CN111450810A - 一种改进材料孔隙结构的方法 - Google Patents

一种改进材料孔隙结构的方法 Download PDF

Info

Publication number
CN111450810A
CN111450810A CN202010265000.XA CN202010265000A CN111450810A CN 111450810 A CN111450810 A CN 111450810A CN 202010265000 A CN202010265000 A CN 202010265000A CN 111450810 A CN111450810 A CN 111450810A
Authority
CN
China
Prior art keywords
liquid nitrogen
porous material
stainless steel
steel container
pore structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010265000.XA
Other languages
English (en)
Other versions
CN111450810B (zh
Inventor
宋卫军
谢妤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN202010265000.XA priority Critical patent/CN111450810B/zh
Publication of CN111450810A publication Critical patent/CN111450810A/zh
Application granted granted Critical
Publication of CN111450810B publication Critical patent/CN111450810B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种改进材料孔隙结构的方法,涉及吸附材料领域,包括如下步骤,步骤一:取适量吸附材料至广口不锈钢容器中,所述吸附材料为无机多孔材料或有机多孔材料;步骤二:向不锈钢容器中徐徐缓慢加入液氮后,将不锈钢容器封好盖子,反应时间为液氮加入后至液氮自然蒸发完毕;步骤三:待步骤二中吸附材料自然升温至室温后,重复步骤二操作1‑4次。本发明具有改性成本低,操作简单,设备要求低,能耗低的特点。

Description

一种改进材料孔隙结构的方法
技术领域
本发明涉及吸附材料领域,具体涉及一种改进材料孔隙结构的方法。
背景技术
吸附剂是能有效地从气体或液体中吸附其中某些成分的固体物质。吸附剂一般有以下特点:大的比表面积、适宜的孔结构及表面结构,对吸附质有强烈的吸附能力,一般不与吸附质和介质发生化学反应。
可做吸附剂的吸附材料分为无机多孔材料和有机多孔材料。无机多孔材料如,天然沸石,人工沸石,煤粉灰等,有机多孔材料如各类生物炭(各种原料的生物炭),各类活性炭(各种原料和形状的生物炭:柱状、颗粒、粉末等)。
按照孔径大小,将多孔材料分为微孔(<2.0nm)、介孔(2.0~50nm)和大孔(>50.0nm)这三类。微孔材料主要通过固相法、水热法和溶剂热法等方法制备;介孔材料主要采用模板法制备;大孔材料一般是通过乳液聚合法、生物模板法和胶晶模板法进行制备。
多孔材料的改性路径主要分两种,第一种是通过材料前期合成时调整工艺参数得以实现。例如活性炭材料,其活化步骤对调整孔径分布非常关键,添加化学活化剂不同,形成的孔结构也不同,虽然同样都可以获得高达1000m2/g左右的比表面积,但ZnCl2活化的活性炭中孔比较丰富,而KOH活化的活性炭微孔则较多;该方法缺点是对工艺设备,控制精度和原料成分要求较高,优点是从根本上可解决目标多孔材料的孔隙需求。
第二种是对一些商业或者现有多孔材料进行后期改性,主要有以下几种:
(1)金属盐浸渍法,优点是可以增强或削弱多孔材料表面对特定吸附对象的吸附作用力;缺点是额外引入金属例子,造成二次污染。
(2)超声辅助浸渍法,是在金属盐浸渍法的基础上发展起来的,优点是解决了普通浸渍法中所发生的有效成分团聚以及分布不均匀的现象,使得这些活性金属离子成分具有更小的粒径和更高的分散度,进一步增强或削弱多孔材料表面对特定吸附对象的吸附作用力;缺点是额外增加超声设备,施工难度提高,成本增加。
(3)热氧化法,是针对多孔碳材料表面进行改性的一种简单方法。优点是炭与高温空气接触时,其表面会发生氧化反应,炭表面酸性含氧基团增加,表面活性吸附点位随之增加;缺点是会导致炭材料有严重的质量损失,工艺能耗增加等。
(4)低温等离子体法,主要针对应用热氧化法修饰活性炭时会导致碳材料的质量损失而发展起来的一种表面修饰技术,优点是能够促进固体材料表面发生物理、化学性质的变化,可应用于吸附剂改性、催化剂制备、膜材料表面改性等领域的研究中,适用范围较广;缺点是需要外加电场或辐射等能量供应,才能使气体分子电离成电子、离子、原子、分子和自由基等集合体。
(5)固固离子交换法(分子单层自发分散),优点是无需能量,利用热力学自发原理,可将金属氧化物和盐类以单层形式最大化(接近其分散阈值)地分散在固体基质表面,对高分散活性组分的负载型催化剂和吸附剂具有重要的意义。缺点是盐与载体的比例要满足假定严密单层覆盖载体表面所需的盐量,因此首先必须确定载体的BET表面积。
发明内容
本发明目的在于针对现有技术中的不足,提供一种改进材料孔隙结构的方法,具有改性成本低,操作简单,设备要求低,能耗低的特点。
技术方案:
一种改进材料孔隙结构的方法,包括如下步骤:
步骤一:取适量吸附材料至广口不锈钢容器中,所述吸附材料为无机多孔材料或有机多孔材料;
步骤二:向不锈钢容器中徐徐缓慢加入液氮后,将不锈钢容器封好盖子,反应时间为液氮加入后至液氮自然蒸发完毕;
步骤三:待步骤二中吸附材料自然升温至室温后,重复步骤二操作1-4次。
进一步的,所述无机多孔材料为天然沸石、人工沸石或粉煤灰中的一种;所述有机多孔材料为生物炭或活性炭。
进一步的,所述吸附材料为无机多孔材料时,步骤二中加入液氮后,无机多孔材料与液氮的堆积体积比为1:5~200;所述吸附材料为有机多孔材料时,步骤二中加入液氮后,有机多孔材料与液氮的堆积体积比为1:1~50。
进一步的,所述无机多孔材料为天然沸石,所述有机多孔材料为蓝藻生物炭。
在所述改进材料孔隙结构的方法中加入金属盐后,所述改进材料孔隙结构的方法,包括如下步骤:
步骤一:取适量吸附材料至广口不锈钢容器中,所述吸附材料为无机多孔材料或有机多孔材料;
步骤二:向不锈钢容器中加入适量金属盐,再徐徐缓慢加入液氮后,将不锈钢容器封好盖子,反应时间为液氮加入后至液氮自然蒸发完毕;
步骤三:待步骤二中吸附材料自然升温至室温后,重复步骤二操作1-3次,每次重复步骤二操作时,加入金属盐的量为零或逐级减半。
进一步的,所述吸附材料与金属盐的质量比为1:0.1~5。
进一步的,所述金属盐为聚合氯化铝、氢氧化钾、氯化锌、硫酸铝、零价铁中的一种或多种;
进一步的,所述无机多孔材料与液氮堆积体积比为1:5~100,所述有机多孔材料与液氮堆积体积比为1:1~50。
有益效果:本发明的改进材料孔隙结构的方法,具有成本低,操作简单,无需额外增加能耗,且无需特殊的仪器设备,操作简单。
附图说明
图1为天然沸石与液氮改性天然沸石的吸脱附等温曲线。
图2为蓝藻生物炭与液氮改性蓝藻生物炭的吸脱附等温曲线。
具体实施方式
下面通过附图对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
本发明提供一种改进材料孔隙结构的方法,具体为利用低温液氮在低温环境下改性吸附材料,进而改进材料孔隙结构的方法。
一、超低温液氮低温环境下改性吸附材料
1、方法:
步骤一:取适量吸附材料至不锈钢容器(容器口为广口型,不可以为小口型,小口型容器容易引起暴沸现象);
所述吸附材料为无机多孔材料和有机多孔材料,所述无机多孔材料如天然沸石,人工沸石,粉煤灰等,所述有机多孔材料为各类生物炭(各种原料的生物炭),各类活性炭(各种原料和形状的生物炭:柱状、颗粒、粉末等);
步骤二:向不锈钢容器中徐徐缓慢加入液氮;
所述吸附材料为无机多孔材料时,无机多孔材料与液氮的堆积体积比为1:5~200;所述吸附材料为有机多孔材料时,有机多孔材料与液氮的堆积体积比为1:1~50;
将不锈钢容器封好盖子,以减少液氮的蒸发,提高液氮利用率,反应时间为液氮加入后至液氮自然蒸发完毕;
待步骤二中吸附材料自然升温(步骤二结束时材料温度极低)至室温后,依据材料比表面、孔容积和孔径需求,重复步骤二操作1-4次。
2、原理:利用常温常压下,液氮(温度为77K)蒸发时的沸腾作用,实现液氮与材料之间的介质混合,低温液氮气化过程可对材料进行孔道疏通、重新微孔制造有一定的作用。但重复步骤二次数越多,会出现材料结构脆化和强度变低的现象。所以要适度控制步骤二的重复次数。本方法具有成本低,操作简单,无需额外增加能耗,不会引入新的物质,改性剂无色,无臭,无腐蚀性,不可燃,无毒,无二次污染等优点,且无需特殊的仪器设备,操作简单。
二、在超低温液氮环境下加入金属盐改性吸附材料
1、方法:
步骤一:取适量吸附材料至不锈钢容器(容器口必须为广口型,不可以为小口型,否则会暴沸);
所述吸附材料为无机多孔材料和有机多孔材料,所述无机多孔材料如天然沸石,人工沸石,粉煤灰等,所述有机多孔材料如各类生物炭(各种原料的生物炭),各类活性炭(各种原料和形状的生物炭:柱状、颗粒、粉末等);
步骤二:向不锈钢容器中加入适量金属盐,所述金属盐为聚合氯化铝、氢氧化钾、氯化锌、硫酸铝、零价铁中的一种或多种;所述吸附材料与金属盐的质量比为1:0.1~5;
再徐徐缓慢加入液氮,所述无机多孔材料与液氮堆积体积比为1:5~100,所述有机多孔材料与液氮堆积体积比为1:1~50;将不锈钢容器封好盖子,以减少液氮的蒸发,提高液氮利用率,反应时间为至液氮自然蒸发完毕;
步骤三:待步骤二中吸附材料自然升温(步骤二结束时材料温度极低)至室温后,依据材料比表面、孔容积和孔径需求,重复步骤二操作1-3次,每次重复步骤二操作时,加入金属盐的量为零或逐级减半。
2、原理:
超低温下的液氮环境,金属具有特殊的冷介质物理特性,可以改变吸附材料的表面特性,再利用常温常压下,液氮(温度为77K,即-196℃)蒸发时的沸腾作用,实现液氮与吸附材料之间的介质混合,低温液氮气化过程可对材料进行孔道疏通、重新微孔制造有一定的作用。但重复步骤二次数越多,会出现材料结构脆化,强度变低现象。所以要适度控制步骤二的重复次数。本方法,操作简单,无需额外增加能耗,且无需特殊的仪器设备。
实例一:超低温液氮低温环境下对天然沸石的改性
改性步骤如下:
步骤一:取天然沸石50g,置于500ml的不锈钢容器中;
步骤二:向不锈钢容器中缓慢加入100ml液氮,不搅拌不摇动,常温常压下静止,将不锈钢容器封好盖子,至液氮蒸发完毕;
步骤三:待天然沸石自然升温至室温后,再次向不锈钢容器中加入缓慢加入100ml液氮,不搅拌不摇动,常温常压下静止,将不锈钢容器封好盖子,直至液氮蒸发完毕。
实施例一中:天然沸石的堆积体积=50g/(2.3g/cm3)=21.7cm3=21.7ml,液氮总的使用量为200ml,天然沸石与液氮的堆积体积比为1:10,则改性1.0kg的天然沸石的液氮成本为4.4元左右。
改性结果如图1和表1所述:图1为天然沸石和改性后天然沸石的吸附-脱附等温曲线,改性后的天然沸石的吸附和脱附能力明显增加。
表1为天然沸石与液氮改性天然沸石比表面积、孔容和孔径参数,经过液氮改性后,天然沸石的BET比表面积由24.87cm2/g增加到83.16cm2/g,吸附孔容由0.0441cm3/g增加到0.1963cm3/g,孔口直径发生了微量改变,由7.09413nm增加到7.64523nm。
表1沸石与液氮改性天然沸石比表面积、孔容和孔径参数
Figure BDA0002440893900000051
实例二:超低液氮低温环境下对蓝藻生物炭的改性
改性步骤如下:
步骤一:取蓝藻生物炭50g,置于500ml的不锈钢容器中;
步骤二:按照蓝藻生物炭重量的15%和5.0%分别向不锈钢容器中加入聚合氯化铝和氢氧化钾;
向不锈钢容器中加入缓慢加入125ml液氮,不搅拌不摇动,常温常压下静止,将不锈钢容器封好盖子,至液氮蒸发完毕;
步骤三:待蓝藻生物炭自然升温至室温后,再次缓慢加入125ml液氮,不搅拌不摇动,常温常压下静止,将不锈钢容器封好盖子,至液氮蒸发完毕。
通过实施例二可知,5g蓝藻生物炭的堆积体积=50g/(0.4g/cm3)=125cm3=125ml,液氮总的使用量为250ml,蓝藻生物炭与液氮的堆积体积比为1:2,则改性1.0kg的蓝藻生物炭液氮成本为5.0元左右。
改性结果如图2和表2所示:图2为蓝藻生物炭和改性后蓝藻生物炭的吸附-脱附等温曲线,改性后的蓝藻生物炭的吸附和脱附能力增加。
表2为蓝藻生物炭与液氮改性蓝藻生物炭的比表面积、孔容和孔径参数,经过液氮改性,蓝藻生物炭的BET比表面积由1.3076cm2/g增加到1.6965cm2/g,吸附孔容由0.004301cm3/g增加到0.009013cm3/g,孔口直径发生了较大量改变,由7.14528nm增加到12.65291nm。
表2蓝藻生物炭与液氮改性蓝藻生物炭的比表面积、孔容和孔径参数
Figure BDA0002440893900000061
工业用液氮1.0元/L左右,天然沸石的密度取2.3g/cm3,设备为常用的不锈钢容器即可,成本低廉,不需要其它特殊设备。
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的精神和范围前提下,可对其在形式上和细节上做出各种变化。

Claims (8)

1.一种改进材料孔隙结构的方法,其特征在于,包括如下步骤:
步骤一:取适量吸附材料至广口不锈钢容器中,所述吸附材料为无机多孔材料或有机多孔材料;
步骤二:向不锈钢容器中徐徐缓慢加入液氮后,将不锈钢容器封好盖子,反应时间为液氮加入后至液氮自然蒸发完毕;
步骤三:待步骤二中吸附材料自然升温至室温后,重复步骤二操作1-4次。
2.根据权利要求1所述的改进材料孔隙结构的方法,其特征在于,所述无机多孔材料为天然沸石、人工沸石或粉煤灰中的一种;
所述有机多孔材料为生物炭或活性炭。
3.根据权利要求1所述的改进材料孔隙结构的方法,其特征在于,所述吸附材料为无机多孔材料时,步骤二中加入液氮后,无机多孔材料与液氮的堆积体积比为1:5~200;所述吸附材料为有机多孔材料时,步骤二中加入液氮后,有机多孔材料与液氮的堆积体积比为1:1~50。
4.根据权利要求1所述的改进材料孔隙结构的方法,其特征在于,
步骤一:取适量吸附材料至广口不锈钢容器中,所述吸附材料为无机多孔材料或有机多孔材料;
步骤二:向不锈钢容器中加入适量金属盐,再徐徐缓慢加入液氮后,将不锈钢容器封好盖子,反应时间为液氮加入后至液氮自然蒸发完毕;
步骤三:待步骤二中吸附材料自然升温至室温后,重复步骤二操作1-3次,每次重复步骤二操作时,加入金属盐的量为零或逐级减半。
5.根据权利要求4所述的改进材料孔隙结构的方法,其特征在于,所述吸附材料与金属盐的质量比为1:0.1~5。
6.根据权利要求4所述的改进材料孔隙结构的方法,其特征在于,所述金属盐为聚合氯化铝、氢氧化钾、氯化锌、硫酸铝、零价铁中的一种或多种。
7.根据权利要求4所述的改进材料孔隙结构的方法,其特征在于,所述无机多孔材料与液氮堆积体积比为1:5~100,所述有机多孔材料与液氮堆积体积比为1:1~50。
8.根据权利要求2所述的改进材料孔隙结构的方法,其特征在于,所述无机多孔材料为天然沸石,所述有机多孔材料为蓝藻生物炭。
CN202010265000.XA 2020-04-07 2020-04-07 一种改进材料孔隙结构的方法 Active CN111450810B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010265000.XA CN111450810B (zh) 2020-04-07 2020-04-07 一种改进材料孔隙结构的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010265000.XA CN111450810B (zh) 2020-04-07 2020-04-07 一种改进材料孔隙结构的方法

Publications (2)

Publication Number Publication Date
CN111450810A true CN111450810A (zh) 2020-07-28
CN111450810B CN111450810B (zh) 2022-05-27

Family

ID=71674031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010265000.XA Active CN111450810B (zh) 2020-04-07 2020-04-07 一种改进材料孔隙结构的方法

Country Status (1)

Country Link
CN (1) CN111450810B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015010473A1 (zh) * 2013-07-26 2015-01-29 中南大学 制备不同孔结构的多孔陶瓷微球的方法及喷雾冷冻装置
CN106525691A (zh) * 2016-12-09 2017-03-22 河南理工大学 一种煤全孔径孔隙结构多数据融合的测定方法
CN108394897A (zh) * 2018-05-25 2018-08-14 清华-伯克利深圳学院筹备办公室 一种多孔氧化石墨烯的宏量制备方法
CN110272085A (zh) * 2019-07-30 2019-09-24 江南大学 一种改性蓝藻生物炭复合材料及在处理电镀废水中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015010473A1 (zh) * 2013-07-26 2015-01-29 中南大学 制备不同孔结构的多孔陶瓷微球的方法及喷雾冷冻装置
CN106525691A (zh) * 2016-12-09 2017-03-22 河南理工大学 一种煤全孔径孔隙结构多数据融合的测定方法
CN108394897A (zh) * 2018-05-25 2018-08-14 清华-伯克利深圳学院筹备办公室 一种多孔氧化石墨烯的宏量制备方法
CN110272085A (zh) * 2019-07-30 2019-09-24 江南大学 一种改性蓝藻生物炭复合材料及在处理电镀废水中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUN"KO, VM ET AL.: "Structural characteristics of a carbon adsorbent and influence of organic solvents on interfacial water", 《APPLIED SURFACE SCIENCE》 *

Also Published As

Publication number Publication date
CN111450810B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
Shabir et al. Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications
Zhang et al. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage
Sivadas et al. Nitrogen-enriched microporous carbon derived from sucrose and urea with superior CO2 capture performance
Wickramaratne et al. Importance of small micropores in CO 2 capture by phenolic resin-based activated carbon spheres
Wang et al. Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture
Ludwinowicz et al. Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption
Son et al. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials
CN113893822B (zh) 一种高比表面积的木质素分级多孔炭及其制备方法与应用
Gadipelli et al. Design of hyperporous graphene networks and their application in solid-amine based carbon capture systems
Wickramaratne et al. Tailoring microporosity and nitrogen content in carbons for achieving high uptake of CO 2 at ambient conditions
Zeng et al. High-performance CO 2 capture on amine-functionalized hierarchically porous silica nanoparticles prepared by a simple template-free method
CN108380175A (zh) 一种碳酸氧镧-埃洛石复合材料及其制备方法和应用
Yang et al. Enhanced mass transfer on hierarchical porous pure silica zeolite used for gas separation
Singh et al. Pure and strontium carbonate nanoparticles functionalized microporous carbons with high specific surface areas derived from chitosan for CO 2 adsorption
CN108854874A (zh) 一种基于空气活化造孔的具有超高比表面积的超纯碳气凝胶及其制备方法
Wang et al. Fabrication of hierarchical N-doped carbon nanotubes for CO2 adsorption
Xu et al. Mn-promoted CaO-based adsorbents with enhanced CO2 uptake performance
Dai et al. One‐pot synthesis of meso‐microporous ZSM‐5 and its excellent performance in VOCs adsorption/desorption
Wei et al. Influence of minerals with different porous structures on thermochemical heat storage performance of CaCl2-based composite sorbents
CN110902680A (zh) 一种有机钾催化活化木质素磺酸钠制备介孔炭材料的方法
Cai et al. Mechanochemical synthesis of tannic acid-Fe coordination compound and its derived porous carbon for CO2 adsorption
Wu et al. Mesoporous alumina-supported layered double hydroxides for efficient CO2 capture
Chen et al. Preparation of carbon black‐based porous carbon adsorbents and study of toluene adsorption properties
Chi et al. Porous molecular sieve polymer composite with high CO2 adsorption efficiency and hydrophobicity
CN111450810B (zh) 一种改进材料孔隙结构的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant