CN111525021B - 一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法 - Google Patents

一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法 Download PDF

Info

Publication number
CN111525021B
CN111525021B CN202010320707.6A CN202010320707A CN111525021B CN 111525021 B CN111525021 B CN 111525021B CN 202010320707 A CN202010320707 A CN 202010320707A CN 111525021 B CN111525021 B CN 111525021B
Authority
CN
China
Prior art keywords
solution
film
equal
tio
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010320707.6A
Other languages
English (en)
Other versions
CN111525021A (zh
Inventor
杨长红
冯超
钱进
林秀娟
程振祥
黄世峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202010320707.6A priority Critical patent/CN111525021B/zh
Publication of CN111525021A publication Critical patent/CN111525021A/zh
Application granted granted Critical
Publication of CN111525021B publication Critical patent/CN111525021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明属于电子功能材料与器件领域,具体涉及一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法。本发明的钛酸铋钠基薄膜由基片、底电极、铁电薄膜层和顶电极组成,所述薄膜的组成通式为Na0.5×aBi0.5×b(Ti1‑x‑yWxFey)O3,其中,1.01≤a≤1.02,1.01≤b≤1.04,0.01≤x≤0.02,0.01≤y≤0.02。在143℃附近,正绝热温变和等温熵变的峰值为目前报导中最大值:∆T~55 K,∆S~64 J K‑1 kg‑1;在同一制冷循环内,54℃附近,负绝热温变和等温熵变的峰值为:∆T~‑17 K,∆S~‑26 J K‑1 kg‑1。通过化学溶液法制备的该钛酸铋钠基薄膜具有电卡性能优异、环境友好、工艺简单以及成本低等优点,在芯片制冷、传感器及电子器件等温度控制领域具有广泛的应用前景。

Description

一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法
技术领域
本发明属于电子功能材料与器件领域,具体涉及一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法。
背景技术
制冷技术的应用已渗透到人们生活和生产的方方面面,在工农业生产、生物医疗、国防工业及尖端科学技术等领域有着迫切的需求。目前制冷仍几乎完全依赖于传统的压缩机技术,压缩机制冷存在能量消耗高、工作效率低、体积大、重量重、污染环境等问题。因此,研发能量转化效率高、小型化、环境友好的新型制冷技术已成为当务之急。
电卡效应是极性材料中因施加外电场的变化而导致的极化状态改变,极性偶极子有序度的改变引起材料熵的变化,从而产生了绝热温变或等温熵变的现象。电卡效应分为正电卡效应和负电卡效应,正电卡效应在撤去外电场的情况下由于电卡材料温度的降低完成制冷过程,与此相反,负电卡效应是施加电场的条件下完成制冷过程。电卡制冷走向实用化的关键在于高性能电卡材料的制备。自2006年,Mischenko等人在锆钛酸铅薄膜中发现了巨电卡效应后(参考文献:Giant electro-caloric effect in thin-filmPbZr0.95Ti0.05O3. Science, 2006, 3 11(5765): 1270-1271),对薄膜电卡效应的研究持续增温。2009年,Correia 等人发现在Pb(Mg1/3Nb2/3)O3-PbTiO3在去极化温度附近获得大的正电卡效应(T=25°C, ∆T~9K)(参考文献:Investigation of the electrocaloric effectin a PbMg2/3Nb1/3O3-PbTiO3 relaxor thin film, Appl. Phys. Lett., 2009 95:182904)。2019年,彭彪林等人利用相变诱导无铅弛豫铁电薄膜0.5(Ba0.8Ca0.2)TiO3-0.5Bi(Mg0.5Ti0.5)O3中产生巨大的负电卡效应(T=163°C, ∆T~-42.5K)(参考文献:Phase-Transition Induced Giant Negative Electrocaloric Effect in a Lead-FreeRelaxor Ferroelectric Thin Film. Energy Environ. Sci., 2019 12: 1708-1717)。为了提高制冷效率满足电卡制冷器件的要求,获得大的绝热温度变化值∆T无疑是一种有效的办法,另外,若同一种材料中发同时存在正负电卡致冷,可通过调整电场方向依次采用不同的电卡效应连续制冷。
钛酸铋钠(Na0.5Bi0.5TiO3)是一种A位复合的无铅钙钛矿结构的铁电体,从室温到520 °C范围内存在复杂的相变过程,这为获得大的电卡效应创造了潜在可能性。另外,通过组分设计可以提高钛酸铋钠薄膜的抗击穿场强,这也是提高电卡效应的有效手段。鉴于此,钛酸铋钠基薄膜是一种潜在应用价值高的电卡制冷材料。
发明内容
本发明的目的是提供一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法,该薄膜是通过化学溶液法制备,具有电卡性能高、环境友好、工艺简单以及成本低等优点,在芯片制冷、传感器和电子器件的温度控制等领域具有广泛的应用前景。
本发明是通过以下技术方案实现的:
一种兼具正负电卡效应的钛酸铋钠基薄膜,由基片、底电极、铁电薄膜层和顶电极组成。所述薄膜的组成通式为Na0.5×aBi0.5×b(Ti1-x-yWxFey)O3,其中,1.01≤a≤1.02,1.01≤b≤1.04,0.01≤x≤0.02,0.01≤y≤0.02。
其制备方法包括以下步骤:
(1)准备衬底和底电极
(a)将Pt/Ti/SiO2/Si依次置于无水乙醇和丙酮的混合液,和去离子水中各超声20min,并用红外灯烘干,备用。选用厚度<50 µm氟晶云母(Mica)作为基片,依次置于无水乙醇和丙酮的混合液,和去离子水中,各超声10-30min,并用红外灯烘干,备用;
(b)制备TiO2前驱体溶液:将乙酰丙酮和钛酸四异丙酯先后加入乙二醇甲醚中,并搅拌1-5小时,得到TiO2前驱体溶液,备用;
(c)采用旋涂法将前驱体溶液均匀地涂在底电极上,然后烘干,再进行退火处理,重复上述“旋涂-烘干-退火”的过程共4次,得到TiO2/Mica,备用;
(d)用直流磁控溅射的方法在TiO2/Mica上沉积Pt薄膜,得到Pt/TiO2/Mica备用。
(2)Na0.5×aBi0.5×b(Ti1-x-yWxFey)O3前驱体溶液制备
(a)选择乙酸钠、乙酸铋或硝酸铋、硝酸铁、钨酸钠、钛酸四异丙酯作为原料,按照Na0.5×aBi0.5×b(Ti1-x-yWxFey)O3的化学计量比,准确称取原料;
(b)先量取一定量的乙酰丙酮和乙二醇甲醚于烧杯中,再将钛酸四异丙酯逐滴加入其中,室温下磁力搅拌3-5小时,定义为溶液1;将称取的乙酸铋或硝酸铋、乙酸钠、硝酸铁溶解于乙二醇甲醚中,在40~70℃加热搅拌;将称取的钨酸钠溶解于乙二醇中,在40~70℃加热搅拌;以上两种溶液完全溶解后混合,定义为溶液2;称取质量为原料总质量10%~30%的乙二醇600或聚乙二醇20000,,溶解于乙酸中,室温搅拌直至完全溶解,定义为溶液3;
(c)所有溶液冷却后,将溶液2、溶液3依次加入到溶液1中,室温下磁力搅拌10-15小时,获得浓度为0.3 mol/L的前驱体溶液,备用。
(3)在底电极上沉积钛酸铋钠基薄膜
采用旋涂法将前驱体溶液均匀地涂在底电极上,然后置于热板上烘干,再在快速退火炉中进行退火过程,重复上述“旋涂-烘干-退火”的过程。
(4)在钛酸铋钠基薄膜上沉积顶电极
采用金属Pt或Au靶,用直流磁控溅射的方法在钛酸铋钠基薄膜上沉积顶电极。
优选地,所述步骤(1)(b)中, 将0.30 ml乙酰丙酮和0.89 ml钛酸四异丙酯先后加入28.81 ml乙二醇甲醚中,并搅拌4 h,得到浓度为0.1 mol/L的TiO2前驱体溶液;所述步骤(1)(c)中,转速为3000转/分钟,时间为30 s;烘干温度为250 ℃,烘干时间为3 min;退火温度为450 ℃,退火时间为8 min。
优选地,所述步骤(1)(d)中,直流磁控溅射沉积底电极时气氛为Ar,真空度为0.05mbar,电流为30 mA,底电极厚度为80 nm;底电极预处理时气氛为N2,温度为500 ℃,时间为8 min。
优选地,所述步骤(3)中,旋涂时转速为3000转/分钟,时间为30秒;烘干温度为200℃,烘干时间为3 min;预处理温度为350 ℃,预处理时间为2 min,退火气氛为空气或O2,退火温度为500-550 ℃,退火时间为6~10 min。
优选地,所述步骤(4)中沉积顶电极时气氛为Ar,真空度为0.05 mbar,电流为30mA,顶电极直径为200 μm。
本发明有益效果
本发明制备出一种兼具正负电卡效应的钛酸铋钠基薄膜,在143 ℃附近,正的绝热温变和等温熵变的峰值为目前报导中最大值:∆T~55 K,∆S~64 J K-1 kg-1,在同一制冷循环内,54 ℃附近,得到负的绝热温变和等温熵变的峰值:∆T~-17 K,∆S~-26 J K-1 kg-1。它具有电卡性能高、环境友好、工艺简单以及成本低等优点,在芯片制冷、传感器和电子器件的温度控制等领域具有广泛的应用前景。
附图说明
图1为本发明制备的钛酸铋钠基薄膜的结构示意图。
图2为实施例1中Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3薄膜的X射线衍射图。
图3为实施例1中Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3薄膜的介电温谱图。
图4为实施例1中Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3薄膜的不同温度下的电滞回线图。
图5为实施例1中Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3薄膜的:(a)绝热温变随温度的变化曲线,(b)等温熵变随温度的变化曲线。
图6为实施例2中Na0.5×1.01Bi0.5×1.03(Ti0.97W0.01Fe0.02)O3薄膜的X射线衍射图。
图7为实施例2中Na0.5×1.01Bi0.5×1.03(Ti0.97W0.01Fe0.02)O3薄膜的电滞回线图。
图8为实施例3中Na0.5×1.01Bi0.5×1.04(Ti0.975W0.015Fe0.01)O3薄膜的扫描电镜图。
图9为实施例4中Na0.5×1.02Bi0.5×1.04(Ti0.975W0.01Fe0.015)O3薄膜不同温度下的电滞回线图。
图10为实施例4中Na0.5×1.02Bi0.5×1.04(Ti0.975W0.01Fe0.015)O3薄膜的:(a)绝热温变随温度的变化曲线,(b)等温熵变随温度的变化曲线。
图11为实施例5中Na0.5×1.02Bi0.5×1.02(Ti0.965W0.015Fe0.02)O3薄膜的介电常数-电场强度图。
图12为实施例5中Na0.5×1.02Bi0.5×1.02(Ti0.965W0.015Fe0.02)O3薄膜的的电滞回线图。
图13为实施例6中Na0.5×1.01Bi0.5×1.02(Ti0.98W0.01Fe0.01)O3薄膜的介电频谱图。
图14为实施例7中Na0.5×1.015Bi0.5×1.01(Ti0.96W0.02Fe0.02)O3薄膜的不同温度下的电滞回线图。
图15为实施例7中Na0.5×1.015Bi0.5×1.01(Ti0.96W0.02Fe0.02)O3薄膜的:(a)绝热温变随温度的变化曲线,(b)等温熵变随温度的变化曲线。
具体实施方式
下面结合具体实施例对本发明进行进一步的阐述,需要说明的是,下述说明仅是为了解释本发明,并不对其内容进行限制。
实施例1
(1)准备衬底和底电极
将Pt/Ti/SiO2/Si依次置于无水乙醇和丙酮的混合液,和去离子水中各超声20min,并用红外灯烘干,备用。
(2)Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3前驱体溶液制备
(a)按照Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3的化学计量比,准确称取0.3617 g的CH3COONa、1.8072 g的(CH3CO2)3Bi、0.0300 g的Na2WO4·2H2O、0.0728 g的Fe(NO3)3·9H2O和0.6815 g的聚乙二醇600,备用。
(b)准确量取2.26 ml乙酰丙酮和2.26 ml乙二醇甲醚于烧杯中,再将2.26 ml钛酸四异丙酯逐滴加入乙酰丙酮中,室温下磁力搅拌4小时,定义为溶液1;将称取的CH3COONa、(CH3CO2)3Bi、Fe(NO3)3·9H2O溶解于11.61 ml乙二醇甲醚中,在40 ℃加热搅拌;将称取的Na2WO4·2H2O溶解于7.74 ml乙二醇中,在40 ℃加热搅拌;以上两种溶液完全溶解后立即混合,定义为溶液2;将聚乙二醇600溶解于3.87 ml乙酸中,室温搅拌直至完全溶解,定义为溶液3。
(c)所有溶液冷却后,将溶液2、溶液3依次加入到溶液1中,室温下磁力搅拌12 h,获得浓度为0.3 mol/L的Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3前驱体溶液,备用。
(3)在底电极上沉积钛酸铋钠基薄膜
将所得Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3前驱体溶液静置陈化48 h后,采用旋涂法将前驱体溶液均匀地涂在Pt/Ti/SiO2/Si上,转速为3000 r/min,匀胶时间为30 s。然后将薄膜置于热板上烘干,烘干温度为200 ℃,烘干时间为3 min。再将薄膜放在快速升温退火炉中进行退火过程,退火气氛为O2,退火程序为350 ℃保持2 min,500 ℃保持10 min。重复上述“旋涂-烘干-退火”的过程12次。
(4)在钛酸铋钠基薄膜上沉积顶电极
采用金属Au靶,用直流磁控溅射的方法在所得Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3薄膜上沉积Au顶电极。沉积时气氛为Ar,真空度为0.05 mbar,电流为30 mA。顶电极直径为200 μm。
图2为此Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3薄膜的X射线衍射图,表明其为单一多晶钙钛矿相。图3为Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3薄膜的介电温谱,其退极化温度T d约为150 ℃,相变温度T m约为310 ℃。同时T m处较宽的相变峰以及频率弥散现象证明了该薄膜的弛豫性。图4为Na0.5×1.01Bi0.5×1.04(Ti0.97W0.01Fe0.02)O3薄膜的不同温度下的电滞回线图。图5为计算得出的此薄膜的绝热温变∆T和等温熵变∆S随温度的变化曲线。在143 ℃附近,正的绝热温变和等温熵变的峰值为目前报导中最大值:∆T~55 K,∆S~64 J K-1 kg-1。这是由于在相变处,在电场和温度的控制下,偶极子有序态和无序态间变化引起的。同时,在同一制冷循环内,54 ℃附近,得到绝热温变和等温熵变的峰值:∆T~-17 K,∆S~-26 J K-1 kg-1
实施例2
(1)准备衬底和底电极
(a)选用厚度<50 µm氟晶云母(Mica)作为基片,依次置于无水乙醇和丙酮的混合液,和去离子水中各超声20 min,并用红外灯烘干,备用。
(b)制备TiO2前驱体溶液:将0.30 ml乙酰丙酮和0.89 ml钛酸四异丙酯先后加入28.81 ml乙二醇甲醚中,并搅拌3 h,得到浓度为0.1 mol/L的TiO2前驱体溶液,备用。
(c)采用旋涂法将前驱体溶液均匀地涂在底电极上,转速为3000转/分钟,时间为30 s,然后烘干,烘干温度为250 ℃,烘干时间为3 min,再进行退火处理,退火温度为450℃,退火时间为8 min,重复上述“旋涂-烘干-退火”的过程共4次,得到TiO2/Mica,备用。
(d)用直流磁控溅射的方法在TiO2/Mica上沉积Pt薄膜,气氛为Ar,真空度为0.05mbar,电流为30 mA,底电极厚度为80 nm;底电极预处理时气氛为N2,温度为500 ℃,时间为8 min。得到Pt/TiO2/Mica,备用。
(2)Na0.5×1.01Bi0.5×1.03(Ti0.97W0.01Fe0.02)O3前驱体溶液制备
(a)按照Na0.5×1.01Bi0.5×1.03(Ti0.97W0.01Fe0.02)O3的化学计量比,准确称取0.3617 g的CH3COONa、2.2942 g的Bi(NO3)3·5H2O、0.0300 g的Na2WO4·2H2O、0.0728 g的Fe(NO3)3·9H2O和0.8276 g的聚乙二醇600,备用。
(b)准确量取2.26 ml乙酰丙酮和2.26 ml乙二醇甲醚于烧杯中,再将2.26 ml钛酸四异丙酯逐滴加入乙酰丙酮中,室温下磁力搅拌4小时,定义为溶液1;将称取的CH3COONa、Bi(NO3)3·5H2O、Fe(NO3)3·9H2O溶解于11.26 ml乙二醇甲醚中,在40 ℃加热搅拌;将称取的Na2WO4·2H2O溶解于8.44 ml乙二醇中,在40 ℃加热搅拌;以上两种溶液完全溶解后立即混合,定义为溶液2;将聚乙二醇600溶解于3.52 ml乙酸中,室温搅拌直至完全溶解,定义为溶液3。
(c)所有溶液冷却后,将溶液2、溶液3依次加入到溶液1中,室温下磁力搅拌10 h,获得浓度为0.3 mol/L的Na0.5×1.01Bi0.5×1.03(Ti0.97W0.01Fe0.02)O3前驱体溶液,备用。
(3)在底电极上沉积钛酸铋钠基薄膜
将所得Na0.5×1.01Bi0.5×1.03(Ti0.97W0.01Fe0.02)O3前驱体溶液静置陈化48 h后,采用旋涂法将前驱体溶液均匀地涂在Pt/Ti/SiO2/Si上,转速为3000 r/min,匀胶时间为30 s。然后将薄膜置于热板上烘干,烘干温度为200 ℃,烘干时间为3 min。再将薄膜放在快速升温退火炉中进行退火过程,退火气氛为O2,退火程序为350 ℃保持2 min,500 ℃保持10 min。重复上述“旋涂-烘干-退火”的过程12次。
(4)在钛酸铋钠基薄膜上沉积顶电极
采用金属Au靶,用直流磁控溅射的方法在所得Na0.5×1.01Bi0.5×1.03(Ti0.97W0.01Fe0.02)O3薄膜上沉积Au顶电极。沉积时气氛为Ar,真空度为0.05 mbar,电流为30 mA。顶电极直径为200 μm。
图6为此Na0.5×1.01Bi0.5×1.03(Ti0.97W0.01Fe0.02)O3薄膜的X射线衍射图,表明其为单一多晶钙钛矿相。图7为该薄膜的电滞回线图。
实施例3
(1)准备衬底和底电极
将Pt/Ti/SiO2/Si依次置于无水乙醇和丙酮的混合液,和去离子水中各超声20min,并用红外灯烘干,备用。
(2)Na0.5×1.01Bi0.5×1.04(Ti0.975W0.015Fe0.01)O3前驱体溶液制备
(a)按照Na0.5×1.01Bi0.5×1.04(Ti0.975W0.015Fe0.01)O3的化学计量比,准确称取0.3542 g的CH3COONa、2.3165 g的Bi(NO3)3·5H2O、0.0450 g的Na2WO4·2H2O、0.0364 g的Fe(NO3)3·9H2O和0.6880 g的聚乙二醇600,备用。
(b)准确量取2.27 ml乙酰丙酮和2.27 ml乙二醇甲醚于烧杯中,再将2.27 ml钛酸四异丙酯逐滴加入乙酰丙酮中,室温下磁力搅拌4小时,定义为溶液1;将称取的CH3COONa、Bi(NO3)3·5H2O、Fe(NO3)3·9H2O溶解于10.91 ml乙二醇甲醚中,在50 ℃加热搅拌;将称取的Na2WO4·2H2O溶解于8.87 ml乙二醇中,在50 ℃加热搅拌;以上两种溶液完全溶解后立即混合,定义为溶液2;将聚乙二醇600溶解于13.41 ml乙酸中,室温搅拌直至完全溶解,定义为溶液3。
(c)所有溶液冷却后,将溶液2、溶液3依次加入到溶液1中,室温下磁力搅拌13 h,获得浓度为0.3 mol/L的Na0.5×1.01Bi0.5×1.04(Ti0.975W0.015Fe0.01)O3前驱体溶液,备用。
(3)在底电极上沉积钛酸铋钠基薄膜
将所得Na0.5×1.01Bi0.5×1.04(Ti0.975W0.015Fe0.01)O3前驱体溶液静置陈化48 h后,采用旋涂法将前驱体溶液均匀地涂在Pt/Ti/SiO2/Si上,转速为3000 r/min,匀胶时间为30 s。然后将薄膜置于热板上烘干,烘干温度为250 ℃,烘干时间为3 min。再将薄膜放在快速升温退火炉中进行退火过程,退火气氛为空气,退火程序为350 ℃保持2 min,520 ℃保持8min。重复上述“旋涂-烘干-退火”的过程12次。
(4)在钛酸铋钠基薄膜上沉积顶电极
采用金属Pt靶,用直流磁控溅射的方法在所得Na0.5×1.01Bi0.5×1.04(Ti0.975W0.015Fe0.01)O3薄膜上沉积Pt顶电极。沉积时气氛为Ar,真空度为0.05 mbar,电流为30 mA。顶电极直径为200 μm。
图8为此Na0.5×1.01Bi0.5×1.04(Ti0.975W0.015Fe0.01)O3薄膜的扫描电镜图。
实施例4
(1)准备衬底和底电极
将Pt/Ti/SiO2/Si依次置于无水乙醇和丙酮的混合液,和去离子水中各超声20min,并用红外灯烘干,备用。
(2)Na0.5×1.02Bi0.5×1.04(Ti0.975W0.01Fe0.015)O3前驱体溶液制备
(a)按照Na0.5×1.02Bi0.5×1.04(Ti0.975W0.01Fe0.015)O3的化学计量比,准确称取0.3654 g的CH3COONa、1.8072 g的(CH3CO2)3Bi、0.0300 g的Na2WO4·2H2O、0.0546 g的Fe(NO3)3·9H2O和0.4514 g的聚乙二醇600,备用。
(b)准确量取2.27 ml乙酰丙酮和2.27 ml乙二醇甲醚于烧杯中,再将2.27 ml钛酸四异丙酯逐滴加入乙酰丙酮中,室温下磁力搅拌3小时,定义为溶液1;将称取的CH3COONa、(CH3CO2)3Bi、Fe(NO3)3·9H2O溶解于10.95 ml乙二醇甲醚中,在60 ℃加热搅拌;将称取的Na2WO4·2H2O溶解于9.02 ml乙二醇中,在60 ℃加热搅拌;以上两种溶液完全溶解后立即混合,定义为溶液2;将聚乙二醇600溶解于3.22 ml乙酸中,室温搅拌直至完全溶解,定义为溶液3。
(c)所有溶液冷却后,将溶液2、溶液3依次加入到溶液1中,室温下磁力搅拌15 h,获得浓度为0.3 mol/L的Na0.5×1.02Bi0.5×1.04(Ti0.975W0.01Fe0.015)O3前驱体溶液,备用。
(3)在底电极上沉积钛酸铋钠基薄膜
将所得Na0.5×1.02Bi0.5×1.04(Ti0.975W0.01Fe0.015)O3前驱体溶液静置陈化72 h后,采用旋涂法将前驱体溶液均匀地涂在Pt/Ti/SiO2/Si上,转速为3000 r/min,匀胶时间为30 s。然后将薄膜置于热板上烘干,烘干温度为250 ℃,烘干时间为3 min。再将薄膜放在快速升温退火炉中进行退火过程,退火气氛为O2,退火程序为350 ℃保持2 min,500 ℃保持10min。重复上述“旋涂-烘干-退火”的过程14次。
(4)在钛酸铋钠基薄膜上沉积顶电极
采用金属Au靶,用直流磁控溅射的方法在所得Na0.5×1.02Bi0.5×1.04(Ti0.975W0.01Fe0.015)O3薄膜上沉积Au顶电极。沉积时气氛为Ar,真空度为0.05 mbar,电流为30 mA。顶电极直径为200 μm。
图9为实施例4中Na0.5×1.02Bi0.5×1.04(Ti0.975W0.01Fe0.015)O3薄膜不同温度下的电滞回线图。图10为该薄膜的∆T和∆S随温度的变化曲线。在138 ℃附近,得到绝热温变和等温熵变的最大值:∆T~55 K,∆S~62 J K-1 kg-1,在同一制冷循环内,54 ℃附近,得到绝热温变和等温熵变的最小值:∆T~-17 K,∆S~-26 J K-1 kg-1
实施例5
(1)准备衬底和底电极
(a)选用厚度<50 µm氟晶云母(Mica)作为基片,依次置于无水乙醇和丙酮的混合液,和去离子水中各超声10 min,并用红外灯烘干,备用。
(b)制备TiO2前驱体溶液:将0.30 ml乙酰丙酮和0.89 ml钛酸四异丙酯先后加入28.81 ml乙二醇甲醚中,并搅拌1 h,得到浓度为0.1 mol/L的TiO2前驱体溶液,备用。
(c)采用旋涂法将前驱体溶液均匀地涂在底电极上,转速为3000转/分钟,时间为30 s,然后烘干,烘干温度为250 ℃,烘干时间为3 min,再进行退火处理,退火温度为450℃,退火时间为8 min,重复上述“旋涂-烘干-退火”的过程共4次,得到TiO2/Mica,备用。
(d)用直流磁控溅射的方法在TiO2/Mica上沉积Pt薄膜,气氛为Ar,真空度为0.05mbar,电流为30 mA,底电极厚度为80 nm;底电极预处理时气氛为N2,温度为500 ℃,时间为8 min。得到Pt/TiO2/Mica,备用。
(2)Na0.5×1.02Bi0.5×1.02(Ti0.965W0.015Fe0.02)O3前驱体溶液制备
(a)按照Na0.5×1.02Bi0.5×1.02(Ti0.965W0.015Fe0.02)O3的化学计量比,准确称取0.3579 g的CH3COONa、2.2719 g的Bi(NO3)3·5H2O、0.0450 g的Na2WO4·2H2O、0.0728 g的Fe(NO3)3·9H2O和0.9617 g的聚乙二醇600,备用。
(b)准确量取2.25 ml乙酰丙酮和2.25 ml乙二醇甲醚于烧杯中,再将2.25 ml钛酸四异丙酯逐滴加入乙酰丙酮中,室温下磁力搅拌3小时,定义为溶液1;将称取的CH3COONa、Bi(NO3)3·5H2O、Fe(NO3)3·9H2O溶解于10.68 ml乙二醇甲醚中,在50 ℃加热搅拌;将称取的Na2WO4·2H2O溶解于9.43 ml乙二醇中,在50 ℃加热搅拌;以上两种溶液完全溶解后立即混合,定义为溶液2;将聚乙二醇600溶解于3.14 ml乙酸中,室温搅拌直至完全溶解,定义为溶液3。
(c)所有溶液冷却后,将溶液2、溶液3依次加入到溶液1中,室温下磁力搅拌11 h,获得浓度为0.3 mol/L的Na0.5×1.02Bi0.5×1.02(Ti0.965W0.015Fe0.02)O3前驱体溶液,备用。
(3)在底电极上沉积钛酸铋钠基薄膜
将所得Na0.5×1.02Bi0.5×1.02(Ti0.965W0.015Fe0.02)O3前驱体溶液静置陈化72 h后,采用旋涂法将前驱体溶液均匀地涂在Pt/Ti/SiO2/Si上,转速为3000 r/min,匀胶时间为30 s。然后将薄膜置于热板上烘干,烘干温度为250 ℃,烘干时间为3 min。再将薄膜放在快速升温退火炉中进行退火过程,退火气氛为空气,退火程序为350 ℃保持2 min,550 ℃保持6min。重复上述“旋涂-烘干-退火”的过程14次。
(4)在钛酸铋钠基薄膜上沉积顶电极
采用金属Pt靶,用直流磁控溅射的方法在所得Na0.5×1.02Bi0.5×1.02(Ti0.965W0.015Fe0.02)O3薄膜上沉积Pt顶电极。沉积时气氛为Ar,真空度为0.05 mbar,电流为30 mA。顶电极直径为200 μm。
图11为此实施例中Na0.5×1.02Bi0.5×1.02(Ti0.965W0.015Fe0.02)O3薄膜的介电系数-电场强度图。图12为该薄膜的的电滞回线图。
实施例6
(1)准备衬底和底电极
将Pt/Ti/SiO2/Si依次置于无水乙醇和丙酮的混合液,和去离子水中各超声20min,并用红外灯烘干,备用。
(2)Na0.5×1.01Bi0.5×1.02(Ti0.98W0.01Fe0.01)O3前驱体溶液制备
(a)按照Na0.5×1.01Bi0.5×1.02(Ti0.98W0.01Fe0.01)O3的化学计量比,准确称取0.3617 g的CH3COONa、2.2719 g的Bi(NO3)3·5H2O、0.0300 g的Na2WO4·2H2O、0.0364 g的Fe(NO3)3·9H2O和0.6750 g的聚乙二醇600,备用。
(b)准确量取2.28 ml乙酰丙酮和2.28 ml乙二醇甲醚于烧杯中,再将2.28 ml钛酸四异丙酯逐滴加入乙酰丙酮中,室温下磁力搅拌5小时,定义为溶液1;将称取的CH3COONa、Bi(NO3)3·5H2O、Fe(NO3)3·9H2O溶解于10.69 ml乙二醇甲醚中,在60 ℃加热搅拌;将称取的Na2WO4·2H2O溶解于9.50 ml乙二醇中,在60 ℃加热搅拌;以上两种溶液完全溶解后立即混合,定义为溶液2;将聚乙二醇600溶解于2.97 ml乙酸中,室温搅拌直至完全溶解,定义为溶液3。
(c)所有溶液冷却后,将溶液2、溶液3依次加入到溶液1中,室温下磁力搅拌12 h,获得浓度为0.3 mol/L的Na0.5×1.01Bi0.5×1.02(Ti0.98W0.01Fe0.01)O3前驱体溶液,备用。
(3)在底电极上沉积钛酸铋钠基薄膜
将所得Na0.5×1.01Bi0.5×1.02(Ti0.98W0.01Fe0.01)O3前驱体溶液静置陈化72 h后,采用旋涂法将前驱体溶液均匀地涂在Pt/Ti/SiO2/Si上,转速为3000 r/min,匀胶时间为30 s。然后将薄膜置于热板上烘干,烘干温度为250 ℃,烘干时间为3 min。再将薄膜放在快速升温退火炉中进行退火过程,退火气氛为空气,退火程序为350 ℃保持2 min,550 ℃保持6min。重复上述“旋涂-烘干-退火”的过程16次。
(4)在钛酸铋钠基薄膜上沉积顶电极
采用金属Au靶,用直流磁控溅射的方法在所得Na0.5×1.01Bi0.5×1.02(Ti0.98W0.01Fe0.01)O3薄膜上沉积Au顶电极。沉积时气氛为Ar,真空度为0.05 mbar,电流为30 mA。顶电极直径为200 μm。
图13为本实施例中Na0.5×1.01Bi0.5×1.02(Ti0.98W0.01Fe0.01)O3薄膜的介电频谱图。
实施例7
(1)准备衬底和底电极
(a)选用厚度<50 µm氟晶云母(Mica)作为基片,依次置于无水乙醇和丙酮的混合液,和去离子水中各超声30 min,并用红外灯烘干,备用。
(b)制备TiO2前驱体溶液:将0.30 ml乙酰丙酮和0.89 ml钛酸四异丙酯先后加入28.81 ml乙二醇甲醚中,并搅拌5 h,得到浓度为0.1 mol/L的TiO2前驱体溶液,备用。
(c)采用旋涂法将前驱体溶液均匀地涂在底电极上,转速为3000转/分钟,时间为30 s,然后烘干,烘干温度为250 ℃,烘干时间为3 min,再进行退火处理,退火温度为450℃,退火时间为8 min,重复上述“旋涂-烘干-退火”的过程共4次,得到TiO2/Mica,备用。
(d)用直流磁控溅射的方法在TiO2/Mica上沉积Pt薄膜,气氛为Ar,真空度为0.05mbar,电流为30 mA,底电极厚度为80 nm;底电极预处理时气氛为N2,温度为500 ℃,时间为8 min。得到Pt/TiO2/Mica,备用。
(2)Na0.5×1.015Bi0.5×1.01(Ti0.96W0.02Fe0.02)O3前驱体溶液制备
(a)按照Na0.5×1.015Bi0.5×1.01(Ti0.96W0.02Fe0.02)O3的化学计量比,准确称取0.3486 g的CH3COONa、1.7550 g的(CH3CO2)3Bi、0.0600 g的Na2WO4·2H2O、0.0728 g的Fe(NO3)3·9H2O和0.6709 g的聚乙二醇600,备用。
(b)准确量取2.24 ml乙酰丙酮和2.24 ml乙二醇甲醚于烧杯中,再将2.24 ml钛酸四异丙酯逐滴加入乙酰丙酮中,室温下磁力搅拌5小时,定义为溶液1;将称取的CH3COONa、(CH3CO2)3Bi、Fe(NO3)3·9H2O溶解于10.48 ml乙二醇甲醚中,在70 ℃加热搅拌;将称取的Na2WO4·2H2O溶解于9.89 ml乙二醇中,在70 ℃加热搅拌;以上两种溶液完全溶解后立即混合,定义为溶液2;将聚乙二醇600溶解于2.91 ml乙酸中,室温搅拌直至完全溶解,定义为溶液3。
(c)所有溶液冷却后,将溶液2、溶液3依次加入到溶液1中,室温下磁力搅拌14 h,获得浓度为0.3 mol/L的Na0.5×1.015Bi0.5×1.01(Ti0.96W0.02Fe0.02)O3前驱体溶液,备用。
(3)在底电极上沉积钛酸铋钠基薄膜
将所得Na0.5×1.015Bi0.5×1.01(Ti0.96W0.02Fe0.02)O3前驱体溶液静置陈化72 h后,采用旋涂法将前驱体溶液均匀地涂在Pt/Ti/SiO2/Si上,转速为3000 r/min,匀胶时间为30 s。然后将薄膜置于热板上烘干,烘干温度为250 ℃,烘干时间为3 min。再将薄膜放在快速升温退火炉中进行退火过程,退火气氛为O2,退火程序为350 ℃保持2 min,520 ℃保持8min。重复上述“旋涂-烘干-退火”的过程16次。
(4)在钛酸铋钠基薄膜上沉积顶电极
采用金属Pt靶,用直流磁控溅射的方法在所得Na0.5×1.015Bi0.5×1.01(Ti0.96W0.02Fe0.02)O3薄膜上沉积Pt顶电极。沉积时气氛为Ar,真空度为0.05 mbar,电流为30mA。顶电极直径为200 μm。
图14为Na0.5×1.015Bi0.5×1.01(Ti0.96W0.02Fe0.02)O3薄膜的不同温度下的电滞回线图。
图15为此薄膜的∆T和∆S随温度的变化曲线。在140 ℃附近,得到绝热温变和等温熵变的最大值:∆T~49 K,∆S~55 J K-1 kg-1

Claims (8)

1.一种兼具正负电卡效应的钛酸铋钠基薄膜,其特征在于,以钛酸铋钠为基材,B位复合引入铁离子和钨离子;所述的薄膜的组成通式为Na0.5×aBi0.5×b(Ti1-x-yWxFey)O3,其中,1.01≤a≤1.02,1.01≤b≤1.04,0.01≤x≤0.02,0.01≤y≤0.02。
2.一种权利要求1所述的钛酸铋钠基薄膜的制备方法,其特征在于,包括以下步骤:
(1)准备底电极;
(2)Na0.5×aBi0.5×b(Ti1-x-yWxFey)O3前驱体溶液制备:
(a)选择乙酸钠、乙酸铋或硝酸铋、硝酸铁、钨酸钠、钛酸四异丙酯作为原料,按照Na0.5× aBi0.5×b(Ti1-x-yWxFey)O3的化学计量比,准确称取原料;
(b)先量取乙酰丙酮和乙二醇甲醚于烧杯中,再将钛酸四异丙酯加入其中,室温下搅拌3-5小时,定义为溶液1;
将已称取的乙酸铋或硝酸铋、乙酸钠、硝酸铁溶解于乙二醇甲醚中,于40~70°C加热搅拌;将称取的钨酸钠溶解于乙二醇中,于40~70°C加热搅拌;以上两种溶液完全溶解后混合,定义为溶液2;
称取聚乙二醇600溶解于乙酸中,室温搅拌直至完全溶解,定义为溶液3;
(c)所有溶液冷却至室温后,将溶液2、溶液3加入到溶液1中,室温下搅拌10-15小时,获得前驱体溶液,备用;
(3)在底电极上沉积钛酸铋钠基薄膜
将前驱体溶液均匀地旋涂在底电极上,然后置于热板上烘干,再进行退火过程,重复上述“旋涂-烘干-退火”的过程;
(4)在钛酸铋钠基薄膜上沉积顶电极
采用金属Pt或Au靶,用直流磁控溅射的方法在钛酸铋钠基薄膜上沉积顶电极,
所述的底电极为Pt/Ti/SiO2/Si或Pt/TiO2/Mica。
3.根据权利要求2所述的制备方法,其特征在于,所述的底电极在使用前,依次置于无水乙醇和丙酮的混合液,和去离子水中,各超声10-30min,并用红外灯烘干。
4.根据权利要求2所述的制备方法,其特征在于,所述的Pt/TiO2/Mica基片,其制备方法为:
选用厚度<50 mm氟晶云母(Mica)作为基片;
制备TiO2前驱体溶液:将乙酰丙酮和钛酸四异丙酯先后加入乙二醇甲醚中,加以搅拌后得到TiO2前驱体溶液,备用;
将TiO2前驱体溶液旋涂在Mica上,然后烘干,再进行退火处理,重复 “旋涂-烘干-退火”的过程共3-5次,得到TiO2/Mica,备用;
用直流磁控溅射的方法在TiO2/Mica上沉积Pt薄膜,得到Pt/TiO2/Mica。
5.根据权利要求4所述的制备方法,其特征在于,所述的制备TiO2前驱体溶液, 具体为,将0.30 ml乙酰丙酮和0.89 ml钛酸四异丙酯先后加入28.81 ml乙二醇甲醚中,并搅拌1-5h,得到浓度为0.1 mol/L的TiO2前驱体溶液。
6.根据权利要求4中所述的制备方法,其特征在于,
所述的旋涂转速为3000转/分钟,时间为30 s;烘干温度为250 °C,烘干时间为3 min;退火温度为450 °C,退火时间为8 min;
所述的用直流磁控溅射的方法在TiO2/Mica上沉积Pt薄膜,操作参数为:直流磁控溅射沉积底电极时气氛为Ar,真空度为0.05 mbar,电流为30 mA,底电极厚度为80 nm;底电极预处理时气氛为N2,温度为500 °C,时间为8 min。
7.根据权利要求2中所述的制备方法,其特征在于,所述的步骤(3)中,旋涂时转速为3000转/分钟,时间为30秒;烘干温度为200 °C,烘干时间为3 min;预处理温度为350 ℃,预处理时间为2 min,退火气氛为空气或O2,退火温度为500-550 °C,退火时间为6~10 min。
8.根据权利要求2所述的制备方法,其特征在于,所述步骤(4)中沉积顶电极时气氛为Ar,真空度为0.05 mbar,电流为30 mA,顶电极直径为200 μm。
CN202010320707.6A 2020-04-22 2020-04-22 一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法 Active CN111525021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010320707.6A CN111525021B (zh) 2020-04-22 2020-04-22 一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010320707.6A CN111525021B (zh) 2020-04-22 2020-04-22 一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111525021A CN111525021A (zh) 2020-08-11
CN111525021B true CN111525021B (zh) 2023-08-22

Family

ID=71903773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010320707.6A Active CN111525021B (zh) 2020-04-22 2020-04-22 一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111525021B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062554B (zh) * 2020-09-17 2022-08-19 广西大学 一种pstt基高性能陶瓷电卡制冷材料的制备方法
CN112062563B (zh) * 2020-09-17 2022-05-03 广西大学 一种psint基高熵铁电薄膜材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099279A1 (en) * 2006-03-01 2007-09-07 Alexandr Mishchenko Thick and thin films for power generation and cooling
CN104987064A (zh) * 2015-08-13 2015-10-21 内蒙古科技大学 一种负电卡效应的钛酸铋钠基无铅陶瓷及其制备方法
CN106554202A (zh) * 2016-11-14 2017-04-05 山东大学 一种铋层状结构钛酸铋钠高温压电陶瓷材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095315B2 (ja) * 2007-09-05 2012-12-12 富士フイルム株式会社 ペロブスカイト型酸化物、強誘電体膜とその製造方法、強誘電体素子、及び液体吐出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099279A1 (en) * 2006-03-01 2007-09-07 Alexandr Mishchenko Thick and thin films for power generation and cooling
CN104987064A (zh) * 2015-08-13 2015-10-21 内蒙古科技大学 一种负电卡效应的钛酸铋钠基无铅陶瓷及其制备方法
CN106554202A (zh) * 2016-11-14 2017-04-05 山东大学 一种铋层状结构钛酸铋钠高温压电陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Compensation for volatile elements to modify the microstructure and energy storage performance of (W,Ni)-codoped Na0.5Bi0.5TiO3ceramicfilms;Y.J. Han等;《Ceramics International》;20180518;第44卷;第15153-15159页 *

Also Published As

Publication number Publication date
CN111525021A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
Yan et al. Giant electro-strain and enhanced energy storage performance of (Y0. 5Ta0. 5) 4+ co-doped 0.94 (Bi0. 5Na0. 5) TiO3-0.06 BaTiO3 lead-free ceramics
Li et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors
CN111525021B (zh) 一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法
CN100450969C (zh) 一种亚微米晶压电陶瓷材料的制备方法
CN110195208B (zh) 一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法
CN109234679B (zh) 一种双层pnzst钙钛矿反铁电薄膜及其制备方法
CN109545548B (zh) 一种稀土元素改性的宽温薄膜储能电容器及其制备方法
CN108892503B (zh) 一种高电卡效应薄膜材料及其制备方法
CN110498681B (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN102244192B (zh) 一种基于钛酸铋钠基和铁酸铋基的复合固溶体薄膜及其制备方法
CN112209711A (zh) 一种锆钛锡铌酸铅厚膜陶瓷及其制备方法和应用
CN108588693A (zh) 采用全无机前驱体溶液制备钇掺杂二氧化铪铁电薄膜的方法及应用
CN111662469A (zh) 一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备方法
CN105399339A (zh) 一种含掺杂元素的铁酸铋基薄膜及其制备方法
CN106699173A (zh) 一种反铁电高储能陶瓷材料及其制备方法
CN108929111A (zh) 一种超高放电储能密度的介质薄膜及其制备方法
Roh et al. Thickness-dependent electrocaloric effect in Pb 0.9 La 0.1 Zr 0.65 Ti 0.35 O 3 films grown by sol–gel process
Wu et al. Temperature-and frequency-dependent dielectric response and energy-storage performance in high (100)-oriented Sc doped (Na 0.85 K 0.15) 0.5 Bi 0.5 TiO 3 films
CN103232239A (zh) 一种微波介电陶瓷材料及制备方法
Ke et al. Highly frequency-, temperature-, and bias-stable dielectric properties of 500° C processed Bi2SiO5 thin films with low dielectric loss
CN108085650A (zh) 一种磁控溅射制备高质量铁酸铋铁电光伏薄膜的方法
CN102992757B (zh) 一种高储能密度的铁电膜材料及其制备方法
CN112661508B (zh) 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN109553415B (zh) 具有高电热效应的硅掺杂锆钛酸铅非取向薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant