CN111620690A - 一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法 - Google Patents

一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法 Download PDF

Info

Publication number
CN111620690A
CN111620690A CN202010519389.6A CN202010519389A CN111620690A CN 111620690 A CN111620690 A CN 111620690A CN 202010519389 A CN202010519389 A CN 202010519389A CN 111620690 A CN111620690 A CN 111620690A
Authority
CN
China
Prior art keywords
ceramic
ball milling
large strain
bismuth titanate
small hysteresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010519389.6A
Other languages
English (en)
Inventor
李伟力
曹文萍
费维栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202010519389.6A priority Critical patent/CN111620690A/zh
Publication of CN111620690A publication Critical patent/CN111620690A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种利用构建离子对获得大应变小滞后性的钛酸铋钠基陶瓷及其制备方法,它涉及无铅压电陶瓷领域。本发明要解决现有铁电陶瓷应变滞后性严重的问题。本发明陶瓷制备:a)利用固相球磨法制备施主(Nb2O5)掺杂的(Bi0.5Na0.5)0.75Sr0.25Ti(1‑x)O3‑0.5xNb2O5陶瓷粉体;b)在850~950℃温度下预烧粉体;c)将粉末冷压成片,在1140℃‑1160℃温度下烧结成致密陶瓷。本发明通过在准同型相区的0.75BNT‑0.25ST陶瓷进行施主掺杂,在陶瓷晶格内形成Ti3+‑Nb5+离子对,利用离子对形成偶极矩使畴翻转可逆制备出应变大滞后小的铁电陶瓷,本发明应用于无铅铁电陶瓷领域。

Description

一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及 其制备方法
技术领域
本发明属于无铅压电陶瓷领域,具体涉及一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法,是一种环境友好的应变大滞后小的驱动材料。
背景技术
压电陶瓷由于其优良的力电耦合性质,体积小,响应快等优点,在传感器、驱动器、微位移器等领域具有广泛的应用。长期以来,在压电驱动器领域占据统治地位的一直是Pb(ZrxTi1-x)O3(PZT)基陶瓷材料,其应变大小可以达到0.1%-1%的数量级。然而,由于PZT基陶瓷材料含铅量较高,在生产和使用过程中对人类健康和环境造成极大的危害,因此,寻找具有应变性能优异且环境友好的无铅驱动材料便成为必然。
在无铅铁电材料的研究中,钛酸铋钠((Bi0.5Na0.5)TiO3,BNT)基陶瓷材料由于在电场激发下能够发生非极性相(弛豫相)和铁电相之间的可逆相变,利用该相变可以获得优异的应变性能,从而成为目前研究最多且最有希望替代铅基的材料的无铅驱动材料之一。目前的研究主要通过在BNT基陶瓷中进行元素掺杂、固溶、改善制备工艺等方法获得较大的应变,其应变大小可以达到0.3-0.7%。但就实际应用而言,还存在一个亟待解决的问题。BNT基陶瓷在获得大的应变时,其应变滞后性也非常大(一般大于50%),严重影响了驱动器的灵敏度,难以在实际中得到应用。当通过掺杂、构造铁电-弛豫复合陶瓷等方法降低其滞后性时,往往以牺牲应变大小为前提。
发明内容
本发明为了解决本发明要解决现有铁电陶瓷应变滞后性严重的问题,以及不能同时满足变滞后性小以及应变大的问题,本发明提出了一种通过施主掺杂(Nb2O5)在准同型相区的0.75BNT-0.25ST(钛酸锶)陶瓷晶格内构离子对,利用离子对形成的电偶极矩使畴翻转获得应变大滞后小的BNT-ST陶瓷及其制备方法。
本发明的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷,其特征在于该陶瓷的化学组成通式为(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5;它是由Na2CO3、SrCO3、TiO2、Bi2O3及Nb2O5按化学计量比(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5制成,其中,所述的x=0.5~1.0mol.%。
进一步地,所述的x=0.8~1.0mol.%。
进一步地,所述的x=0.6~0.9mol.%。
本发明的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷的方法,它是按照以下步骤制备的:
一、配料:
将原料Na2CO3、SrCO3、TiO2、Bi2O3及Nb2O5,按照化学计量比(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5进行配料;其中,x=0.5~1.0mol.%;
二、球磨:
将步骤一称量的原料放入球磨罐中进行球磨,球磨介质为无水乙醇和氧化锆磨球,球磨条件为:氧化锆球:料比为(3~5):1,转速为300~350r/min,球磨时间为6~12h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h,得到固溶体粉料;
三、预烧:
将步骤二烘干后的粉料放入刚玉陶瓷坩埚中,在850~950℃进行预烧2~5h;
四、二次球磨:
将步骤三预烧后粉体再放入球磨罐中,按步骤二进行二次湿磨;
五、造粒
将步骤四烘干后粉体研磨、过筛,然后添加5wt.%聚乙烯醇充分研磨进行造粒;
六、成型
将步骤五造粒后的粉体放入模具内进行预压成片,在8~10MPa的压力下压制成圆片;七、排胶
将成型后的圆片放入烧结炉中,以1℃/min的升温速率升温至500℃,保温1h进行排胶;
八、烧结
将排胶后的圆片放入刚玉陶瓷坩埚中,以10℃/min的升温速率升温至1140~1160℃,保温2~5h,随炉冷至室温,得到(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5无铅铁电陶瓷。
进一步地,所述的x=0.8~1.0mol.%。
进一步地,所述的x=0.6~0.9mol.%。
进一步地,步骤二中的球磨条件为:氧化锆球:料比为(3~4):1,转速为320~350r/min,球磨时间为8~12h。
进一步地,步骤二中的球磨条件为:氧化锆球:料比为5:1,转速为320~340r/min,球磨时间为10~12h。
进一步地,步骤三预烧条件:在880~920℃进行预烧2~4h。
进一步地,步骤八的烧结条件:以10℃/min的升温速率升温至1150~1160℃,保温2~3h。
本发明包含以下有益效果:
本发明给出的Nb2O5受主掺杂改性的0.75NBT-0.25ST陶瓷材料不仅具有优异的应变大小,其大小保持在0.35%-0.36%,且应变滞后性(H)由常见的高于50%的水平降低至36%-38%。
在准同型相区0.75NBT-0.25ST陶瓷内进行施主掺杂后,为了保持电价平衡,迫使B位Ti4+变价为Ti3+,从而在陶瓷晶格内形成Ti3+-Nb5+离子对,利用离子对形成偶极矩使畴翻转可逆制备出应变大滞后小的铁电陶瓷,利用在无铅铁电陶瓷构建离子对提高应变大小并降低滞后性的方法为铁电材料在驱动器、微位移器等领域的应用提供技术保障。
附图说明
图1是本发明方法实例4制备的施主掺杂钛酸铋钠基陶瓷的表面形貌显微图;
图2是本发明方法实例4制备的施主掺杂钛酸铋钠基陶瓷的电滞回线和蝶形曲线图。
具体实施方式
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面将详细叙述清楚说明本发明所揭示内容的精神,任何所属技术领域技术人员在了解本发明内容的实施例后,当可由本发明内容所教示的技术,加以改变及修饰,其并不脱离本发明内容的精神与范围。
本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
实施例1
本实施例的一种有效降低应变滞后性的BNT基无铅铁电陶瓷的方法是按照以下步骤进行的:
一、配料
将原料Na2CO3、SrCO3、TiO2、Bi2O3及Nb2O5,按照化学计量比(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5进行配料;其中,x=0.5mol.%;
二、球磨:
将步骤一称量的原料放入球磨罐中进行球磨,球磨介质为无水乙醇和氧化锆磨球,球磨条件为:氧化锆球:料比为5:1,转速为350r/min,球磨时间为12h;球磨后,将球磨所得浆料于80℃下保温烘干12h,得到固溶体粉料;
三、预烧:
将步骤二烘干后的粉料放入刚玉陶瓷坩埚中,在850℃进行预烧2h;
四、二次球磨:
将步骤三预烧后粉体再放入球磨罐中,按步骤二进行二次湿磨。
五、造粒
将步骤四烘干后粉体研磨、过筛,然后添加5wt.%聚乙烯醇充分研磨进行造粒;
六、成型
将步骤五造粒后的粉体放入模具内进行预压成片,在8MPa的压力下压制成圆片;
七、排胶
将成型后的圆片放入烧结炉中,以1℃/min的升温速率升温至500℃,保温1h进行排胶;
八、烧结
将排胶后的圆片放入刚玉陶瓷坩埚中,以10℃/min的升温速率升温至1160℃,保温2h,随炉冷至室温,得到(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5无铅铁电陶瓷;
九、镀电极
将烧结后所得到的(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5无铅铁电陶瓷表面进行打磨抛光,并在抛光后的陶瓷片上下表面涂一层银电极;然后将带有电极的无铅铁电陶瓷放入烧结炉中在温度为500℃条件下退火,保温30min烧成银电极;
该实施例1制备的(Bi0.5Na0.5)0.75Sr0.25Ti0.995O3-0.0025Nb2O5无铅铁电陶瓷的在80kV/cm电场下的应变大小为0.358%,应变滞后性为38.5%。
实施例2
该方案与实施例1相比,第八步的烧结温度为1150℃,所制备的(Bi0.5Na0.5)0.75Sr0.25Ti0.995O3-0.0025Nb2O5无铅铁电陶瓷的在80kV/cm电场下的应变大小为0.353%,应变滞后性为38%。
实施例3
该方案与实施例1相比,第一步的x=1.0mol.%,所制备的(Bi0.5Na0.5)0.75Sr0.25Ti0.99O3-0.005Nb2O5无铅铁电陶瓷的在80kV/cm电场下的应变大小为0.36%,应变滞后性为38.3%。
实施例4
该方案与实施例1相比,第一步的x=10mol‰,并且第八步的烧结温度为1150℃,所制备的(Bi0.5Na0.5)0.75Sr0.25Ti0.99O3-0.005Nb2O5无铅铁电陶瓷的在80kV/cm电场下的应变大小为0.357%,应变滞后性为38%。
图1给出了在本实施例的条件下(Bi0.5Na0.5)0.75Sr0.25Ti0.99O3-0.005Nb2O5无铅铁电陶瓷的表面形貌图。由图1可见,所制备的陶瓷样品烧结良好,表面比较致密,晶粒尺寸均匀。图2给出了在本实施例的条件下(Bi0.5Na0.5)0.75Sr0.25Ti0.99O3-0.005Nb2O5陶瓷在电场为80kV/cm时的电滞回线和蝶形曲线图,其应变滞后性为H=ΔS/Smax=38%。由图2可见,样品呈现出瘦腰型电滞回线,且正矫顽场
Figure BDA0002531400270000051
与负矫顽场
Figure BDA0002531400270000052
并不相等,负矫顽场大于正矫顽场,这种不对称现象说明陶瓷内有一个内建电场出现。该内建电场是由于掺杂Nb5+后,为了保持电价平衡,迫使B位Ti4+变价为Ti3+,从而在陶瓷晶格内形成Ti3+-Nb5+离子对,离子对在陶瓷内形成偶极矩,造成内建电场的出现。相应地,所测得的蝶形曲线的零点位置也向负电场方向发生偏移。Ti3+-Nb5+离子对在陶瓷内部形成电偶极矩,当施加电场时,离子对所形成的电偶极矩无法跟上电场的变化而保留原来的取向。因此,当撤掉电场后,该电偶极矩会提供一个使畴翻转可逆的恢复力,从而制备出应变大滞后小的铁电陶瓷。

Claims (10)

1.一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷,其特征在于该陶瓷的化学组成通式为(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5;它是由Na2CO3、SrCO3、TiO2、Bi2O3及Nb2O5按化学计量比(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5制成,其中,所述的x=0.5~1.0mol.%。
2.根据权利要求1所述的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷,其特征在于所述的x=0.8~1.0mol.%。
3.根据权利要求1所述的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷,其特征在于所述的x=0.6~0.9mol.%。
4.制备权利要求1所述的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷的方法,其特征在于它是按照以下步骤制备的:
一、配料:
将原料Na2CO3、SrCO3、TiO2、Bi2O3及Nb2O5,按照化学计量比(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5进行配料;其中,x=0.5~1.0mol.%;
二、球磨:
将步骤一称量的原料放入球磨罐中进行球磨,球磨介质为无水乙醇和氧化锆磨球,球磨条件为:氧化锆球:料比为(3~5):1,转速为300~350r/min,球磨时间为6~12h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h,得到固溶体粉料;
三、预烧:
将步骤二烘干后的粉料放入刚玉陶瓷坩埚中,在850~950℃进行预烧2~5h;
四、二次球磨:
将步骤三预烧后粉体再放入球磨罐中,按步骤二进行二次湿磨;
五、造粒
将步骤四烘干后粉体研磨、过筛,然后添加5wt.%聚乙烯醇充分研磨进行造粒;
六、成型
将步骤五造粒后的粉体放入模具内进行预压成片,在8~10MPa的压力下压制成圆片;
七、排胶
将成型后的圆片放入烧结炉中,以1℃/min的升温速率升温至500℃,保温1h进行排胶;
八、烧结
将排胶后的圆片放入刚玉陶瓷坩埚中,以10℃/min的升温速率升温至1140~1160℃,保温2~5h,随炉冷至室温,得到(Bi0.5Na0.5)0.75Sr0.25Ti(1-x)O3-0.5xNb2O5无铅铁电陶瓷。
5.根据权利要求4所述的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷的制备方法,其特征在于所述的x=0.8~1.0mol.%。
6.根据权利要求4所述的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷的制备方法,其特征在于所述的x=0.6~0.9mol.%。
7.根据权利要求4所述的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷的制备方法,其特征在于步骤二中的球磨条件为:氧化锆球:料比为(3~4):1,转速为320~350r/min,球磨时间为8~12h。
8.根据权利要求4所述的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷的制备方法,其特征在于步骤二中的球磨条件为:氧化锆球:料比为5:1,转速为320~340r/min,球磨时间为10~12h。
9.根据权利要求4所述的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷的制备方法,其特征在于步骤三预烧条件:在880~920℃进行预烧2~4h。
10.根据权利要求4所述的一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷的制备方法,其特征在于步骤八的烧结条件:以10℃/min的升温速率升温至1150~1160℃,保温2~3h。
CN202010519389.6A 2020-06-09 2020-06-09 一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法 Pending CN111620690A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010519389.6A CN111620690A (zh) 2020-06-09 2020-06-09 一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010519389.6A CN111620690A (zh) 2020-06-09 2020-06-09 一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN111620690A true CN111620690A (zh) 2020-09-04

Family

ID=72269097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010519389.6A Pending CN111620690A (zh) 2020-06-09 2020-06-09 一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111620690A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698195A (zh) * 2021-08-17 2021-11-26 同济大学 一种由a位离子空位诱导的钛酸铋钠基自收张制冷钙钛矿陶瓷材料及制备方法
CN116023132A (zh) * 2022-12-30 2023-04-28 哈尔滨商业大学 利用b-o位缺陷诱导高应变性能的钛酸铋钠基陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815939A (zh) * 2012-07-16 2012-12-12 同济大学 一种无铅压电织构陶瓷材料及其制备方法
CN104446452A (zh) * 2014-12-12 2015-03-25 湖北大学 一种无铅中温介电稳定型电子陶瓷材料及其制备方法
CN104987064A (zh) * 2015-08-13 2015-10-21 内蒙古科技大学 一种负电卡效应的钛酸铋钠基无铅陶瓷及其制备方法
CN110511019A (zh) * 2019-10-08 2019-11-29 哈尔滨商业大学 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815939A (zh) * 2012-07-16 2012-12-12 同济大学 一种无铅压电织构陶瓷材料及其制备方法
CN104446452A (zh) * 2014-12-12 2015-03-25 湖北大学 一种无铅中温介电稳定型电子陶瓷材料及其制备方法
CN104987064A (zh) * 2015-08-13 2015-10-21 内蒙古科技大学 一种负电卡效应的钛酸铋钠基无铅陶瓷及其制备方法
CN110511019A (zh) * 2019-10-08 2019-11-29 哈尔滨商业大学 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHSIN SALEEM ET AL.: "Electromechanical properties of Nb doped 0.76Bi0.5Na0.5TiO3–0.24SrTiO3 ceramic", 《RSC ADV.》 *
XING‑YE TONG ET AL.: "Enhanced energy storage properties in Nb-modified Bi0.5Na0.5TiO3-SrTiO3 lead-free electroceramics", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698195A (zh) * 2021-08-17 2021-11-26 同济大学 一种由a位离子空位诱导的钛酸铋钠基自收张制冷钙钛矿陶瓷材料及制备方法
CN113698195B (zh) * 2021-08-17 2022-11-15 同济大学 一种由a位离子空位诱导的钛酸铋钠基自收张制冷钙钛矿陶瓷材料及制备方法
CN116023132A (zh) * 2022-12-30 2023-04-28 哈尔滨商业大学 利用b-o位缺陷诱导高应变性能的钛酸铋钠基陶瓷及其制备方法
CN116023132B (zh) * 2022-12-30 2023-12-01 哈尔滨商业大学 利用b-o位缺陷诱导高应变性能的钛酸铋钠基陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN111620690A (zh) 一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法
CN111362695A (zh) 一种锆钛酸铅压电陶瓷及其制备方法
CN111072385A (zh) 一种锆酸钙和钽掺杂的铌酸钾钠基压电陶瓷、其制备方法及应用
CN108147813A (zh) 一种高压电系数钛酸铋钠基无铅压电陶瓷及其制备方法
CN111423231A (zh) 一种三元系弛豫铁电薄膜材料及其制备方法和应用
CN114409400A (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN110981468A (zh) 一种钛酸铋钠基压电陶瓷的制备方法
CN111269009A (zh) 一种锆锰酸铋-钪酸铋-钛酸铅系压电陶瓷材料及其制备方法
CN114436654B (zh) 具有高相变温度、优异抗疲劳性和高机电性能的弛豫铁电铅基陶瓷材料及制备方法和应用
CN110511019A (zh) 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法
CN102775142B (zh) 一种无铅电致伸缩陶瓷材料及其制备方法
CN106977196B (zh) 一种非化学计量比钛酸铋钠基陶瓷及其制备方法和应用
KR101333793B1 (ko) 비스무스계 압전 세라믹스 및 그 제조방법
CN115385689A (zh) 一种铌镁酸铅-锆钛酸铅基压电陶瓷材料及其制备方法
CN107098701B (zh) 铌酸钾钠锂-锆酸铋钠钾-钪酸铋三元系无铅压电陶瓷
CN107162585A (zh) 一种钛酸铋钠基电致伸缩陶瓷及其制备方法和应用
KR101635988B1 (ko) 복합 비스무스계 무연 압전 세라믹스 및 이를 포함하는 액츄에이터
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN114292102B (zh) 一种铁酸铋-钛酸钡基无铅压电陶瓷材料及其制备方法
CN110981480A (zh) 一种高Tr-t和Tc的铅基<001>C织构压电陶瓷材料及其制备方法
KR102628407B1 (ko) 배향 무연 압전 세라믹 조성물 및 이의 제조방법
CN105218092B (zh) 一种同时具备大位移及低滞后的锆钛酸铅基压电陶瓷材料及其制备方法
CN106064943B (zh) 铋基无铅压电陶瓷及使用该材料的压电执行器
CN105645957B (zh) 一种高机电耦合性能锆钛酸铅细晶压电陶瓷及其制备方法
CN113233891A (zh) 一种无铅压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200904

RJ01 Rejection of invention patent application after publication