CN111595256A - 耐高温光纤应变传感器 - Google Patents

耐高温光纤应变传感器 Download PDF

Info

Publication number
CN111595256A
CN111595256A CN202010668463.0A CN202010668463A CN111595256A CN 111595256 A CN111595256 A CN 111595256A CN 202010668463 A CN202010668463 A CN 202010668463A CN 111595256 A CN111595256 A CN 111595256A
Authority
CN
China
Prior art keywords
optical fiber
temperature
strain sensor
bragg grating
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010668463.0A
Other languages
English (en)
Inventor
杨杭洲
刘继
辛国国
田琴
何宇栋
韩钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern University
Original Assignee
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern University filed Critical Northwestern University
Priority to CN202010668463.0A priority Critical patent/CN111595256A/zh
Publication of CN111595256A publication Critical patent/CN111595256A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种耐高温光纤应变传感器,空芯光纤的左端与第一单模光纤熔接、右端与位于毛细玻璃管内的第二单模光纤用高温陶瓷胶粘接,高温陶瓷胶凝固后形成一层高温陶瓷胶粘层,第一单模光纤与空芯光纤的拼接面、空芯光纤、空芯光纤与第二单模光纤的拼接面构成法布里‑珀罗干涉腔,在第二单模光纤上刻写有热重生布拉格光栅。本发明有效地解决了温度和应变双参量交叉敏感的问题。与传统的光纤应变传感器相比,提高了应变传感器的应变灵敏度,应变检测范围为0~700με,温度检测范围为室温~1000℃,扩大了应变检测范围和温度检测范围,本发明具有结构简单、体积小、灵敏度高等优点,可作为应变传感器。

Description

耐高温光纤应变传感器
技术领域
本发明属于传感器技术领域,具体涉及到光纤应变传感器。
背景技术
高超声速飞行器飞行中的气动加热是一个瞬态的热传导过程,温度变化快,气动加热越严重,飞行器蒙皮内的温度梯度越大,引起蒙皮的热变形和热应力的变化,热应力超过蒙皮材料的极限值时,蒙皮或部件会发生塑性变形甚至破坏,造成飞行器发生飞行事故。在进行飞行器结构温度场分析时,需要对飞行器蒙皮热应力进行分析,为优化和设计飞行器蒙皮材料提供可靠的参考数据。通过传感器***实时监测飞行器飞行过程中蒙皮关键部位的温度应变状况,判断测试位置的温度与应力是否处于安全状态,是保障飞行器安全运行和延长使用寿命的关键技术。
国外传感器对接触式电类高温应变传感器已经开展了大量的攻关研究实验,目前已有产品上市,包括:日本KYOWA研发的全气密结构的焊接型应变片温度可达950℃;美国威势精密集团研发的高温丝式应变片测试温度高达1038℃。相对于电学传感器,光纤高温应变传感器具有质量轻、体积小,可在结构表面安装或内嵌到结构体内部,对被测结构的影响比较小,对测量结果的数据更加真实,抗电磁干扰强,温度应变响应速度快,温度和应变测量线性度好,使用范围广等优点。
现有的双结构型光纤温度应变传感器已经发展了较多的结构形式,比如法布里-泊罗、马赫-增德尔等干涉型结构级联FBG、长周期光纤光栅(LPFG)、或干涉型传感结构。使用上述级联方案,能够满足高速飞行状态器的光纤超高温应变传感器。
上述的光纤温度应变传感器主要存在应变检测范围和温度检测范围小,应变检测范围为0~200με,温度检测范围为室温~80℃,不能在应变检测范围和温度检测范围较大的环境中使用。
发明内容
本发明所要解决的技术问题在于克服上述应变传感器对温度与应变交叉敏感、难以区分测量的缺点,提供一种结构简单、体积小、灵敏度高的耐高温光纤应变传感器。
解决上述技术问题所采用的技术方案是:空芯光纤的左端与第一单模光纤熔接、右端与位于毛细玻璃管内的第二单模光纤熔接,第二单模光纤与毛细玻璃管用高温陶瓷胶粘接,高温陶瓷胶凝固后形成一层高温陶瓷胶粘层,第一单模光纤与空芯光纤的拼接面、空芯光纤、空芯光纤与第二单模光纤的拼接面构成法布里-珀罗干涉腔,在第二单模光纤上刻写有热重生布拉格光栅。
本发明的高温陶瓷胶粘层位于空心光纤与热重生布拉格光栅之间。
本发明的热重生布拉格光栅位于毛细玻璃管内,热重生布拉格光栅的左端与毛细玻璃管内左端之间的距离为5~15mm。
本发明的毛细玻璃管的内径为140~500μm。
本发明的空心光纤的内径为8~70μm。
本发明的空心光纤的内径最佳为19μm。
本发明的热重生布拉格光栅的栅区长度为10mm,中心波长为1300~1350nm或1500~1600nm。
本发明采用在空芯光纤的一端设置有第一单模光纤、另一端设置有第二单模光纤构成法布里-珀罗干涉腔,法布里-珀罗干涉腔的光谱谱线移动同时受温度和应变的影响,为交叉敏感。而毛细玻璃管中的布拉格光栅的光谱谱线不受应力影响,只受温度参量影响,使用布拉格光栅的中心波长表征环境温度。当环境温度确定后,使用该温度对法布里-珀罗干涉腔的光谱谱线进行修正,得到传感器所受应变与光谱谱线漂移量之间的关系。
在第二单模光纤上设置热重生布拉格光栅位于毛细玻璃管内,减少了传感器的零部件,使得传感器的结构简单,有利于传感器小型化。有效地解决了应变传感器对温度与应变交叉敏感的技术问题,提高了传感器的应变灵敏度,应变检测范围为0~700με,温度检测范围为室温~1000℃,扩大了应变检测范围和温度检测范围,本发明具有结构简单、体积小、灵敏度高等优点,可作为应变传感器。
附图说明
图1是本发明实施例1的结构示意图。
图2是实施例1的耐高温光纤应变传感器在室温下的反射光谱曲线。
图3是实施例1耐高温光纤应变传感器的布拉格光栅和法布里-珀罗干涉腔在无应力条件下的温度响应曲线。
图4是本发明实施例1耐高温光纤应变传感器在300℃、600℃、900℃时的应变响应曲线。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明不限于这些实施例。
实施例1
在图1中,本实施例的耐高温光纤应变传感器由第一单模光纤1、空心光纤2、高温陶瓷胶粘层3、第二单模光纤4、热重生光纤光栅5、毛细玻璃管6联接构成。
本实施例的空心光纤2的内径为19μm,在空心光纤2的左端轴向采用激光熔接有第一单模光纤1,也可采用电弧熔接,空心光纤2的右端轴向采用激光熔接有第二单模光纤4,第一单模光纤1和第二单模光纤4为市场上销售的商品,第一单模光纤1和第二单模光纤4型号为SMF-28,纤芯直径为8.2μm,包层直径为125μm,第一单模光纤1与空芯光纤2的拼接面、空芯光纤2、空芯光纤2与第二单模光纤4的拼接面共同构成法布里-珀罗干涉腔,这种结构的法布里-珀罗干涉腔,可同时感知温度和应变的变化。在第二单模光纤4上刻写有热重生布拉格光栅5,热重生布拉格光栅5的栅区长度为10mm,中心波长为1532nm。当环境温度确定后,使用该温度对上述法布里-珀罗干涉腔的光谱谱线进行修正,从而得到应变传感器所受应变与光谱谱线漂移量之间的关系。法布里-珀罗干涉腔第i个峰值或谷值的波长和热重生光纤光栅5的中心波长与温度、应变之间的关系如下式所示:
Figure BDA0002581328820000031
式中λi和λ0为法布里-珀罗干涉腔第i个峰值或谷值的波长和热重生光纤光栅5的中心波长的初始值,p为应变灵敏度,k1和k2为温度灵敏度。即可得到温度变化量ΔT和应变变化量Δε,如下式所示:
Figure BDA0002581328820000032
第二单模光纤4的右侧采用耐高温胶同轴粘结在毛细玻璃管6内,本实施例的耐高温胶为高温陶瓷胶,高温陶瓷胶凝固后形成一层高温陶瓷胶粘层3,高温陶瓷胶粘层3位于空心光纤2与热重生布拉格光栅5之间,高温陶瓷胶粘层3的轴向长度为4mm,毛细玻璃管6的内径为318μm。热重生布拉格光栅5位于毛细玻璃管6内,热重生布拉格光栅5的左端与毛细玻璃管6内左端之间的距离为10mm。这种结构的耐高温光纤应变传感器,减少了应变传感器的零部件,使得应变传感器的结构简单,有利于应变传感器小型化。有效地解决了应变传感器对温度与应变交叉敏感的技术问题,提高了传感器的应变灵敏度。
实施例2
本实施例的空心光纤2的内径为8μm,在空心光纤2的左端轴向采用激光熔接有第一单模光纤1,空心光纤2的右端轴向采用激光熔接有第二单模光纤4,第一单模光纤1和第二单模光纤4的型号与实施例1相同,第一单模光纤1与空芯光纤2的拼接面、空芯光纤2、空芯光纤2与第二单模光纤4的拼接面共同构成法布里-珀罗干涉腔。在第二单模光纤4上刻写有热重生布拉格光栅5,热重生布拉格光栅5的栅区长度为10mm,中心波长为1500nm。
第二单模光纤4的右侧采用耐高温胶同轴粘接在毛细玻璃管6内,本实施例的耐高温胶为高温陶瓷胶,高温陶瓷胶凝固后形成一层高温陶瓷胶粘层3,高温陶瓷胶粘层3位于空心光纤2与热重生布拉格光栅5之间,高温陶瓷胶粘层3的轴向长度为4mm,毛细玻璃管6的内径为140μm。热重生布拉格光栅5位于毛细玻璃管6内,热重生布拉格光栅5的左端与毛细玻璃管6内左端之间的距离为5mm。
其工作原理与实施例1相同。
实施例3
本实施例的空心光纤2的内径为70μm,在空心光纤2的左端轴向采用激光熔接有第一单模光纤1,空心光纤2的右端轴向采用激光熔接有第二单模光纤4,第一单模光纤1和第二单模光纤4的型号与实施例1相同,第一单模光纤1与空芯光纤2的拼接面、空芯光纤2、空芯光纤2与第二单模光纤4的拼接面共同构成法布里-珀罗干涉腔。在第二单模光纤4上刻写有热重生布拉格光栅5,热重生布拉格光栅5的栅区长度为10mm,中心波长为1600nm,。
第二单模光纤4的右侧采用耐高温胶同轴粘结在毛细玻璃管6内,本实施例的耐高温胶为高温陶瓷胶,高温陶瓷胶凝固后形成一层高温陶瓷胶粘层3,高温陶瓷胶粘层3位于空心光纤2与热重生布拉格光栅5之间,高温陶瓷胶粘层3的轴向长度为4mm,毛细玻璃管6的内径为500μm。热重生布拉格光栅5位于毛细玻璃管6内,热重生布拉格光栅5的左端与毛细玻璃管6内左端之间的距离为15mm。
其工作原理与实施例1相同。
实施例4
在以上实施例1~3中,空芯光纤2的与第一单模光纤1和第二单模光纤4的联接关系与实施例1相同,第二单模光纤4与毛细玻璃管6内的联接关系与实施例1相同。第一单模光纤1和第二单模光纤4的型号与实施例1相同,空芯光纤2和毛细玻璃管6的几何尺寸与相应的实施例相同。在第二单模光纤4上刻写有热重生布拉格光栅5,热重生布拉格光栅5的栅区长度为10mm,中心波长为1332nm。热重生布拉格光栅5的左端与毛细玻璃管6内左端之间的距离与相应的实施例相同。
其工作原理与实施例1相同。
实施例5
在以上实施例1~3中,空芯光纤2的与第一单模光纤1和第二单模光纤4的联接关系与实施例1相同,第二单模光纤4与毛细玻璃管6内的联接关系与实施例1相同。第一单模光纤1和第二单模光纤4的型号与实施例1相同,空芯光纤2和毛细玻璃管6的几何尺寸与相应的实施例相同。在第二单模光纤4上刻写有热重生布拉格光栅5,热重生布拉格光栅5的栅区长度为10mm,中心波长为1300nm。热重生布拉格光栅5的左端与毛细玻璃管6内左端之间的距离与相应的实施例相同。
其工作原理与实施例1相同。
实施例6
在以上实施例1~3中,空芯光纤2的与第一单模光纤1和第二单模光纤4的联接关系与实施例1相同,第二单模光纤4与毛细玻璃管6内的联接关系与实施例1相同。第一单模光纤1和第二单模光纤4的型号与实施例1相同,空芯光纤2和毛细玻璃管6的几何尺寸与相应的实施例相同。在第二单模光纤4上刻写有热重生布拉格光栅5,热重生布拉格光栅5的栅区长度为10mm,中心波长为1350nm。热重生布拉格光栅5的左端与毛细玻璃管6内左端之间的距离与相应的实施例相同。
其工作原理与实施例1相同。
为了验证本发明的有益效果,发明人采用本发明实施例1所制备的耐高温光纤应变传感器(实验时简称应变传感器)进行了实验,各种实验情况如下:
1、建立试验***
实验测试***有光学解调仪、微位移施加平台、光纤夹具和高温管式炉组成。
2、耐高温光纤应变传感器对温度敏感实验
实验时将应变传感器置于高温管式炉加热区正中位置,应变传感器两端连接光纤,左端穿出加热区使用光纤夹具固定,右端穿出加热区并固定于微位移施加平台上。安装时保证应变传感器及连接光纤不接触管式炉。实验开始前,通过调整微位移施加平台使对应变传感器施加0.1N的预应力。实验中,通过调整微位移施加平台对应变传感器施加0~700με的轴向应变。由光纤解调仪自身光源发出的宽带光在两个拼接面(第一单模光纤1与空芯光纤2的拼接面和空芯光纤2与第二单模光纤4的拼接面)的反射光相遇后发生干涉,形成干涉光谱;由光纤解调仪自身光源发出的宽带光在热重生光纤光栅5发生反射,在光谱上形成反射峰。干涉光谱和反射峰叠加构成实验光谱进入光纤解调仪。在温度恒定状态下,每100με记录一次波长的变化。
实验结果如图2、图3所示。
图2为耐高温光纤应变传感器经由光纤解调仪解调后输出的反射波形曲线。取热重生布拉格光栅5峰值点和法布里-珀罗干涉腔靠近光栅峰值的谷值点作为初始标定位置。两初始标定位置的随温度增加而线性变化,如图3所示,本实施例中热重生布拉格光栅5和法布里-珀罗干涉腔的温度灵敏度分别为13.72pm/℃和0.65pm/℃,波长和温度呈线性关系,分别为:
法布里-珀罗干涉腔:λFP(i)=1538.93932+0.65T
热重生布拉格光栅5:λFBG=1531.76345+15.03T
式中λFP(i)表示法布里-珀罗干涉腔第i个谷值的波长,λFBG表示热重生布拉格光栅5的波长,T表示传感器所感受到的温度。
3、耐高温光纤应变传感器的应变实验
实验测试***以及实验方法与实验2相同。
实验结果如图4所示。
图4为法布里-珀罗干涉腔在300℃、600℃、900℃时的应变响应曲线图,而热重生布拉格光栅5处于毛细玻璃管中,不受应力影响,峰值波长不改变。通过热重生布拉格光栅5的峰值波长可以确定传感器所处的环境温度,由法布里-珀罗干涉腔的温度响应曲线可以确定初始标定谷值的波长变化量。法布里-珀罗干涉腔的应变响应曲线即可确定传感器所受应变。计算关系式如下:
300℃时:
Figure BDA0002581328820000071
600℃时:
Figure BDA0002581328820000072
900℃时:
Figure BDA0002581328820000073
式中λFP(i)表示法布里-珀罗干涉腔第i个谷值的波长,λFBG表示热重生布拉格光栅5的波长,T代表传感器感受到的环境温度,x代表传感器所受应变。

Claims (9)

1.一种耐高温光纤应变传感器,其特征在于:空芯光纤(2)的左端与第一单模光纤(1)熔接、右端与位于毛细玻璃管(6)内的第二单模光纤(4)熔接,第二单模光纤(4)与毛细玻璃管(6)用高温陶瓷胶粘接,高温陶瓷胶凝固后形成一层高温陶瓷胶粘层(3),第一单模光纤(1)与空芯光纤(2)的拼接面、空芯光纤(2)、空芯光纤(2)与第二单模光纤(4)的拼接面构成法布里-珀罗干涉腔,在第二单模光纤(4)上刻写有热重生布拉格光栅(5)。
2.根据权利要求1所述的耐高温光纤应变传感器,其特征在于:所述的高温陶瓷胶粘层(3)位于空心光纤(2)与热重生布拉格光栅(5)之间。
3.根据权利要求1或2所述的耐高温光纤应变传感器,其特征在于:所述的热重生布拉格光栅(5)位于毛细玻璃管(6)内,热重生布拉格光栅(5)的左端与毛细玻璃管(6)内左端之间的距离为5~15mm。
4.根据权利要求1或2所述的耐高温光纤应变传感器,其特征在于:所述的毛细玻璃管(6)的内径为140~500μm。
5.根据权利要求3所述的耐高温光纤应变传感器,其特征在于:所述的毛细玻璃管(6)的内径为140~500μm。
6.根据权利要求1所述的耐高温光纤应变传感器,其特征在于:所述的空心光纤(2)的内径为8~70μm。
7.根据权利要求1或6述的耐高温光纤应变传感器,其特征在于:所述的空心光纤(2)的内径为19μm。
8.根据权利要求1或2所述的耐高温光纤应变传感器,其特征在于:所述的热重生布拉格光栅(5)的栅区长度为10mm,中心波长为1300~1350nm或1500~1600nm。
9.根据权利要求3所述的耐高温光纤应变传感器,其特征在于:所述的热重生布拉格光栅(5)的栅区长度为10mm,中心波长为1300~1350nm或1500~1600nm。
CN202010668463.0A 2020-07-13 2020-07-13 耐高温光纤应变传感器 Pending CN111595256A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010668463.0A CN111595256A (zh) 2020-07-13 2020-07-13 耐高温光纤应变传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010668463.0A CN111595256A (zh) 2020-07-13 2020-07-13 耐高温光纤应变传感器

Publications (1)

Publication Number Publication Date
CN111595256A true CN111595256A (zh) 2020-08-28

Family

ID=72189413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010668463.0A Pending CN111595256A (zh) 2020-07-13 2020-07-13 耐高温光纤应变传感器

Country Status (1)

Country Link
CN (1) CN111595256A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112629426A (zh) * 2020-11-20 2021-04-09 西北工业大学 光纤应变传感装置
CN113155163A (zh) * 2020-10-13 2021-07-23 西北大学 基于双毛细管封装光纤温度压力传感器
CN114018432A (zh) * 2021-09-29 2022-02-08 南京大学 一种全光纤端面集成最小化温度液压传感器及其构建方法
CN114777836A (zh) * 2022-03-10 2022-07-22 吉林大学 一种基于钇铝石榴石晶体衍生光纤的光纤高温应力传感器及其制备方法
CN115325954A (zh) * 2022-08-09 2022-11-11 重庆大学 一种用于高温应变测量的光纤光栅传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579287A (zh) * 2019-09-16 2019-12-17 西北大学 一种基于单毛细玻璃管封装光纤传感器及测试方法
CN110726374A (zh) * 2019-09-17 2020-01-24 天津大学 基于单模光纤的光纤法珀应变传感器及制作方法、测量方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579287A (zh) * 2019-09-16 2019-12-17 西北大学 一种基于单毛细玻璃管封装光纤传感器及测试方法
CN110726374A (zh) * 2019-09-17 2020-01-24 天津大学 基于单模光纤的光纤法珀应变传感器及制作方法、测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卢凯: "基于热重生光栅的退火工艺及温度-应变双参量光纤传感器研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155163A (zh) * 2020-10-13 2021-07-23 西北大学 基于双毛细管封装光纤温度压力传感器
CN112629426A (zh) * 2020-11-20 2021-04-09 西北工业大学 光纤应变传感装置
CN114018432A (zh) * 2021-09-29 2022-02-08 南京大学 一种全光纤端面集成最小化温度液压传感器及其构建方法
CN114777836A (zh) * 2022-03-10 2022-07-22 吉林大学 一种基于钇铝石榴石晶体衍生光纤的光纤高温应力传感器及其制备方法
CN114777836B (zh) * 2022-03-10 2023-12-05 吉林大学 一种基于钇铝石榴石晶体衍生光纤的光纤高温应力传感器及其制备方法
CN115325954A (zh) * 2022-08-09 2022-11-11 重庆大学 一种用于高温应变测量的光纤光栅传感器

Similar Documents

Publication Publication Date Title
CN111595256A (zh) 耐高温光纤应变传感器
CN110579287B (zh) 一种基于单毛细玻璃管封装光纤传感器及测试方法
CN110632033B (zh) 基于fbg解调仪的f-p干涉型多点测量氢气传感器的使用方法
CN111609809A (zh) 基于应变增敏结构的光纤高温应变测量传感器
CN100340839C (zh) 光纤应变测量仪及其测量方法
CN110823121A (zh) 一种f-p腔型高温大应变光纤传感器
CN105115438A (zh) 一种光纤传感***温度补偿方法
CN110579288B (zh) 一种基于双毛细玻璃管封装光纤传感器
CN113155163A (zh) 基于双毛细管封装光纤温度压力传感器
Nan et al. Elimination of thermal strain interference in mechanical strain measurement at high temperature using an EFPI-RFBG hybrid sensor with unlimited cavity length
CN213902404U (zh) 双套管封装的光纤高温压力传感器
CN110044288A (zh) 基于fbg的耐高温应变传感器
CN212721825U (zh) 一种基于温度敏感材料调制fp腔的光纤温度传感器
CN109655176A (zh) 一种基于空腔填充型微结构光纤干涉仪的高精度温度探头
CN112304468A (zh) 光纤高温应变片
CN112378429A (zh) 基于毛细管封装光纤光栅温度压力传感器
Latini et al. Fiber optic sensors system for high-temperature monitoring of aerospace structures
CN210741396U (zh) 一种f-p腔型高温大应变光纤传感器
CN109374026A (zh) 一种免熔接的简易高质量开腔fp光纤光栅传感器的制备方法
CN115077581A (zh) 一种同时测量应力、折射率光纤传感器及其控制方法、制备方法
CN113884144A (zh) 一种f-p干涉型温度应变双参量传感器及其制备方法
CN212567300U (zh) 嵌套式高温增敏应变传感器
CN207816481U (zh) 基于fbg的温度传感器
CN112762983A (zh) 一种飞秒激光直写lfpg结合光纤mzi结构的双参数测试方法
Cotillard et al. Strain monitoring at high temperature by femtosecond point-by-point fiber Bragg Grating across a TIG weld bead

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200828

RJ01 Rejection of invention patent application after publication