CN111564326A - 一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法 - Google Patents

一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法 Download PDF

Info

Publication number
CN111564326A
CN111564326A CN202010591607.7A CN202010591607A CN111564326A CN 111564326 A CN111564326 A CN 111564326A CN 202010591607 A CN202010591607 A CN 202010591607A CN 111564326 A CN111564326 A CN 111564326A
Authority
CN
China
Prior art keywords
titanium dioxide
nanotube array
dioxide nanotube
electrode
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010591607.7A
Other languages
English (en)
Other versions
CN111564326B (zh
Inventor
王西新
印泽坤
赵建玲
李子庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN202010591607.7A priority Critical patent/CN111564326B/zh
Publication of CN111564326A publication Critical patent/CN111564326A/zh
Application granted granted Critical
Publication of CN111564326B publication Critical patent/CN111564326B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemically Coating (AREA)

Abstract

本发明为一种Cu2O‑Cu/二氧化钛纳米管阵列复合电极的制备方法。该方法先通过电沉积将金属铜沉积到二氧化钛纳米管阵列与钛基底的交界处,然后通过化学沉淀和水热还原将铜颗粒沉积到二氧化钛纳米管阵列中,铜颗粒的表面被氧化形成氧化亚铜。本发明克服了铜氧化物和二氧化钛纳米管阵列的导电性差、铜氧化物利用率低的问题,提高了复合电极的性能。

Description

一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法
技术领域:
本发明属于电化学领域,特别涉及一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法。
背景技术:
超级电容器是一种电能存储装置,它在新能源汽车、城市轨道交通、太阳能能源***、智能电网、航空航天和军用设备等方面具有重要应用。超级电容器的性能主要决定于它的电极,电极主要由集流体和活性物组成,提高电极的比表面积和导电率可以显著改善超级电容器的性能。
铜氧化物(CuO,Cu2O,Cu(OH)2)具有成本低、易制备、来源丰富等优点,可用作超级电容器的电极材料。例如,《Journal of Alloys and Compounds》(2015,633,P22-30)报道了一种氧化铜电极的制备方法,先通过静电纺丝和高温处理制备CuO纳米线粉体,然后将CuO纳米线粉体与泡沫镍压制在一起制得电极。《RSC Advances》(2016,6,P3815-3822)报道了一种氧化亚铜电极的制备方法,先通过水热法制备氧化亚铜粉体,然后将氧化亚铜粉体与泡沫镍压制在一起制得电极。《Journal of Materials Science:Materials inElectronics》(2018,29,P2660-2667)报道了一种氢氧化铜电极的制备方法,将泡沫铜在KOH溶液中阳极氧化,制得氢氧化铜纳米棒电极。但是,铜氧化物存在团聚、导电性差、利用率低等问题,这严重阻碍了其实际应用。
采用阳极氧化法制备的二氧化钛纳米管阵列具有较大的比表面积和高度有序的结构,并且与金属钛基底紧密结合,将其用于超级电容器电极,金属钛基底可以直接用作集流体,既可以简化电极的制备工艺,又能够提高活性材料的利用率,因此,关于二氧化钛纳米管阵列复合电极的制备受到关注。例如,《Energy》(2015,87,P578-585)报道了一种聚苯胺-二氧化钛纳米管阵列复合电极的制备方法,先通过阳极氧化法制备出二氧化钛纳米管阵列,将阵列高温煅烧,然后通过循环伏安法将聚苯胺纳米线沉积在二氧化钛纳米管阵列上制得复合电极。《Nano Letters》(2010,10,P4099-4104)报道了一种氧化镍-二氧化钛纳米管阵列复合电极的制备方法,通过将Ni-Ti合金阳极氧化制备复合电极。《InternationalJournal of Hydrogen Energy》(2015,40,P14331-14337)报道了一种氧化锰-二氧化钛纳米管阵列复合电极的制备方法,先通过阳极氧化法制备出二氧化钛纳米管阵列,然后通过在高锰酸钾溶液中进行恒流电沉积,将氧化锰沉积到二氧化钛纳米管阵列中制得复合电极。
由于二氧化钛是半导体,其电导率为10-5~10-2S/cm,远低于金属(例如,铜的电导率为5.7×107S/m),因此,二氧化钛纳米管阵列自身、以及二氧化钛纳米管阵列与钛基底之间存在较大的电阻,导致二氧化钛纳米管阵列表面的活性物不能得到有效、充分的利用,使复合电极的性能受到限制。
发明内容:
本发明针对铜氧化物和二氧化钛纳米管阵列所存在的问题,提供一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法,该方法先通过电沉积、将金属铜沉积到二氧化钛纳米管阵列与钛基底的交界处,然后通过化学沉淀和水热还原将铜颗粒沉积到二氧化钛纳米管阵列中,铜颗粒的表面被氧化形成氧化亚铜。本发明通过这些措施克服了铜氧化物和二氧化钛纳米管阵列的导电性差、铜氧化物利用率低的问题,提高了复合电极的性能。
本发明的技术方案是:
一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法,包括以下步骤:
(1)将清洗后的Ti片为阳极、Pt片为阴极,***电解液中,在35~45℃、30~50V的条件下阳极氧化2~10h;反应结束后,将样片用去离子水洗涤,烘干,在400~500℃煅烧1~3h,得到二氧化钛纳米管阵列(标记为TNTA);
其中,电极液的组成为氟化铵、去离子水和乙二醇,质量比为氟化铵:去离子水:乙二醇=0.2~0.3:5~15:85~95;
(2)配制含有0.01~0.1M界面活性剂的0.1~0.5M硫酸铜溶液,以此溶液为电沉积液,以TNTA为阴极、铂片为阳极,在室温、电流密度为10~30mA/cm2条件下直流电沉积10~30s;得到样片A;
其中,所述的界面活性剂为乙醇胺;
(3)电沉积结束后,将样片A在含有0.01~0.1M界面活性剂的0.1~0.5M硫酸铜溶液中浸泡5~30min,冲洗后放入0.1~0.5M NaOH中浸泡5~30min;再在去离子水中浸泡5~30min;进行“硫酸铜溶液中浸泡-NaOH中浸泡-去离子水中浸泡”过程1~9次,得到样片B;
(4)在0.2~0.3M的NaOH溶液中加入还原剂,搅拌溶解后转入聚四氟乙烯内衬的水热反应釜中,把样片B浸入溶液中,在120~150℃水热反应3~8h;冷却、洗涤,90~110℃烘干1~3h,即得Cu2O-Cu/TNTA电极;
其中,每30ml的NaOH溶液中加入0.2~0.8g还原剂;所述的还原剂为葡萄糖。
本发明的有益效果是:
(1)本发明的突出特点是,先向二氧化钛纳米管阵列中直流电沉积铜,然后采用多次化学沉淀法向二氧化钛纳米管阵列中沉积氢氧化铜,最后通过水热还原制备样品。
二氧化钛纳米管阵列与钛基底之间存在较大的电阻,通过直流电沉积可以将金属铜沉积到二氧化钛纳米管阵列的底部,这既提高了二氧化钛纳米管阵列与钛基底之间的导电性能,又能提高它们之间的结合强度。由于直流电沉积的金属铜是连续生长,沉积的金属铜会向各个空间方向生长,直到将空间全部占据,因此,电沉积铜的量要适当,过多的电沉积铜会占据纳米管的管腔和孔隙,导致纳米管阵列的比表面积降低,这不利于电极的性能。
采用多次化学沉积氢氧化铜、然后水热还原工艺,是为了在二氧化钛纳米管阵列中均匀分散沉积铜颗粒,在烘干过程中,铜颗粒的表面被氧化形成氧化亚铜;由于铜颗粒具有较大的比表面积、以及氧化亚铜位于铜颗粒的表面,因此,氧化亚铜能够得到有效的利用,使所制备的电极表现出较高的电容值。另外,水热还原还可以提高氧化钛表面的羟基数量,降低电极与电解液(水溶液)之间的界面张力,这有利于电极性能的改善。
(2)本发明的显著特点是,硫酸铜溶液中加有界面活性剂乙醇胺。乙醇胺的氨基能够与铜离子络合,乙醇胺的羟基能够与氧化钛表面的羟基作用,从而降低硫酸铜溶液与氧化钛之间的界面张力,促进铜离子与氧化钛之间的结合,因此,硫酸铜溶液中加入乙醇胺有利于铜离子在TNTA中的均匀分散和沉积。
(3)本发明的显著特点是,水热还原采用葡萄糖作还原剂。葡萄糖不但便宜易得,无污染,而且它是多羟基还原剂,还原效果优于水合肼和甲醛等。
(4)本发明的显著特点是,制备二氧化钛纳米管阵列时的阳极氧化时间为2~10小时。随阳极氧化时间延长,二氧化钛纳米管阵列的厚度增加,其表面积增大。由于氧化钛导电率较低,二氧化钛纳米管阵列的厚度较大时,其表层并不能被利用。本发明方法提高了二氧化钛纳米管阵列自身、以及二氧化钛纳米管阵列与钛基底之间的电导率,使较厚二氧化钛纳米管阵列的表层也能得到有效、充分的利用,使电极的电容量进一步得到提高。
(5)本发明的显著特点是,所制备的Cu2O-Cu/二氧化钛纳米管阵列复合电极在KOH电解液中的电势窗口可达-1.0~+0.4V,面电容可达37.2mF/cm2
附图说明:
图1为本发明实施例1所制备Cu2O-Cu/二氧化钛纳米管阵列复合电极的XRD图谱。
图2为本发明实施例1所制备Cu2O-Cu/二氧化钛纳米管阵列复合电极的面电容~扫描速度曲线。
下面结合附图和实施例对本发明作进一步说明。
具体实施方式:
实施例1
(1)将Ti片用乙醇和蒸馏水超声清洗,以除去Ti片表面的油污。用0.25g氟化铵、10g去离子水和90g乙二醇配制电解液,以Ti片为阳极、Pt片为阴极,在40℃、40V的条件下阳极氧化6h;反应结束后,将样片用去离子水洗涤,烘干,在450℃煅烧2h,得到二氧化钛纳米管阵列(标记为TNTA)。
(2)配制含有0.05M乙醇胺的0.25M硫酸铜溶液,以此溶液为电沉积液,以TNTA为阴极、铂片为阳极,在室温、电流密度为20mA/cm2条件下直流电沉积20s。
(3)电沉积实验结束后,将样片在步骤(2)的硫酸铜溶液中浸泡10min,然后用去离子水洗一下样片,放入50ml、0.25M NaOH中浸泡10min;最后,在50ml去离子水中浸泡5min。重复以上化学沉淀过程4次。
(4)在30ml、0.25M的NaOH溶液中加入0.5g葡萄糖,搅拌溶解;将溶液转入50ml聚四氟乙烯内衬的水热反应釜中,把上步得到的样片浸入溶液中,在140℃水热反应5h;冷却、洗涤,100℃烘干2h,即得Cu2O-Cu/TNTA电极。
为了研究本发明方法的有效性,通过调整工艺分别制备对比电极A和对比电极B,它们的制备方法如下:
对比电极A:取消步骤(2)的电沉积工艺,其它条件同实施例1制备电极。
对比电极B:取消步骤(3)的化学沉积工艺,其它条件同实施例1制备电极。
所制备Cu2O-Cu/TNTA电极的XRD图谱如图1所示,从图1可以看出,电极中含有氧化亚铜、二氧化钛、金属铜和钛。
复合电极的电化学性能测试在三电极体系中进行,其中复合电极为工作电极,铂片为对电极,饱和甘汞电极为参比电极,用电化学工作站(CHI660e,Chenhua,上海辰华)进行循环伏安测试,测试电解液为1M的KOH水溶液。测试结果表明,复合电极的电势窗口可达-1.0~+0.4V;样品Cu2O-Cu/TNTA的电容值明显高于对比电极A、对比电极B和TNTA的电容值之和(图2),当扫速为10mV/s时,Cu2O-Cu/TNTA、对比电极A、对比电极B和TNTA的面电容分别为37.2、15.9、6.4和2.7mF/cm2。图2结果说明,在Cu2O-Cu/TNTA中,电沉积铜和化学沉积铜之间存在显著的协同效应,使电极的性能得到大幅度提高。
实施例2
(1)阳极氧化工艺步骤同实施例1(1),阳极氧化10小时,制备TNTA。
(2)配制含有0.1M乙醇胺的0.5M硫酸铜溶液,电沉积工艺步骤同实施例1(2),在30mA/cm2条件下直流电沉积30s。
(3)化学沉积工艺步骤同实施例1(3),共沉积2次。
(4)葡萄糖用量为0.8g,水热还原工艺步骤同实施例1(4),可制得Cu2O-Cu/TNTA电极。
实施例3
(1)阳极氧化工艺步骤同实施例1(1),阳极氧化2小时,制备TNTA。
(2)配制含有0.01M乙醇胺的0.1M硫酸铜溶液,电沉积工艺步骤同实施例1(2),在10mA/cm2条件下直流电沉积10s。
(3)化学沉积工艺步骤同实施例1(3),共沉积10次。
(4)葡萄糖用量为0.2g,水热还原工艺步骤同实施例1(4),可制得Cu2O-Cu/TNTA电极。
本发明未尽事宜为公知技术。

Claims (3)

1.一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法,其特征为包括以下步骤:
(1)将清洗后的Ti片为阳极、Pt片为阴极,***电解液中,在35~45℃、30~50V的条件下阳极氧化2~10h;反应结束后,将样片用去离子水洗涤,烘干,在400~500℃煅烧1~3h,得到二氧化钛纳米管阵列(标记为TNTA);
其中,电极液的组成为氟化铵、去离子水和乙二醇,质量比为氟化铵:去离子水:乙二醇=0.2~0.3:5~15:85~95;
(2)配制含有0.01~0.1M界面活性剂的0.1~0.5M硫酸铜溶液,以此溶液为电沉积液,以TNTA为阴极、铂片为阳极,在室温、电流密度为10~30mA/cm2条件下直流电沉积10~30s;得到样片A;
(3)电沉积结束后,将样片A在含有0.01~0.1M界面活性剂的0.1~0.5M硫酸铜溶液中浸泡5~30min,冲洗后放入0.1~0.5M NaOH中浸泡5~30min;再在去离子水中浸泡5~30min;进行“硫酸铜溶液中浸泡-NaOH中浸泡-去离子水中浸泡”过程1~9次,得到样片B;
(4)在0.2~0.3M的NaOH溶液中加入还原剂,搅拌溶解后转入聚四氟乙烯内衬的水热反应釜中,把样片B浸入溶液中,在120~150℃水热反应3~8h;冷却、洗涤,90~110℃烘干1~3h,即得Cu2O-Cu/TNTA电极;
其中,每30ml的NaOH溶液中加入0.2~0.8g还原剂。
2.如权利要求1所述的Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法,其特征为步骤(4)中所述的还原剂为葡萄糖。
3.如权利要求1所述的Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法,其特征为步骤(2)、(3)中的界面活性剂为乙醇胺。
CN202010591607.7A 2020-06-24 2020-06-24 一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法 Active CN111564326B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010591607.7A CN111564326B (zh) 2020-06-24 2020-06-24 一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010591607.7A CN111564326B (zh) 2020-06-24 2020-06-24 一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法

Publications (2)

Publication Number Publication Date
CN111564326A true CN111564326A (zh) 2020-08-21
CN111564326B CN111564326B (zh) 2021-09-28

Family

ID=72075429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010591607.7A Active CN111564326B (zh) 2020-06-24 2020-06-24 一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法

Country Status (1)

Country Link
CN (1) CN111564326B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112164597A (zh) * 2020-09-28 2021-01-01 桂林理工大学 氧化铜纳米阵列电极、氧化铜纳米阵列的非固态水系柔性储能器件及其制备方法
CN113368869A (zh) * 2021-07-22 2021-09-10 深圳大学 一种可见光降解染料的纳米纤维材料、制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677124A (zh) * 2012-06-07 2012-09-19 河北工业大学 一种具有能量存储功能光催化薄膜的制备方法
CN103474258A (zh) * 2013-09-16 2013-12-25 哈尔滨工程大学 一种泡沫镍载Cu/Cu2O的超级电容器电极材料的制备方法
US20160045908A1 (en) * 2014-08-14 2016-02-18 Council Of Scientific & Industrial Research CuO - TiO2 NANOCOMPOSITE PHOTOCATALYST FOR HYDROGEN PRODUCTION, PROCESS FOR THE PREPARATION THEREOF
US20190060877A1 (en) * 2016-03-09 2019-02-28 Qatar University Method of making a copper oxide-titanium vdioxide nanocatalyst
CN109485084A (zh) * 2018-12-29 2019-03-19 合肥学院 一种形态可控合成氧化亚铜粉体的方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677124A (zh) * 2012-06-07 2012-09-19 河北工业大学 一种具有能量存储功能光催化薄膜的制备方法
CN103474258A (zh) * 2013-09-16 2013-12-25 哈尔滨工程大学 一种泡沫镍载Cu/Cu2O的超级电容器电极材料的制备方法
US20160045908A1 (en) * 2014-08-14 2016-02-18 Council Of Scientific & Industrial Research CuO - TiO2 NANOCOMPOSITE PHOTOCATALYST FOR HYDROGEN PRODUCTION, PROCESS FOR THE PREPARATION THEREOF
US20190060877A1 (en) * 2016-03-09 2019-02-28 Qatar University Method of making a copper oxide-titanium vdioxide nanocatalyst
CN109485084A (zh) * 2018-12-29 2019-03-19 合肥学院 一种形态可控合成氧化亚铜粉体的方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIAN YANG: "Helical TiO2 Nanotube Arrays Modified by Cu−Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-oxidation of Glucose", 《ACS APPLIED MATERIALS & INTERFACES》 *
ZHONGHUA LI: "Cu2O/Cu/TiO2 nanotube Ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity", 《I N T E R N A T I O N A L J OURNAL O F HYDROGEN ENERGY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112164597A (zh) * 2020-09-28 2021-01-01 桂林理工大学 氧化铜纳米阵列电极、氧化铜纳米阵列的非固态水系柔性储能器件及其制备方法
CN112164597B (zh) * 2020-09-28 2022-05-27 桂林理工大学 氧化铜纳米阵列电极、氧化铜纳米阵列的非固态水系柔性储能器件及其制备方法
CN113368869A (zh) * 2021-07-22 2021-09-10 深圳大学 一种可见光降解染料的纳米纤维材料、制备方法、应用

Also Published As

Publication number Publication date
CN111564326B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN105513831B (zh) 一种中空管状结构电极材料及其制备方法
CN102709058B (zh) 制备超级电容器二氧化锰-氢氧化镍复合电极材料的方法
CN111564326B (zh) 一种Cu2O-Cu/二氧化钛纳米管阵列复合电极的制备方法
WO2013016447A2 (en) Catalysts for low temperature electrolytic co2 reduction
CN103227057B (zh) 一种制备二氧化锰超级电容器电极的方法
CN112156788A (zh) 一种四元Ni-Fe-W-Mo合金高效析氧电催化剂及其制备方法和应用
CN105632790A (zh) 一种MnO2纳米阵列超级电容器电极材料及其制备方法
CN112164592B (zh) 一种CeO2纳米粒子修饰的Co3S4纳米片阵列的制备方法
CN112121820A (zh) 一种界面的硫化亚铜纳米线阵列高效析氧催化剂的制备方法
CN106191945A (zh) 一种脉冲电沉积制备二氧化钛纳米管固载铂‑镍双金属复合电极的方法
CN109985629A (zh) 一种蠕虫状Ni/NixFe1-xOy析氢催化剂及其制备方法
CN111939914B (zh) 一种利用废弃铜箔制备高活性三元金属析氧催化剂的方法
CN110265681B (zh) 一种用于催化甲酸钠氧化的复合电极及其制备方法和用途
CN111326351A (zh) 一种电容器用Cu2O/NiO材料的制备方法
CN110983373A (zh) 一种负载型复合硫化物析氢催化剂及其制备方法和应用
CN111676498B (zh) 一种氧化亚铜电极的制备方法
CN105097297A (zh) 制备高活性超级电容器电极材料纳米氧化铜的方法
CN111128559B (zh) 一种织物基金属/金属氢氧化物柔性复合材料的制备方法
CN114059082A (zh) 一种N,P共掺杂NF@NiMoO4中空纳米线复合材料及其制备方法和应用
CN110227467A (zh) 一种三层同轴产氧电催化剂及其制备方法
CN114694979A (zh) 一种氟化重构的电极材料及其制备方法和应用
CN105679543B (zh) Cu1.8Se/C复合纳米管阵列及其制备方法和应用
CN114457369B (zh) 一种CP@MoS2-PtNi催化剂的制备方法及其用途
CN116103693B (zh) 一种析氢电极及其制备方法和在电解水制氢中的应用
CN114497580B (zh) 一种电极及作为负极在全钒液流电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant