CN111443313B - 一种利用双光子飞秒激光直写技术3d打印的f-p磁场传感器及其制作方法 - Google Patents

一种利用双光子飞秒激光直写技术3d打印的f-p磁场传感器及其制作方法 Download PDF

Info

Publication number
CN111443313B
CN111443313B CN202010339163.8A CN202010339163A CN111443313B CN 111443313 B CN111443313 B CN 111443313B CN 202010339163 A CN202010339163 A CN 202010339163A CN 111443313 B CN111443313 B CN 111443313B
Authority
CN
China
Prior art keywords
magnetic field
mode fiber
plane
printing
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010339163.8A
Other languages
English (en)
Other versions
CN111443313A (zh
Inventor
张登伟
梁璀
魏鹤鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
University of Shanghai for Science and Technology
Original Assignee
Zhejiang University ZJU
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, University of Shanghai for Science and Technology filed Critical Zhejiang University ZJU
Priority to CN202010339163.8A priority Critical patent/CN111443313B/zh
Publication of CN111443313A publication Critical patent/CN111443313A/zh
Application granted granted Critical
Publication of CN111443313B publication Critical patent/CN111443313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本发明公开了一种利用双光子飞秒激光直写技术3D打印的F‑P磁场传感器,其特征在于包含单模光纤、毛细管和F‑P腔微结构;所述F‑P腔微结构与所述单模光纤的一端由3D打印直接打印连接,F‑P腔微结构的***套设有毛细管,毛细管的两端密封形成密封腔体,密封腔体内充满磁流体;所述单模光纤的另一端通过光纤耦合器分别连接宽谱光源和光谱分析仪;其原理与传统的内部填充磁流体的光纤磁场传感器不同,通过在波导周围填充磁流体所产生的倏逝耦合效应,突破了磁流体高吸收性对传感器磁场灵敏度的限制,具有较高的磁场灵敏度;打印制备的F‑P磁场传感器仅为微米尺寸,封装后的传感头在毫米量级,具有小型化的优点。

Description

一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器 及其制作方法
技术领域
本发明涉及光学传感技术领域,具体涉及一种利用双光子飞秒激光直写技术 3D打印的F-P磁场传感器及其制作方法。
背景技术
科学研究与工业应用的重大需求,促使磁场测量技术飞速发展。当前已经提出了用于检测磁场的各种类型的基于光学和电学的磁场传感器,其中基于磁流体(Magneticfluid,MF)的光纤磁场传感器是一种有潜力的磁场传感器,这种传感器使用磁流体作为敏感物质,磁流体由包裹表面活性剂(油酸)的磁性纳米颗粒 (如Fe3O4,CoFe2O4或MnFe2O4等)悬浮分散在某些溶剂中混合而成。磁流体具有折射率可调、倏逝场传输依赖性、法拉第效应和双折射效应等磁光特性,可利用光学方法实现对外界磁场的精密检测。
MF用于磁场感应的基本原理是MF的折射率随周围磁场的增加而增加。基于这一原理,已经提出并设计了各种内部填充有MF的基于光纤的磁场传感器,包括基于Fabry-Perot干涉仪(FPI)和Mach-Zehnder干涉仪(MZI)的腔内传感方案。但是由于MF的高吸收性,传感长度和MF浓度之间存在矛盾,即传感长度随MF浓度的增加而缩短,因此限制了传感器灵敏度的提高。
MF的存在可以改变导模或倏逝场的特性,从而导致光程差的改变,这一原理可以应用于多种传感结构中,如Mach-Zehnder、Sagnac干涉仪、多模干涉仪、长周期光纤光栅等。基于单模光纤(SMF)中多模干涉的磁场传感器难以实现高灵敏度,增加干涉长度可以提高对磁场的灵敏度,但是磁传感器的尺寸会增加,而在实际应用中,小型化是高灵敏度磁场传感器和设备开发中的关键问题,要求既要保证磁场传感器的灵敏度,又要兼备传感器的小型化特点。虽然现有技术中存在一些带有可填充MF气孔的小型化光子晶体光纤传感器,但这些结构在制备工艺上存在难点,稳定性较差,且在测量过程中的光信号直接通过填充有MF的空腔传输,光信号损耗较高。若要使得磁场传感器兼备高灵敏度、高稳定性、小型化、低损耗的优点,则需要同时考虑制作工艺和传感器结构的设计,具有较大的挑战性。
发明内容
为了解决现有技术中的磁场传感器灵敏度、稳定性较低,以及光信号损耗较大的缺陷,本发明提出了一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器及其制作方法,采用双光子激光直写技术3D打印制造的器件具有高分辨率和快速写入速度的优势,能够解决小型化磁场传感器由于制作工艺导致的稳定性差的问题。本发明设计了一种新的F-P腔微结构且被磁流体包覆,使得光信号在传输过程中沿着F-P腔微结构中的波导传输,避免了光信号直接通过填充有磁流体的空腔传输导致的光信号损耗较高的问题,本发明制作的F-P磁场传感器具备了较高的灵敏度。
为了实现上述目的,本发明采用如下技术方案:
一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于包含单模光纤、毛细管和F-P腔微结构;所述F-P腔微结构与所述单模光纤的一端由3D打印直接打印连接,F-P腔微结构的***套设有毛细管,毛细管的两端密封形成密封腔体,密封腔体内充满磁流体;所述单模光纤的另一端通过光纤耦合器分别连接宽谱光源和光谱分析仪;
所述的F-P腔微结构包括波导、第一平面、第二平面和支撑结构;所述的波导与单模光纤的纤芯对齐,第一平面和第二平面分别与波导的两端垂直连接,且第一平面与单模光纤的一端相接触;波导的***设有连接第一平面和第二平面的支撑结构。
作为本发明的优选,所述毛细管的两端使用紫外固化胶固定和密封。
作为本发明的优选,所述毛细管的直径大于单模光纤的直径。
作为本发明的优选,所述第一平面、第二平面的直径与单模光纤的直径相同。
作为本发明的优选,所述的第一平面为单模光纤与F-P腔微结构的界面,其两侧存在折射率差;所述的第二平面上与波导相连的一侧镀有全反膜。
作为本发明的优选,所述的波导由锥形体和圆柱体构成,锥形体的小端面与圆柱体的一个端面匹配连接,锥形体的大端面与单模光纤的纤芯直径相同。
作为本发明的优选,所述圆柱体的直径范围为0.5μm-10μm。
本发明还公开了一种上述的利用双光子飞秒激光直写技术3D打印的F-P磁场传感器的制作方法,包含如下步骤:
1)将单模光纤的一个端面进行切割,并将切割面固定在基板的一侧;
2)利用双光子飞秒激光直写仪直接将所述的F-P腔微结构3D打印在单模光纤的切割面上,在打印过程中,波导由锥形体和圆柱体构成,锥形体的小端面直径与圆柱体直径相同,锥形体的大端面与单模光纤的纤芯直径相同,第一平面、第二平面的直径与单模光纤的直径相同;
3)所述的F-P腔微结构打印完成后,将毛细管套设在F-P腔微结构的***,毛细管的一端通过紫外固化胶密封在单模光纤的一端;将吸入磁流体的注射器连通未密封的毛细管的另一端,待磁流体灌装完毕后,将毛细管的另一端密封,形成包围F-P腔微结构的密封腔体;F-P磁场传感器制作完成。
作为本发明的优选,在3D打印过程中,打印材料采用聚合物流体材料。
本发明的有益效果在于:
本发明提出了一种利用双光子飞秒激光直写技术3D打印的高灵敏度磁场传感器,其原理与传统的内部填充磁流体的光纤磁场传感器不同,通过在波导周围填充磁流体所产生的倏逝耦合效应,突破了磁流体高吸收性对传感器磁场灵敏度的限制,从而具有较高的磁场灵敏度;此外,该传感器采用双光子飞秒激光直写技术3D打印的工艺,解决了制作困难、稳定性差的问题,从而具有稳定性高、易于加工的优点;最后,该F-P磁场传感器中的F-P腔微结构直接打印于单模光纤端面,波导仅为微米尺寸,封装后的传感头在毫米量级,具有小型化的优点。
附图说明
图1是本发明中利用双光子飞秒激光直写技术3D打印的F-P磁场传感器在工作过程中的原理示意图;
图2是本发明中利用双光子飞秒激光直写技术3D打印的F-P磁场传感器的结构示意图;
图3为本发明的部分实验测试光谱图;
图4为本发明的实验测试结果图;
图中:1.宽谱光源,2.光纤耦合器,3.F-P磁场传感器,4.光谱分析仪,3-1. 单模光纤,3-2.第一平面,3-3.波导,3-4.第二平面,3-5.毛细管,3-6.支撑结构。
具体实施方式
下面结合附图和实例对本发明作进一步说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
如图2所示,一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,包含单模光纤3-1、毛细管3-5和F-P腔微结构;所述F-P腔微结构与所述单模光纤3-1的一端由3D打印直接打印连接,F-P腔微结构的***套设有毛细管3-5,毛细管3-5的两端密封形成密封腔体,密封腔体内充满磁流体;所述的F-P磁场传感器在工作时,如图1所示,所述单模光纤3-1的另一端通过光纤耦合器2 分别连接宽谱光源1和光谱分析仪4。
所述的F-P腔微结构包含单模光纤3-1第一平面3-2、波导3-3、第二平面 3-4毛细管3-5以及支撑结构3-6,其中第一平面3-2、波导3-3、第二平面3-4 组成F-P腔;所述的波导3-3与单模光纤3-1的纤芯对齐,第一平面3-2和第二平面3-4分别与波导3-3的两端垂直连接,且第一平面3-2与单模光纤3-1的一端相接触;支撑结构3-6用于连接连接第一平面3-2和第二平面3-4,使所述的 F-P腔微结构结构更加稳定。第一平面为单模光纤和F-P腔微结构的界面,其直径与单模光纤相同,且两侧存在折射率差,根据菲涅尔定律,由于折射率差的存在,入射到第一平面的光信号会部分反射、部分透射;第二平面位于波导3-3末端,其直径与单模光纤相同,且表面镀全反膜。
在本发明的一个具体实施中,波导前端和末端均为薄片状,用于固定波导,其直径与单模光纤直径相同,波导中间部分为锥形和圆柱形,圆柱形部分的直径为1μm,锥型底面直径与光纤纤芯直径相同,前端部分直径与圆柱形相同;毛细管直径大于单模光纤直径,其两端使用紫外固化胶固定和密封,毛细管内的波导 3-3周围充满磁流体。
一种典型的实例中,使用芯/包层直径为8/125μm的康宁公司型号为 SMF-28的单模光纤,打印波导结构所用材料是折射率为1.52的IP-DIP聚合物,波导总长度为100μm,圆柱波导的直径为1μm。
F-P磁场传感器的打印过程为:首先,用异丙醇清洗切割后的单模光纤,将其安装在光纤支架或基板上;然后,用一小滴光致抗蚀剂覆盖光纤尖端,并使用 63倍浸没式透镜聚焦飞秒激光,通过双光子飞秒激光直写技术将设计好的F-P 腔微结构打印在单模光纤的切割端面上;打印完成后,用丙二醇单甲醚乙酸酯 (PGMEA)显影该器件,然后用IPA冲洗。
初步制作完成后,分三个步骤进行磁流体灌装及密封。第一,将毛细管(3-5) 套设在F-P腔微结构的***,使用紫外固化胶(NOA61,Thorlab)将毛细管靠近单模光纤的一端密封;第二,利用带有针管的空心光纤将磁流体注入毛细管内,通过显微***和五轴位移台控制空心光纤以避免其触碰打印的波导结构;第三,利用一块平板玻璃和紫外固化胶将毛细管另一端密封。
本发明的工作过程为:
宽谱光源1出射宽谱光,经光纤耦合器2后进入F-P磁场传感器3,进入 F-P磁场传感器的光信号在单模光纤3-1内传输,经过第一平面3-2后,部分光信号被反射,另一部分光信号透射进入波导3-3中传输,波导中传输的光信号经过第二平面3-4后被全反射,再次通过波导3-3传输耦合进入单模光纤3-1,两束反射光在输出端发生干涉,干涉信号存在周期性波动。波导3-3被毛细管3-5 包围形成封闭空间,空间内填充磁流体,磁流体通过倏逝耦合效应影响光信号相位,外界磁场发生变化时,磁流体特性发生变化,光信号的相位也随之变化,导致干涉光谱的谷发生漂移,干涉光信号经过光纤耦合器2后进入光谱分析仪4,通过光谱分析仪测量光谱波谷漂移的大小即可实现对磁场的测量。
本发明的工作原理为:
分别被第一平面和第二平面反射的光信号IR1和IR2发生干涉后,干涉光信号可以表示为:
其中λ是波长、L是波导的长度、ne是波导的有效折射率(受磁流体影响)、φ0是初始相位。由式(1)可知,在以下条件下输出强度达到谷值:
其中m是整数、λm是干涉谱的第m阶条纹倾角的波长。条纹对应干涉谱,FPI的自由光谱范围Δλ可以表示为:
当MF折射率发生变化时,波导的有效折射率ne也随之产生δne的变化量,则第m 阶条纹产生的对应漂移量δλ可以表示为:
因此,可以通过计算干涉光谱的漂移来得到磁流体的有效折射率,根据磁流体折射率与磁场的关系即可得到外界磁场的信息。
磁场实验中使用的SLED宽谱光源的光波段为1430nm到1630nm,磁场通过两个相互平行的电磁铁产生,F-P磁场传感器放置于两电磁铁中心位置,高斯计(F.W.BELL,6010)的磁场传感头放置于电磁铁中心,磁场大小通过电流源在0-300高斯范围内可调,调节精度0.1高斯,实验过程中环境温度25℃,使用光谱分析仪(OSA,AQ6317B)进行检测分析。
实验测试得到的部分光谱图如图3所示,可以看出,随着磁场强度的增加,干涉光谱呈现明显的红移。选取1618nm附近的数据进行分析,波谷位置及峰- 谷强度与所加磁场强度的关系如图4所示。可见,当磁场强度小于20高斯时,峰-谷强度随磁场强度增加迅速减小,当磁场强度大于20高斯后,峰-谷强度逐渐趋于稳定。波谷位置与磁场强度的关系可以分为四个部分,在0高斯至10高斯范围内,波谷位置所对应的共振波长随磁场强度增加而缓慢地非线性增加;在 10高斯至80高斯范围内,共振波长随磁场强度增加而显著地线性增加;在80 高斯至220高斯范围内,共振波长随磁场强度增加而线性增加,但斜率小于上一范围;在大于220高斯范围内,共振波长基本不随磁场强度变化而变化。在第二范围内,测得的共振波长随磁场强度的变化率为0.154nm/高斯,当光谱分析仪的分辨率为1pm时,对应的磁场分辨率约为66.7nT。
以上列举的仅是本发明的具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (7)

1.一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于包含单模光纤(3-1)、毛细管(3-5)和F-P腔微结构;所述F-P腔微结构与所述单模光纤(3-1)的一端由3D打印直接打印连接,F-P腔微结构的***套设有毛细管(3-5),毛细管(3-5)的两端密封形成密封腔体,密封腔体内充满磁流体,所述毛细管(3-5)的直径大于单模光纤(3-1)的直径;所述单模光纤(3-1)的另一端通过光纤耦合器(2)分别连接宽谱光源(1)和光谱分析仪(4);
所述的F-P腔微结构包括波导(3-3)、第一平面(3-2)、第二平面(3-4)和支撑结构;所述的波导(3-3)与单模光纤(3-1)的纤芯对齐,第一平面(3-2)和第二平面(3-4)分别与波导(3-3)的两端垂直连接,且第一平面(3-2)与单模光纤(3-1)的一端相接触;波导(3-3)的***设有连接第一平面(3-2)和第二平面(3-4)的支撑结构;所述的波导(3-3)由锥形体和圆柱体构成,锥形体的小端面与圆柱体的一个端面匹配连接,锥形体的大端面与单模光纤(3-1)的纤芯直径相同。
2.如权利要求1所述的一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于,所述毛细管(3-5)的两端使用紫外固化胶固定和密封。
3.如权利要求1所述的一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于,所述第一平面(3-2)、第二平面(3-4)的直径与单模光纤(3-1)的直径相同。
4.如权利要求1所述的一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于,所述的第二平面(3-4)上与波导(3-3)相连的一侧镀有全反膜。
5.如权利要求1所述的一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于,所述圆柱体的直径范围为-10。
6.一种权利要求1所述的利用双光子飞秒激光直写技术3D打印的F-P磁场传感器的制作方法,其特征在于包含如下步骤:
1)将单模光纤(3-1)的一个端面进行切割,并将切割面固定;
2)利用双光子飞秒激光直写仪直接将所述的F-P腔微结构3D打印在单模光纤(3-1)的切割面上,在打印过程中,波导(3-3)由锥形体和圆柱体构成,锥形体的小端面直径与圆柱体直径相同,锥形体的大端面与单模光纤(3-1)的纤芯直径相同,第一平面(3-2)、第二平面(3-4)的直径与单模光纤(3-1)的直径相同;
3)所述的F-P腔微结构打印完成后,将毛细管(3-5)套设在F-P腔微结构的***,毛细管(3-5)一端通过紫外固化胶密封在单模光纤(3-1)的一端;将吸入磁流体的注射器连通未密封的毛细管(3-5)另一端,待磁流体灌装完毕后,将毛细管另一端密封,形成包围F-P腔微结构的密封腔体;F-P磁场传感器制作完成。
7.根据权利要求6所述的利用双光子飞秒激光直写技术3D打印的F-P磁场传感器的制作方法,其特征在于,在3D打印过程中,打印材料采用聚合物流体材料。
CN202010339163.8A 2020-04-26 2020-04-26 一种利用双光子飞秒激光直写技术3d打印的f-p磁场传感器及其制作方法 Active CN111443313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010339163.8A CN111443313B (zh) 2020-04-26 2020-04-26 一种利用双光子飞秒激光直写技术3d打印的f-p磁场传感器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010339163.8A CN111443313B (zh) 2020-04-26 2020-04-26 一种利用双光子飞秒激光直写技术3d打印的f-p磁场传感器及其制作方法

Publications (2)

Publication Number Publication Date
CN111443313A CN111443313A (zh) 2020-07-24
CN111443313B true CN111443313B (zh) 2024-06-25

Family

ID=71654381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010339163.8A Active CN111443313B (zh) 2020-04-26 2020-04-26 一种利用双光子飞秒激光直写技术3d打印的f-p磁场传感器及其制作方法

Country Status (1)

Country Link
CN (1) CN111443313B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112596005A (zh) * 2020-11-18 2021-04-02 苏州德睿电力科技有限公司 一种基于磁流体的fp磁场传感器及磁场测试***
CN112763944B (zh) * 2020-12-14 2022-04-05 浙江大学 一种基于3d打印技术的盘状探头型磁场传感器及其制作方法
CN112611990B (zh) * 2020-12-14 2022-04-08 浙江大学 一种基于多材料3d打印技术的盘状微结构磁场传感器
CN112611991B (zh) * 2020-12-21 2022-04-22 浙江大学 一种双螺旋结构的双d型光纤微弱磁场传感器及其制作方法
CN112763945B (zh) * 2020-12-21 2022-05-27 浙江大学 一种双螺旋状平面波导磁场传感器及其制作方法
CN114659684B (zh) * 2022-02-28 2023-06-20 北京航空航天大学 基于双层毛细管的低温度敏感fp压力传感器
CN114986882A (zh) * 2022-05-30 2022-09-02 深圳技术大学 基于激光固化打印技术的超声传感器的制备***及方法
CN115745381A (zh) * 2022-11-16 2023-03-07 国网智能电网研究院有限公司 基于3d打印技术的光纤f-p传感器及其加工方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212514973U (zh) * 2020-04-26 2021-02-09 浙江大学 利用双光子飞秒激光直写技术3d打印的f-p磁场传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221679A (zh) * 2011-04-25 2011-10-19 东北大学 一种磁流体填充光子晶体光纤f-p磁场传感器
CN105044628A (zh) * 2015-07-13 2015-11-11 电子科技大学 一种光纤f-p腔磁敏感器及磁定位测井装置
CN106338702A (zh) * 2016-09-20 2017-01-18 哈尔滨理工大学 基于磁流体填充光纤微腔的温度不敏感磁场传感器
CN108195411A (zh) * 2017-12-29 2018-06-22 北京信息科技大学 基于飞秒刻写光纤f-p腔级联fbg的微结构传感器
CN108801306B (zh) * 2018-06-26 2020-01-24 京东方科技集团股份有限公司 光纤传感器及其制作方法、运动感测装置
CN109709498B (zh) * 2019-01-09 2021-09-17 西北大学 一种磁流体包覆的全光纤矢量磁场传感器及其制备方法
CN109683113A (zh) * 2019-01-28 2019-04-26 苏州德睿电力科技有限公司 一种光纤f-p腔磁场传感器及其制备方法
CN109991562B (zh) * 2019-05-22 2024-04-30 中国计量大学 一种双芯光纤磁场传感探头

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212514973U (zh) * 2020-04-26 2021-02-09 浙江大学 利用双光子飞秒激光直写技术3d打印的f-p磁场传感器

Also Published As

Publication number Publication date
CN111443313A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
CN111443313B (zh) 一种利用双光子飞秒激光直写技术3d打印的f-p磁场传感器及其制作方法
Chen et al. 3D printed castle style Fabry-Perot microcavity on optical fiber tip as a highly sensitive humidity sensor
Zhao et al. Review of no-core optical fiber sensor and applications
Zhang et al. Highly sensitive magnetic field microsensor based on direct laser writing of fiber-tip optofluidic Fabry–Pérot cavity
Zhang et al. A review of photonic crystal fiber sensor applications for different physical quantities
CN111443312B (zh) 一种利用双光子飞秒激光直写技术3d打印的高灵敏度磁场传感器及其制作方法
Zheng et al. Magnetic field sensor with optical fiber bitaper-based interferometer coated by magnetic fluid
Chen et al. Side-polished single-mode-multimode-single-mode fiber structure for the vector magnetic field sensing
CN111854726B (zh) 一种空芯反谐振光纤陀螺
CN212514973U (zh) 利用双光子飞秒激光直写技术3d打印的f-p磁场传感器
Niu et al. Optical fiber sensors based on core-offset structure: A review
CN105093136A (zh) 一种全光纤微弱磁场测量装置
Wu et al. Experimental research on FLM temperature sensor with an ethanol-filled photonic crystal fiber
Tian et al. High sensitivity liquid level sensor based on dual side-hole fiber Mach–Zehnder interferometer
Tian et al. Fiber-optic vector magnetic field sensor based on mode interference and magnetic fluid in a two-channel tapered structure
Xu et al. An all-optical vector magnetic field sensor based on magnetic fluid and side-polished hollow-core optical fiber
Zhang et al. Direct laser writing spiral Sagnac waveguide for ultrahigh magnetic field sensing
Zeng et al. High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid
Shuhao et al. Highly sensitive vector magnetic field sensors based on fiber Mach–Zehnder interferometers
Ding et al. Temperature-compensated balloon-like fiber magnetic field sensor with FP structure based on PDMS
Ruan et al. Simple structure of tapered FBG filled with magnetic fluid to realize magnetic field sensor
Zhang et al. A MMF-TSMF-MMF structure coated magnetic fluid for magnetic field measurement
Wang et al. Optic-fiber vector magnetic field sensor utilizing magneto-shape effect of magnetic fluid
Tao et al. High-sensitivity detection of magnetic field and temperature based on magnetic fluid coated bi-tapered Mach-Zehnder interferometer
Liu et al. Micro-open-cavity interferometer for highly sensitive axial-strain measurement via bias-taper and Vernier effect

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant