CN111403546A - 一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法 - Google Patents

一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法 Download PDF

Info

Publication number
CN111403546A
CN111403546A CN201911303143.9A CN201911303143A CN111403546A CN 111403546 A CN111403546 A CN 111403546A CN 201911303143 A CN201911303143 A CN 201911303143A CN 111403546 A CN111403546 A CN 111403546A
Authority
CN
China
Prior art keywords
diffusion
epitaxial wafer
source
layer
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911303143.9A
Other languages
English (en)
Inventor
覃文治
***
陈庆敏
刘源
齐瑞峰
代千
石柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South West Institute of Technical Physics
Original Assignee
South West Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South West Institute of Technical Physics filed Critical South West Institute of Technical Physics
Priority to CN201911303143.9A priority Critical patent/CN111403546A/zh
Publication of CN111403546A publication Critical patent/CN111403546A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2258Diffusion into or out of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法,它涉及化合物半导体器件制造的扩散工艺。其通过磁控溅射的方式在制备有氮化硅扩散掩膜的铟镓砷外延片上预沉积上一层锌扩散源,采用等离子增强化学气相沉积设备将锌扩散源覆盖起来,在快速退火炉中进行开管高温梯度扩散,完成化合物半导体铟镓砷外延片的锌扩散工艺。本发明扩散出的铟镓砷光电探测芯片光电性能片内、片间均匀性好、重复性好,可根据快速退火炉尺寸相应扩大铟镓砷外延片尺寸,特别适合三五族化合物半导体探测器芯片的生产。

Description

一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法
技术领域
本发明属于化合物半导体掺杂的扩散方法领域,涉及铟镓砷光电探测器的光敏芯片pn结的制作方法,具体为一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法。
背景技术
铟镓砷光电探测器可对0.9—1.7μm波长的光信号进行探测,在1.55—1.57μm波长具有良好响应,在该波段具有对人眼安全、大气传输性能好等特点,在军、民光电信号探测上获得了广泛的应用。
目前铟镓砷光电探测器主要分为台面型和平面型两类。台面型光电探测器往往是在外延片制备过程中就将器件芯片的pn结制备好,然后通过刻蚀的方法形成一个个的光电探测器光敏芯片。台面型光电探测器对制备工艺要求严苛,在台面刻蚀过程中容易引入杂质污染,且侧壁钝化难度大,导致光电器件暗电流较大、可靠性低、均匀性差。平面型铟镓砷光电探测器芯片是通过高温锌扩散的方式,在具有顶层磷化铟的铟镓砷外延片上制备出芯片的pn结,其具有工艺窗口范围宽、暗电流小、可靠性高等优点。传统平面型铟镓砷光电探测器芯片的pn结是将二磷化三锌(Zn3P2)和需扩散的铟镓砷外延片放置到石英管内,石英管抽高真空,高温熔封石英管,将石英管推入高温扩散炉中保温几分钟,拉出石英管冷却后开管取出完成制备的。
但是石英熔封闭管扩散存在以下问题:石英熔封闭管扩散适合小基片扩散,随着基片尺寸的扩大,熔封的石英管也随之增大,导致扩散均匀性变差。这主要是因为1)石英尺寸扩大后,导致石英管各部分的温场均匀性变差;2)Zn3P2扩散源是通过在高真空中升华形成饱和蒸气压实现Zn扩散的,Zn3P2为颗粒源,扩散空间的扩大导致石英管内存在明显的浓度梯度。InGaAs化合物的石英熔封闭管扩散,很难实现大面积、大批量、高成品率的生产。
发明内容
(一)发明目的
本发明的目的是:提供一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法,用于实现铟镓砷光电探测器芯片大基片尺寸、高均匀性、高成品率的制作。
(二)技术方案
为了解决上述技术问题,本发明提供一种预沉积扩散源制备光电探测器芯片的扩散方法,其采用磁控溅射镀膜设备,以磁控溅射的方式在需要光刻有扩散掩膜的InGaAs外延片表面预沉积上一层Zn3P2做为扩散源;采用等离子增强化学气相沉积设备沉积一层氮化硅将沉积的Zn3P2扩散源覆盖住,并在快速退火炉中进行高温梯度扩散;扩散完后采用感应耦合等离子刻蚀设备将覆盖的氮化硅刻蚀干净,InGaAs外延片表面剩余的Zn3P2扩散源采用盐酸溶液腐蚀干净;进行正电极和背电极制备。
其中,所述InGaAs外延片是利用金属有机物化学汽相沉积技术,在n型掺杂浓度为3-8×1018/cm3的100晶向磷化铟衬底1上依次外延:厚度1μm,n型掺杂浓度为3×1016/cm3的磷化铟过渡层2、厚度1.5-2.5μm,n型杂质浓度为1-2×1015/cm3的铟镓砷光吸收层3、厚度为0.15μm,n型掺杂浓度为3×1016/cm3的铟镓砷磷能带过渡层4、厚度为0.4μm,n型掺杂浓度为6×1016/cm3的磷化铟电荷层5、以及厚度3.5μm,n型掺杂浓度为7×1014/cm3的顶层磷化铟层6。
其中,所述InGaAs外延片表面预沉积Zn3P2的过称为:
在InGaAs外延片上,利用等离子化学汽相沉积技术生长厚度2000埃的氮化硅;
采用光刻刻蚀技术在氮化硅层上制出直径为200μm的扩散窗口;
将InGaAs外延片放入磁控溅射设备的托盘上,通过分子泵真空组将真空室抽至≤1×10-4Pa;
向真空室内通入30sccm~50sccm、纯度99.999%以上的高纯氩气,真空压力维持在0.5Pa~1.5Pa,RF射频电源功率150W~300W,辉光放电,将Zn3P2靶材上的Zn3P2溅射到InGaAs外延片上,形成10nm~50nm厚Zn3P2层。
其中,覆盖所述Zn3P2扩散源时,利用等离子化学汽相沉积技术在Zn3P2层上生长厚度2000埃的氮化硅。
其中,高温梯度扩散时,按200℃1分钟、350℃2分钟、400℃30秒、580℃4分钟35秒的时序依次进行快速降温至室温,完成扩散。
其中,刻蚀氮化硅时,使用CF4对表面的氮化硅进行刻蚀,并过刻30秒。
其中,腐蚀Zn3P2扩散源时,使用浓度为5%的稀盐酸溶液腐蚀。
(三)有益效果
上述技术方案所提供预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法,InGaAs化合物开管扩散可以大大提高化合物光电探测器芯片的生产效率和成品率;InGaAs化合物在高温下InP中的P是很容易分解出来的,本发明即能完成Zn的扩散又要能防止P的分解,解决了石英熔封管闭管扩散方式pn均匀性差、石英管浪费大等缺点;开管扩散可以利用快速退火炉或石英管式扩散炉完成InGaAs化合物≤6英寸任意大小基片尺寸的扩散,很容易实现InGaAs化合物光敏芯片的大批量、高均匀的生产。
附图说明
图1是本发明方法高温扩散完铟镓砷探测器芯片的剖面示意图。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
无论是铟镓砷的PIN、雪崩二极管(APD)、单光子探测器(SPAD)、焦平面探测器等的芯片,为制备出暗电流小、响应度高且其电学性能均匀一致的铟镓砷探测器芯片,制备过程中的PN结扩散是最关键的工艺步骤。
本发明预沉积扩散源制备光电探测器芯片的扩散方法采用磁控溅射镀膜设备,以磁控溅射的方式在需要光刻有扩散掩膜的铟镓砷外延片表面预沉积上一层Zn3P2做为扩散源。作为化合物的Zn3P2采用磁控溅射射频电源进行溅射时,可以保证沉积在外延片上的Zn3P2化学配比不变。采用等离子增强化学气相沉积设备沉积一层氮化硅将沉积的Zn3P2扩散源覆盖住,在快速退火炉中进行开管580℃左右高温梯度扩散;扩散完后采用感应耦合等离子刻蚀设备将覆盖的氮化硅刻蚀干净,铟镓砷外延片表面剩余的Zn3P2扩散源采用稀盐酸溶液腐蚀干净。
本实施例所使用的InGaAs外延片是利用金属有机物化学汽相沉积(MOCVD)技术,在n型掺杂浓度为3-8×1018/cm3的100晶向磷化铟(InP)衬底1上依次外延:厚度1μm,n型掺杂浓度为3×1016/cm3的磷化铟(InP)过渡层2、厚度1.5-2.5μm,n型杂质浓度为1—2×1015/cm3的铟镓砷(In0.53Ga0.47As)光吸收层3、厚度为0.15μm,n型掺杂浓度为3×1016/cm3的铟镓砷磷(In0.76Ga0.24As0.51P0.49)能带过渡层4、厚度为0.4μm,n型掺杂浓度为6×1016/cm3的磷化铟(InP)电荷层5、以及厚度3.5μm,n型掺杂浓度为7×1014/cm3的顶层磷化铟(InP)层6。
制备铟镓砷光电探测器芯片时,还包括如下具体步骤:
1)在上述已制备好的InGaAs外延片上,利用等离子化学汽相沉积(PECVD)技术生长厚度2000埃
Figure BDA0002322368030000041
左右的氮化硅(SiNX)9;
2)采用光刻技术、刻蚀技术在氮化硅层上制出直径为200μm的扩散窗口;
3)将InGaAs外延片放入磁控溅射设备的托盘上,通过分子泵真空组将真空室抽至≤1×10-4Pa;
4)向真空室内通入30sccm~50sccm,纯度99.999%以上的高纯氩气,真空压力维持在0.5Pa~1.5Pa,RF射频电源功率150W~300W,辉光放电,将二磷化三锌靶材上的二磷化三锌溅射到InGaAs外延片上,形成10nm~50nm厚二磷化三锌层10;
5)再利用等离子化学汽相沉积(PECVD)技术生长厚度2000埃
Figure BDA0002322368030000051
左右的氮化硅(SiNX)11;
6)放入快速扩散炉中,按200℃1分钟,350℃2分钟,400℃30秒,580℃4分钟35秒,快速降温至室温,完成扩散;
7)在干法刻蚀设备中,使用CF4对表面的氮化硅进行刻蚀,需要过刻30秒,以保证刻蚀的干净;
8)使用浓度为5%的稀盐酸溶液将剩余的二磷化三锌腐蚀干净;
9)按照氮化硅沉积→电极孔光刻→Ti/Pt/Au金属膜沉积→光刻Ti/Pt/Au制备正电极制备→合金→背面减薄抛光→Cr/Au背电极制备的工艺路线,最终完成InGaAs探测器芯片的制备。
本发明的扩散方法与传统的石英熔封管闭管扩散方法相比,工艺步骤多了二磷化三锌沉积、氮化硅沉积、氮化硅干法刻蚀、二磷化三锌腐蚀,但是可实现InGaAs化合物探测器芯片的大批量、高均匀的生产,大大提高生产效率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

1.一种预沉积扩散源制备光电探测器芯片的扩散方法,其特征在于,采用磁控溅射镀膜设备,以磁控溅射的方式在需要光刻有扩散掩膜的InGaAs外延片表面预沉积上一层Zn3P2做为扩散源;采用等离子增强化学气相沉积设备沉积一层氮化硅将沉积的Zn3P2扩散源覆盖住,并在快速退火炉中进行高温梯度扩散;扩散完后采用感应耦合等离子刻蚀设备将覆盖的氮化硅刻蚀干净,InGaAs外延片表面剩余的Zn3P2扩散源采用盐酸溶液腐蚀干净;进行正电极和背电极制备。
2.如权利要求1所述的预沉积扩散源制备光电探测器芯片的扩散方法,其特征在于,所述InGaAs外延片是利用金属有机物化学汽相沉积技术,在n型掺杂浓度为3-8×1018/cm3的100晶向磷化铟衬底1上依次外延:厚度1μm,n型掺杂浓度为3×1016/cm3的磷化铟过渡层2、厚度1.5-2.5μm,n型杂质浓度为1-2×1015/cm3的铟镓砷光吸收层3、厚度为0.15μm,n型掺杂浓度为3×1016/cm3的铟镓砷磷能带过渡层4、厚度为0.4μm,n型掺杂浓度为6×1016/cm3的磷化铟电荷层5、以及厚度3.5μm,n型掺杂浓度为7×1014/cm3的顶层磷化铟层6。
3.如权利要求2所述的预沉积扩散源制备光电探测器芯片的扩散方法,其特征在于,所述InGaAs外延片表面预沉积Zn3P2的过称为:
在InGaAs外延片上,利用等离子化学汽相沉积技术生长厚度2000埃的氮化硅;
采用光刻刻蚀技术在氮化硅层上制出直径为200μm的扩散窗口;
将InGaAs外延片放入磁控溅射设备的托盘上,通过分子泵真空组将真空室抽至≤1×10-4Pa;
向真空室内通入30sccm~50sccm、纯度99.999%以上的高纯氩气,真空压力维持在0.5Pa~1.5Pa,RF射频电源功率150W~300W,辉光放电,将Zn3P2靶材上的Zn3P2溅射到InGaAs外延片上,形成10nm~50nm厚Zn3P2层。
4.如权利要求3所述的预沉积扩散源制备光电探测器芯片的扩散方法,其特征在于,覆盖所述Zn3P2扩散源时,利用等离子化学汽相沉积技术在Zn3P2层上生长厚度2000埃的氮化硅。
5.如权利要求4所述的预沉积扩散源制备光电探测器芯片的扩散方法,其特征在于,高温梯度扩散时,按200℃1分钟、350℃2分钟、400℃30秒、580℃4分钟35秒的时序依次进行快速降温至室温,完成扩散。
6.如权利要求5所述的预沉积扩散源制备光电探测器芯片的扩散方法,其特征在于,刻蚀氮化硅时,使用CF4对表面的氮化硅进行刻蚀,并过刻30秒。
7.如权利要求6所述的预沉积扩散源制备光电探测器芯片的扩散方法,其特征在于,腐蚀Zn3P2扩散源时,使用浓度为5%的稀盐酸溶液腐蚀。
CN201911303143.9A 2019-12-17 2019-12-17 一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法 Pending CN111403546A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911303143.9A CN111403546A (zh) 2019-12-17 2019-12-17 一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911303143.9A CN111403546A (zh) 2019-12-17 2019-12-17 一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法

Publications (1)

Publication Number Publication Date
CN111403546A true CN111403546A (zh) 2020-07-10

Family

ID=71432503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911303143.9A Pending CN111403546A (zh) 2019-12-17 2019-12-17 一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法

Country Status (1)

Country Link
CN (1) CN111403546A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248821A1 (ja) * 2022-06-22 2023-12-28 信越半導体株式会社 受光素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121785A (ja) * 1997-10-16 1999-04-30 Toshiba Electronic Engineering Corp 化合物半導体素子およびその製造方法
JP2006165113A (ja) * 2004-12-03 2006-06-22 Sumitomo Electric Ind Ltd 燐を含むiii−v族化合物半導体ウエハに亜鉛を拡散させる方法およびフォトダイオードの作製方法
CN101170142A (zh) * 2007-11-21 2008-04-30 中国科学院上海技术物理研究所 平面型铟镓砷红外焦平面探测器及制备方法
CN104538463A (zh) * 2014-12-09 2015-04-22 中国科学院上海技术物理研究所 一种改善表面钝化的平面型铟镓砷光敏芯片及制备方法
CN104916731A (zh) * 2015-06-02 2015-09-16 中国科学院上海技术物理研究所 一种低损伤的铟镓砷探测器p+n结制备方法
CN109449238A (zh) * 2018-10-10 2019-03-08 中国科学院上海技术物理研究所 一种大规模小像元铟镓砷焦平面探测器制备方法
CN109524430A (zh) * 2018-12-25 2019-03-26 西南技术物理研究所 多像元集成铟镓砷雪崩二极管四象限光电探测芯片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121785A (ja) * 1997-10-16 1999-04-30 Toshiba Electronic Engineering Corp 化合物半導体素子およびその製造方法
JP2006165113A (ja) * 2004-12-03 2006-06-22 Sumitomo Electric Ind Ltd 燐を含むiii−v族化合物半導体ウエハに亜鉛を拡散させる方法およびフォトダイオードの作製方法
CN101170142A (zh) * 2007-11-21 2008-04-30 中国科学院上海技术物理研究所 平面型铟镓砷红外焦平面探测器及制备方法
CN104538463A (zh) * 2014-12-09 2015-04-22 中国科学院上海技术物理研究所 一种改善表面钝化的平面型铟镓砷光敏芯片及制备方法
CN104916731A (zh) * 2015-06-02 2015-09-16 中国科学院上海技术物理研究所 一种低损伤的铟镓砷探测器p+n结制备方法
CN109449238A (zh) * 2018-10-10 2019-03-08 中国科学院上海技术物理研究所 一种大规模小像元铟镓砷焦平面探测器制备方法
CN109524430A (zh) * 2018-12-25 2019-03-26 西南技术物理研究所 多像元集成铟镓砷雪崩二极管四象限光电探测芯片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEUNG-YEUL YANG等: "Characteristics of Zn diffusion in planar and patterned InP substrate using Zn3P2 film and rapid thermal annealing process", 《SURFACE AND COATINGS TECHNOLOGY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248821A1 (ja) * 2022-06-22 2023-12-28 信越半導体株式会社 受光素子の製造方法

Similar Documents

Publication Publication Date Title
US11942566B2 (en) Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
CA2716402C (en) Solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
US8076175B2 (en) Method for making solar cell having crystalline silicon P-N homojunction and amorphous silicon heterojunctions for surface passivation
WO2018103647A1 (zh) 基于Ga2O3材料的紫外光电探测器的制备方法
CN106098836B (zh) 通讯用雪崩光电二极管及其制备方法
US20090211623A1 (en) Solar module with solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
CN109585592B (zh) p-BN/i-AlGaN/n-AlGaN的紫外探测器及制作方法
US20220052212A1 (en) Photodetector based on PtSe2 and silicon nanopillar array and preparation method thereof
CN101950775A (zh) 一种采用外延设备制作双扩散式背面入光的光雪崩管方法
RU2547004C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ НА ОСНОВЕ GaAs
CN108231926A (zh) 一种红外探测器及其制备方法
RU2391745C1 (ru) Способ изготовления каскадных солнечных элементов (варианты)
CN104300032A (zh) 一种单晶硅太阳能离子注入工艺
CN106876504A (zh) 一种ZnO基p‑i‑n结构紫外探测器及其制备方法
CN112382688A (zh) 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法
CN103594302A (zh) 一种GaAs纳米线阵列光阴极及其制备方法
CN111403546A (zh) 一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法
CN104617184B (zh) PIN台面型InGaAs红外探测器及其制备方法
CN113675297A (zh) 一种氧化镓/氮化镓异质结光电探测器及其制备方法
RU2575972C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ НА ОСНОВЕ GaSb
CN102723404B (zh) 倒置生长宽谱吸收iii-v多结电池的制备方法
CN112951941B (zh) 一种柔性平面探测器pin芯片及其制作方法与应用
TWI780861B (zh) 光電二極體及其用途
RU2710605C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ НА ОСНОВЕ GaSb
CN108321222B (zh) 一种AlGaP基紫外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200710