封隔器可设置在温度高于350℉的井眼区域中。
本发明提供了根据本公开和所示附图的用于在井眼中形成密封的膨胀封隔器。示例性膨胀封隔器包括可膨胀金属密封元件。
除此之外或另选地,该膨胀封隔器可以单独地或组合地包括以下特征中的一个或多个。可膨胀金属密封元件可包含金属或含有金属的金属合金,所述金属选自由镁、钙、铝以及它们的任何组合组成的组。可膨胀金属密封元件可膨胀以抵靠井眼壁形成密封。膨胀封隔器可设置在导管中。导管可以是第一导管;其中可膨胀金属密封元件膨胀以在第一导管与第二导管之间形成密封。膨胀封隔器还可包括可膨胀非金属密封元件。膨胀封隔器还可包括非膨胀增强层。可膨胀金属密封元件可以至少两个板条的形式设置在膨胀封隔器上。可膨胀金属密封元件可包括间隙,并且其中可以在该间隙内设置线路。可膨胀金属密封元件可包含粘结剂。可膨胀金属密封元件可包含金属氧化物。膨胀封隔器可设置在温度高于350℉的井眼区域中。
本发明提供了根据本公开和所示附图的用于在井眼中形成密封的***。一种示例性***包括膨胀封隔器和导管,该膨胀封隔器包括可膨胀金属密封元件;其中膨胀封隔器设置在导管上。
除此之外或另选地,该***可以单独地或组合地包括以下特征中的一个或多个。可膨胀金属密封元件可包含金属或含有金属的金属合金,所述金属选自由镁、钙、铝以及它们的任何组合组成的组。可膨胀金属密封元件可膨胀以抵靠井眼壁形成密封。导管可以是第一导管;其中可膨胀金属密封元件膨胀以在第一导管与第二导管之间形成密封。膨胀封隔器还可包括可膨胀非金属密封元件。膨胀封隔器还可包括非膨胀增强层。可膨胀金属密封元件可以至少两个板条的形式设置在膨胀封隔器上。
可膨胀金属密封元件可包括间隙,并且其中可以在该间隙内设置线路。导管可在其外表面上包括轮廓变化;其中可膨胀金属密封元件可定位在轮廓变化上方。可膨胀金属密封元件可包含粘结剂。可膨胀金属密封元件可包含金属氧化物。膨胀封隔器可设置在温度高于350℉的井眼区域中。
实施例
通过参考以举例说明的方式提供的以下实施例,可以更好地理解本公开。本公开不限于本文所提供的实施例。
实施例1
实施例1举例说明了在盐水的存在下测试可膨胀金属的膨胀的概念验证实验。包含通过固溶体制造工艺制成的镁合金的示例性可膨胀金属被制备为一对直径为0.5”的1”长金属杆。将杆置于内径为0.625”的管件中。将杆暴露于20%氯化钾盐水中并使其膨胀。图10是示出两个样品可膨胀金属杆和管件的俯视图的照片。图11是示出***管件中的图10的样品可膨胀金属杆的侧视图并进一步示出样品可膨胀金属杆与管件之间的挤压间隙的照片。
膨胀后,管样品保持300psi的压力而无泄漏。需要600psi的压力才能迫使可膨胀金属在管中移位。这样,在没有任何支撑的情况下,可膨胀金属被示出为在管中形成密封,并以1/8”的挤压间隙保持300psi。图12是示出在密封管件之后的图10和图11的膨胀的样品可膨胀金属杆的侧视图的照片。图13是绘制实验部分的压力对时间的曲线图,其中图12的管内的压力斜升至足以将膨胀的金属杆从管中移出的压力。
作为视觉演示,将相同的金属杆置于PVC管中,暴露于20%氯化钾盐水中,并使其膨胀。可膨胀金属使PVC管破裂。图14是示出在膨胀之前设置在塑料管的节段内的若干样品金属杆的等距视图的照片。图15是示出膨胀的样品金属杆的等距视图的照片,该膨胀的样品金属杆已膨胀到足以使图14的塑料管的节段破裂的程度。
本发明呈示了结合本文所公开的实施例的一个或多个说明性实施例。为清楚起见,在本申请中并未描述或示出物理实施的所有特征。因此,所公开的***和方法非常适于实现所提及的目标和优点,以及其中所固有的那些目标和优点。上面公开的特定实施例仅是说明性的,因为本公开的教导内容可以按照受益于本文教导内容的本领域技术人员显而易见的不同但等效的方式加以修改和实践。此外,除了在以下权利要求中描述的之外,对于本文所示的构造或设计的细节没有限制。因此显而易见的是,可以改变、组合或修改上文所公开的特定的说明性实施例,并且所有此类变化都被认为属于本公开的范围。本文中说明性公开的***和方法可以适当地在缺少本文未具体公开的任何要素和/或本文所公开的任何可选要素的情况下实施。
虽然已详细描述本公开和其优点,但应理解,可以在不脱离如由所附权利要求限定的本公开的实质和范围的情况下,在本文中进行各种改变、替代和更改。

Claims (20)

1.一种用于在井眼中形成密封的方法,包括:
提供包括可膨胀金属密封元件的膨胀封隔器;其中所述膨胀封隔器设置在所述井眼中的导管上,
将所述可膨胀金属密封元件暴露于盐水中,以及
允许或使得允许所述可膨胀金属密封元件膨胀。
2.如权利要求1所述的方法,其中所述可膨胀金属密封元件包含金属或含有金属的金属合金,所述金属选自由镁、钙、铝以及它们的任何组合组成的组。
3.如权利要求1所述的方法,其中所述可膨胀金属密封元件膨胀以抵靠所述井眼的壁形成所述密封。
4.如权利要求1所述的方法,其中所述导管是第一导管;其中所述可膨胀金属密封元件膨胀以在所述第一导管与第二导管之间形成所述密封。
5.如权利要求1所述的方法,其中所述膨胀封隔器还包括可膨胀非金属密封元件。
6.如权利要求1所述的方法,其中所述膨胀封隔器还包括非膨胀增强层。
7.如权利要求1所述的方法,其中所述可膨胀金属密封元件以至少两个板条的形式设置在所述膨胀封隔器上。
8.如权利要求1所述的方法,其中所述可膨胀金属密封元件包括间隙,并且其中在所述间隙内设置有线路。
9.如权利要求1所述的方法,其中所述导管在其外表面上包括轮廓变化;其中所述可膨胀金属密封元件定位在所述轮廓变化上方。
10.如权利要求1所述的方法,其中所述可膨胀金属密封元件包含粘结剂。
11.如权利要求1所述的方法,其中所述可膨胀金属密封元件包含金属氧化物。
12.如权利要求1所述的方法,其中所述膨胀封隔器设置在温度高于350℉的井眼区域中。
13.一种膨胀封隔器,包括:
可膨胀金属密封元件。
14.如权利要求13所述的膨胀封隔器,其中所述可膨胀金属密封元件包含选自由镁、钙、铝以及它们的任何组合组成的组的金属。
15.如权利要求13所述的膨胀封隔器,其中所述可膨胀金属密封元件包含含有选自由镁、钙、铝以及它们的任何组合组成的组的金属的金属合金。
16.如权利要求13所述的膨胀封隔器,还包括可膨胀非金属密封元件。
17.如权利要求13所述的膨胀封隔器,还包括增强层。
18.一种用于在井眼中形成密封的***:
膨胀封隔器,所述膨胀封隔器包括可膨胀金属密封元件,以及
导管;其中所述膨胀封隔器设置在所述导管上。
19.如权利要求18所述的***,其中所述膨胀封隔器还包括可膨胀非金属密封元件。
20.如权利要求18所述的***,其中所述导管在其外表面上包括轮廓变化;其中所述可膨胀金属密封元件定位在所述轮廓变化上方。
CN201880087588.5A 2018-02-23 2018-02-23 用于膨胀封隔器的可膨胀金属 Pending CN111630247A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/019337 WO2019164499A1 (en) 2018-02-23 2018-02-23 Swellable metal for swell packer

Publications (1)

Publication Number Publication Date
CN111630247A true CN111630247A (zh) 2020-09-04

Family

ID=67688303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880087588.5A Pending CN111630247A (zh) 2018-02-23 2018-02-23 用于膨胀封隔器的可膨胀金属

Country Status (12)

Country Link
US (1) US11299955B2 (zh)
CN (1) CN111630247A (zh)
AR (1) AR114225A1 (zh)
AU (1) AU2018409809B2 (zh)
CA (1) CA3088190C (zh)
DK (1) DK180983B1 (zh)
GB (1) GB2583661B (zh)
MX (1) MX2020007696A (zh)
NO (1) NO20200848A1 (zh)
RO (1) RO134703A2 (zh)
SG (1) SG11202006956VA (zh)
WO (1) WO2019164499A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020005388B1 (pt) 2017-11-13 2023-03-21 Halliburton Energy Services, Inc Método para formar uma vedação em um furo de poço e pilha de vedação de metal intumescível
SG11202006956VA (en) 2018-02-23 2020-08-28 Halliburton Energy Services Inc Swellable metal for swell packer
WO2020171825A1 (en) 2019-02-22 2020-08-27 Halliburton Energy Services, Inc. An expanding metal sealant for use with multilateral completion systems
US11261693B2 (en) 2019-07-16 2022-03-01 Halliburton Energy Services, Inc. Composite expandable metal elements with reinforcement
BR112021024386A2 (pt) 2019-07-31 2022-02-08 Halliburton Energy Services Inc Método para monitorar a expansão de um vedante metálico de fundo de poço e sistema de medição do vedante metálico de fundo de poço
US10961804B1 (en) * 2019-10-16 2021-03-30 Halliburton Energy Services, Inc. Washout prevention element for expandable metal sealing elements
US11519239B2 (en) * 2019-10-29 2022-12-06 Halliburton Energy Services, Inc. Running lines through expandable metal sealing elements
WO2021086317A1 (en) * 2019-10-29 2021-05-06 Halliburton Energy Services, Inc. Expandable metal wellbore anchor
US11753886B2 (en) * 2019-11-14 2023-09-12 Halliburton Energy Services, Inc. Expandable metal packing stacks
US11499399B2 (en) 2019-12-18 2022-11-15 Halliburton Energy Services, Inc. Pressure reducing metal elements for liner hangers
US11761290B2 (en) 2019-12-18 2023-09-19 Halliburton Energy Services, Inc. Reactive metal sealing elements for a liner hanger
WO2021126232A1 (en) 2019-12-20 2021-06-24 Halliburton Energy Services, Inc. Barrier coating layer for an expandable member wellbore tool
MX2022003147A (es) * 2019-12-20 2022-04-06 Halliburton Energy Services Inc Capa de recubrimiento aislante para una herramienta de pozo de miembro expandible.
US20210270093A1 (en) * 2020-02-28 2021-09-02 Halliburton Energy Services, Inc. Textured surfaces of expanding metal for centralizer, mixing, and differential sticking
WO2021173161A1 (en) * 2020-02-28 2021-09-02 Halliburton Energy Services, Inc. Expandable metal fishing tool
US20210372527A1 (en) * 2020-05-27 2021-12-02 Halliburton Energy Services, Inc. Increased robustness of control lines and tools with expanding compression device
US11326420B2 (en) 2020-10-08 2022-05-10 Halliburton Energy Services, Inc. Gravel pack flow control using swellable metallic material
WO2022125067A1 (en) * 2020-12-08 2022-06-16 Halliburton Energy Services, Inc. Expanding metal for plug and abandonment
MX2023002508A (es) * 2020-12-08 2023-03-13 Halliburton Energy Services Inc Metal expandible para taponamiento y abandono.
US11761293B2 (en) 2020-12-14 2023-09-19 Halliburton Energy Services, Inc. Swellable packer assemblies, downhole packer systems, and methods to seal a wellbore
US11421505B2 (en) * 2020-12-16 2022-08-23 Halliburton Energy Services, Inc. Wellbore packer with expandable metal elements
US11572749B2 (en) 2020-12-16 2023-02-07 Halliburton Energy Services, Inc. Non-expanding liner hanger
US11396788B2 (en) 2020-12-17 2022-07-26 Halliburton Energy Services, Inc. Fluid activated metal alloy shut off device
US11591879B2 (en) 2021-01-29 2023-02-28 Halliburton Energy Services, Inc. Thermoplastic with swellable metal for enhanced seal
US11713641B2 (en) * 2021-03-30 2023-08-01 Halliburton Energy Services, Inc. Debris barrier for retrievable downhole tool using expandable metal material
BR112023017823A2 (pt) * 2021-04-12 2023-10-31 Halliburton Energy Services Inc Ferramenta de vedação, método para vedar um anular dentro de um furo de poço, e, sistema de poço
US11578498B2 (en) 2021-04-12 2023-02-14 Halliburton Energy Services, Inc. Expandable metal for anchoring posts
US11598472B2 (en) * 2021-04-15 2023-03-07 Halliburton Energy Services, Inc. Clamp on seal for water leaks
US11879304B2 (en) 2021-05-17 2024-01-23 Halliburton Energy Services, Inc. Reactive metal for cement assurance
GB2618749A (en) * 2021-05-17 2023-11-15 Halliburton Energy Services Inc Reactive metal for cement assurance
CA3216086A1 (en) * 2021-05-29 2022-12-08 Halliburton Energy Services, Inc. Using expandable metal as an alternate to existing metal to metal seals
US20230003096A1 (en) * 2021-07-02 2023-01-05 Schlumberger Technology Corporation Mixed element swell packer system and method
US11885195B2 (en) 2021-09-28 2024-01-30 Halliburton Energy Services, Inc. Swellable metal material with silica
US11739607B2 (en) 2021-12-02 2023-08-29 Saudi Arabian Oil Company Multi-expansion packer system having an expandable inner part disposed within an outer part of the packer
US20230228183A1 (en) * 2022-01-17 2023-07-20 Halliburton Energy Services, Inc. Real-Time Monitoring Of Swellpackers
US20230250703A1 (en) * 2022-02-07 2023-08-10 Halliburton Energy Services, Inc. Expanding metal for control lines

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1708631A (zh) * 2002-09-23 2005-12-14 哈利伯顿能源服务公司 用于井孔中可膨胀管件的环形隔离装置
US20080185158A1 (en) * 2007-02-06 2008-08-07 Halliburton Energy Services, Inc. Swellable packer with enhanced sealing capability
US20080220991A1 (en) * 2007-03-06 2008-09-11 Halliburton Energy Services, Inc. - Dallas Contacting surfaces using swellable elements
CN102027189A (zh) * 2008-03-25 2011-04-20 贝克休斯公司 井眼锚固和隔离***
US20110098202A1 (en) * 2008-04-28 2011-04-28 Simon James Swellable compositions for borehole applications
US8083000B2 (en) * 2008-03-04 2011-12-27 Swelltec Limited Swellable packer having a cable conduit
CN104583530A (zh) * 2012-08-14 2015-04-29 贝克休斯公司 可膨胀制品
CN107148444A (zh) * 2014-11-17 2017-09-08 贝克休斯公司 可溶胀组合物、其形成的制品及其制造方法
CN107532466A (zh) * 2015-04-30 2018-01-02 韦尔泰克有限公司 具有膨胀单元的环状屏障

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046601A (en) 1959-08-28 1962-07-31 Shell Oil Co Cavity configuration determination
US4445694A (en) 1982-12-17 1984-05-01 Westinghouse Electric Corp. All-metal expandable ultra high vacuum seal
US4612985A (en) 1985-07-24 1986-09-23 Baker Oil Tools, Inc. Seal assembly for well tools
ZA873769B (en) 1986-05-27 1988-04-27 Specialised Polyurethan Applic Borehole plug and method
US6098717A (en) 1997-10-08 2000-08-08 Formlock, Inc. Method and apparatus for hanging tubulars in wells
FR2791732B1 (fr) 1999-03-29 2001-08-10 Cooperation Miniere Et Ind Soc Dispositif d'obturation d'un puits de forage
US6561269B1 (en) 1999-04-30 2003-05-13 The Regents Of The University Of California Canister, sealing method and composition for sealing a borehole
MY130896A (en) 2001-06-05 2007-07-31 Shell Int Research In-situ casting of well equipment
US7040404B2 (en) 2001-12-04 2006-05-09 Halliburton Energy Services, Inc. Methods and compositions for sealing an expandable tubular in a wellbore
US6695061B2 (en) 2002-02-27 2004-02-24 Halliburton Energy Services, Inc. Downhole tool actuating apparatus and method that utilizes a gas absorptive material
NO318358B1 (no) 2002-12-10 2005-03-07 Rune Freyer Anordning ved kabelgjennomforing i en svellende pakning
GB0315251D0 (en) 2003-06-30 2003-08-06 Bp Exploration Operating Device
US7234533B2 (en) 2003-10-03 2007-06-26 Schlumberger Technology Corporation Well packer having an energized sealing element and associated method
US20050171248A1 (en) 2004-02-02 2005-08-04 Yanmei Li Hydrogel for use in downhole seal applications
GB2428058B (en) 2004-03-12 2008-07-30 Schlumberger Holdings Sealing system and method for use in a well
NO325434B1 (no) 2004-05-25 2008-05-05 Easy Well Solutions As Fremgangsmate og anordning for a ekspandere et legeme under overtrykk
US7543639B2 (en) 2004-07-23 2009-06-09 Baker Hughes Incorproated Open hole expandable patch and method of use
MY143661A (en) 2004-11-18 2011-06-30 Shell Int Research Method of sealing an annular space in a wellbore
NO331536B1 (no) 2004-12-21 2012-01-23 Schlumberger Technology Bv Fremgangsmate for a danne en regulerende strom av bronnhullfluider i et bronnhull anvendt i produksjon av hydrokarboner, og ventil for anvendelse i et undergrunns bronnhull
GB2426016A (en) 2005-05-10 2006-11-15 Zeroth Technology Ltd Downhole tool having drive generating means
US20110067889A1 (en) 2006-02-09 2011-03-24 Schlumberger Technology Corporation Expandable and degradable downhole hydraulic regulating assembly
US8651179B2 (en) 2010-04-20 2014-02-18 Schlumberger Technology Corporation Swellable downhole device of substantially constant profile
US20070200299A1 (en) 2006-02-17 2007-08-30 Innicor Subsurface Technologies Inc Spring/seal element
FR2901837B1 (fr) 2006-06-06 2015-05-15 Saltel Ind Procede et dispositif de chemisage d'un puits par hydroformage d'une chemise tubulaire metallique, et chemise destinee a cet usage
US7562704B2 (en) 2006-07-14 2009-07-21 Baker Hughes Incorporated Delaying swelling in a downhole packer element
US7591319B2 (en) 2006-09-18 2009-09-22 Baker Hughes Incorporated Gas activated actuator device for downhole tools
GB2444060B (en) 2006-11-21 2008-12-17 Swelltec Ltd Downhole apparatus and method
US7753120B2 (en) 2006-12-13 2010-07-13 Carl Keller Pore fluid sampling system with diffusion barrier and method of use thereof
US20080149351A1 (en) * 2006-12-20 2008-06-26 Schlumberger Technology Corporation Temporary containments for swellable and inflatable packer elements
DE602007007726D1 (de) 2007-04-06 2010-08-26 Schlumberger Services Petrol Verfahren und Zusammensetzung zur Zonenisolierung eines Bohrlochs
WO2009011953A1 (en) 2007-07-17 2009-01-22 Cdx Gas, Llc Plugging a mined-through well
US7931079B2 (en) 2007-08-17 2011-04-26 Schlumberger Technology Corporation Tubing hanger and method of compensating pressure differential between a tubing hanger and an external well volume
US8181708B2 (en) * 2007-10-01 2012-05-22 Baker Hughes Incorporated Water swelling rubber compound for use in reactive packers and other downhole tools
US8240377B2 (en) 2007-11-09 2012-08-14 Halliburton Energy Services Inc. Methods of integrating analysis, auto-sealing, and swellable-packer elements for a reliable annular seal
US7909110B2 (en) 2007-11-20 2011-03-22 Schlumberger Technology Corporation Anchoring and sealing system for cased hole wells
US8555961B2 (en) * 2008-01-07 2013-10-15 Halliburton Energy Services, Inc. Swellable packer with composite material end rings
US20090242189A1 (en) 2008-03-28 2009-10-01 Schlumberger Technology Corporation Swell packer
US8434571B2 (en) 2008-06-23 2013-05-07 Halliburton Energy Services, Inc. Securement of lines to downhole well tools
US7938176B2 (en) * 2008-08-15 2011-05-10 Schlumberger Technology Corporation Anti-extrusion device for swell rubber packer
US7984762B2 (en) 2008-09-25 2011-07-26 Halliburton Energy Services, Inc. Pressure relieving transition joint
US8443881B2 (en) 2008-10-13 2013-05-21 Weatherford/Lamb, Inc. Expandable liner hanger and method of use
GB0906746D0 (en) 2009-04-20 2009-06-03 Swellfix Bv Downhole seal
US8276670B2 (en) 2009-04-27 2012-10-02 Schlumberger Technology Corporation Downhole dissolvable plug
WO2011037581A1 (en) 2009-09-28 2011-03-31 Halliburton Energy Services, Inc. Through tubing bridge plug and installation method for same
CA2891734C (en) 2009-11-06 2017-08-22 Weatherford Technology Holdings, Llc Method and apparatus for a wellbore accumulator system assembly
US8967205B2 (en) 2010-03-17 2015-03-03 Deepflex Inc. Anti-extrusion layer with non-interlocked gap controlled hoop strength layer
US9464500B2 (en) * 2010-08-27 2016-10-11 Halliburton Energy Services, Inc. Rapid swelling and un-swelling materials in well tools
US20120073834A1 (en) 2010-09-28 2012-03-29 Weatherford/Lamb, Inc. Friction Bite with Swellable Elastomer Elements
US8490707B2 (en) 2011-01-11 2013-07-23 Schlumberger Technology Corporation Oilfield apparatus and method comprising swellable elastomers
US20120205092A1 (en) 2011-02-16 2012-08-16 George Givens Anchoring and sealing tool
US20120272546A1 (en) 2011-04-27 2012-11-01 Fusco Industrial Corporation Healthy insole
US8448713B2 (en) 2011-05-18 2013-05-28 Baker Hughes Incorporated Inflatable tool set with internally generated gas
US9074464B2 (en) 2011-05-20 2015-07-07 Halliburton Energy Services, Inc. Verification of swelling in a well
US9133683B2 (en) 2011-07-19 2015-09-15 Schlumberger Technology Corporation Chemically targeted control of downhole flow control devices
WO2013013147A2 (en) 2011-07-21 2013-01-24 Halliburton Energy Services, Inc. High pressure tie back receptacle and seal assembly
US9145753B2 (en) 2011-09-02 2015-09-29 Onesubsea Ip Uk Limited Trapped pressure compensator
US20130056227A1 (en) 2011-09-02 2013-03-07 Schlumberger Technology Corporation Swell-based inflation packer
US9010428B2 (en) 2011-09-06 2015-04-21 Baker Hughes Incorporated Swelling acceleration using inductively heated and embedded particles in a subterranean tool
US9090812B2 (en) * 2011-12-09 2015-07-28 Baker Hughes Incorporated Self-inhibited swell packer compound
US8776899B2 (en) 2012-02-23 2014-07-15 Halliburton Energy Services, Inc. Flow control devices on expandable tubing run through production tubing and into open hole
FR2988126B1 (fr) 2012-03-16 2015-03-13 Saltel Ind Dispositif d'isolation d'une partie d'un puits
US9617821B2 (en) 2012-06-20 2017-04-11 Halliburton Energy Services, Inc. Swellable packer with enhanced operating envelope
US9702229B2 (en) 2012-08-27 2017-07-11 Saudi Arabian Oil Company Expandable liner hanger and method of use
US20140060815A1 (en) 2012-09-05 2014-03-06 Schlumberger Technology Corporation Functionally gradient elastomer material for downhole sealing element
US20140102726A1 (en) 2012-10-16 2014-04-17 Halliburton Energy Services, Inc. Controlled Swell-Rate Swellable Packer and Method
EP2929128A4 (en) 2012-12-07 2016-03-16 Services Petroliers Schlumberger RETURNABLE THRESHOLD PACKER
US9587458B2 (en) 2013-03-12 2017-03-07 Weatherford Technology Holdings, Llc Split foldback rings with anti-hooping band
WO2014150978A2 (en) 2013-03-15 2014-09-25 Mohawk Energy Ltd. Metal patch system
US9284813B2 (en) 2013-06-10 2016-03-15 Freudenberg Oil & Gas, Llc Swellable energizers for oil and gas wells
US10502017B2 (en) 2013-06-28 2019-12-10 Schlumberger Technology Corporation Smart cellular structures for composite packer and mill-free bridgeplug seals having enhanced pressure rating
GB2517207A (en) 2013-08-16 2015-02-18 Meta Downhole Ltd Improved isolation barrier
US9631468B2 (en) * 2013-09-03 2017-04-25 Schlumberger Technology Corporation Well treatment
US9587477B2 (en) * 2013-09-03 2017-03-07 Schlumberger Technology Corporation Well treatment with untethered and/or autonomous device
US9518453B2 (en) 2013-09-06 2016-12-13 Baker Hughes Incorporated Expandable liner hanger with anchoring feature
US9447655B2 (en) 2013-10-15 2016-09-20 Baker Hughes Incorporated Methods for hanging liner from casing and articles derived therefrom
US9856710B2 (en) 2013-10-31 2018-01-02 Vetco Gray Inc. Tube arrangement to enhance sealing between tubular members
US9972324B2 (en) 2014-01-10 2018-05-15 Verizon Patent And Licensing Inc. Personal assistant application
US10758974B2 (en) 2014-02-21 2020-09-01 Terves, Llc Self-actuating device for centralizing an object
WO2015143279A2 (en) 2014-03-20 2015-09-24 Saudi Arabian Oil Company Method and apparatus for sealing an undesirable formation zone in the wall of a wellbore
US20150275644A1 (en) * 2014-03-28 2015-10-01 Schlumberger Technology Corporation Well treatment
US20150344772A1 (en) * 2014-05-30 2015-12-03 Schlumberger Technology Corporation Well treatment
US20150369027A1 (en) * 2014-06-24 2015-12-24 Schlumberger Technology Corporation Well treatment method and system
US10526868B2 (en) 2014-08-14 2020-01-07 Halliburton Energy Services, Inc. Degradable wellbore isolation devices with varying fabrication methods
US10584564B2 (en) * 2014-11-17 2020-03-10 Terves, Llc In situ expandable tubulars
GB2546448A (en) 2014-11-17 2017-07-19 Powdermet Inc Structural expandable materials
US20160145965A1 (en) 2014-11-25 2016-05-26 Baker Hughes Incorporated Flexible graphite packer
EP3029261B1 (en) 2014-12-02 2019-05-22 Services Pétroliers Schlumberger Methods of deployment for eutectic isolation tools to ensure wellbore plugs
US20160215604A1 (en) 2015-01-28 2016-07-28 Schlumberger Technology Corporation Well treatment
WO2016171666A1 (en) 2015-04-21 2016-10-27 Schlumberger Canada Limited Swellable component for a downhole tool
US10851615B2 (en) 2015-04-28 2020-12-01 Thru Tubing Solutions, Inc. Flow control in subterranean wells
GB2556503B (en) 2015-06-23 2019-04-03 Weatherford Tech Holdings Llc Self-removing plug for pressure isolation in tubing of well
US20190055839A1 (en) 2016-04-06 2019-02-21 Resman As Tracer patch
US10094192B2 (en) 2016-06-29 2018-10-09 Vetco Gray, LLC Wickers with trapped fluid recesses for wellhead assembly
WO2018057361A1 (en) 2016-09-20 2018-03-29 Saudi Arabian Oil Company Sealing an undesirable formation zone in the wall of a wellbore
US10294749B2 (en) 2016-09-27 2019-05-21 Weatherford Technology Holdings, Llc Downhole packer element with propped element spacer
CA3038039C (en) 2016-10-28 2021-05-18 Halliburton Energy Services, Inc. Use of degradable metal alloy waste particulates in well treatment fluids
US11473391B2 (en) 2017-02-07 2022-10-18 Halliburton Energy Services, Inc. Packer sealing element with non-swelling layer
US10358888B2 (en) 2017-06-08 2019-07-23 Saudi Arabian Oil Company Swellable seals for well tubing
EP3415711A1 (en) 2017-06-13 2018-12-19 Welltec A/S Downhole patch setting tool
BR112020005388B1 (pt) 2017-11-13 2023-03-21 Halliburton Energy Services, Inc Método para formar uma vedação em um furo de poço e pilha de vedação de metal intumescível
CA3085547C (en) 2018-01-29 2023-02-14 Halliburton Energy Services, Inc. Sealing apparatus with swellable metal
AU2018409802A1 (en) 2018-02-22 2020-06-18 Halliburton Energy Services, Inc. Seals by mechanically deforming degradable materials
SG11202006956VA (en) 2018-02-23 2020-08-28 Halliburton Energy Services Inc Swellable metal for swell packer
SG11202008674UA (en) 2018-06-28 2020-10-29 Halliburton Energy Services Inc Elastomer with an expandable metal
WO2020018110A1 (en) 2018-07-20 2020-01-23 Halliburton Energy Services, Inc. Degradable metal body for sealing of shunt tubes
GB2590317B (en) 2018-09-24 2022-08-24 Halliburton Energy Services Inc Swellable metal packer with porous external sleeve
US10961804B1 (en) 2019-10-16 2021-03-30 Halliburton Energy Services, Inc. Washout prevention element for expandable metal sealing elements

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1708631A (zh) * 2002-09-23 2005-12-14 哈利伯顿能源服务公司 用于井孔中可膨胀管件的环形隔离装置
US20080185158A1 (en) * 2007-02-06 2008-08-07 Halliburton Energy Services, Inc. Swellable packer with enhanced sealing capability
US20080220991A1 (en) * 2007-03-06 2008-09-11 Halliburton Energy Services, Inc. - Dallas Contacting surfaces using swellable elements
US8083000B2 (en) * 2008-03-04 2011-12-27 Swelltec Limited Swellable packer having a cable conduit
CN102027189A (zh) * 2008-03-25 2011-04-20 贝克休斯公司 井眼锚固和隔离***
US20110098202A1 (en) * 2008-04-28 2011-04-28 Simon James Swellable compositions for borehole applications
CN104583530A (zh) * 2012-08-14 2015-04-29 贝克休斯公司 可膨胀制品
CN107148444A (zh) * 2014-11-17 2017-09-08 贝克休斯公司 可溶胀组合物、其形成的制品及其制造方法
CN107532466A (zh) * 2015-04-30 2018-01-02 韦尔泰克有限公司 具有膨胀单元的环状屏障

Also Published As

Publication number Publication date
BR112020014447A2 (pt) 2020-12-01
MX2020007696A (es) 2020-11-12
RO134703A2 (ro) 2021-01-29
GB2583661B (en) 2022-09-14
DK202070389A1 (en) 2020-06-24
US11299955B2 (en) 2022-04-12
WO2019164499A1 (en) 2019-08-29
US20210332659A1 (en) 2021-10-28
SG11202006956VA (en) 2020-08-28
CA3088190A1 (en) 2019-08-29
NO20200848A1 (en) 2020-07-17
AU2018409809B2 (en) 2023-09-07
AR114225A1 (es) 2020-08-05
AU2018409809A1 (en) 2020-06-25
GB2583661A (en) 2020-11-04
CA3088190C (en) 2022-10-04
GB202010931D0 (en) 2020-08-26
DK180983B1 (en) 2022-09-01
WO2019164499A8 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
AU2018409809B2 (en) Swellable metal for swell packer
DK180867B1 (en) Swellable metal packer with porous external sleeve
NL2021796B1 (en) Swellable metal for non-elastomeric O-rings, seal stacks, and gaskets
CA3138868C (en) Composite expandable metal elements with reinforcement
NL2025837B1 (en) Composite expandable metal elements with reinforcement
CN116391071A (zh) 非膨胀衬管悬挂器
BR112020014447B1 (pt) Método e sistema para formar uma vedação em um furo de poço, e, packer intumescente
US11879304B2 (en) Reactive metal for cement assurance
AU2021446706A1 (en) Reactive metal for cement assurance
WO2023033817A1 (en) Controlled actuation of a reactive metal
AU2021463035A1 (en) Controlled actuation of a reactive metal
WO2023219634A1 (en) Fast-acting swellable downhole seal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination