CN111333311B - 炉、特别是冷却炉 - Google Patents

炉、特别是冷却炉 Download PDF

Info

Publication number
CN111333311B
CN111333311B CN201911302784.2A CN201911302784A CN111333311B CN 111333311 B CN111333311 B CN 111333311B CN 201911302784 A CN201911302784 A CN 201911302784A CN 111333311 B CN111333311 B CN 111333311B
Authority
CN
China
Prior art keywords
furnace
thermocouple
glass
sleeve
absorption coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911302784.2A
Other languages
English (en)
Other versions
CN111333311A (zh
Inventor
L·多米尼克
W·克雷格
M·里德尔
G·哈斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Publication of CN111333311A publication Critical patent/CN111333311A/zh
Application granted granted Critical
Publication of CN111333311B publication Critical patent/CN111333311B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/18Special arrangements for conducting heat from the object to the sensitive element for reducing thermal inertia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/04Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples the object to be measured not forming one of the thermoelectric materials
    • G01K7/06Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples the object to be measured not forming one of the thermoelectric materials the thermoelectric materials being arranged one within the other with the junction at one end exposed to the object, e.g. sheathed type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0056Regulation involving cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • G01K2007/422Dummy objects used for estimating temperature of real objects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明涉及一种炉(1)、特别是用于消除玻璃产品(50)的应力的冷却炉,其具有炉腔(30)和用于测量炉腔内的温度的测量装置、特别是热电偶(20),其中,所述玻璃产品(50)优选为玻璃管。本发明的特征在于,所述测量装置、特别是所述热电偶(20)由套管(40)包围、优选地完全包围,所述套管优选地由无机材料、特别是玻璃制成。

Description

炉、特别是冷却炉
技术领域
本发明涉及一种用于消除玻璃产品的应力的炉、特别是冷却炉,其具有测量装置,测量装置特别是热电偶。本发明还涉及一种用于测量炉的温度曲线的方法。
背景技术
为了消除玻璃产品(例如玻璃管)在其生产后的应力,可以引导玻璃产品通过冷却炉。在炉中冷却玻璃产品,决定性的是精确地设置温度。为了实现这一点,必须测定炉中的温度。根据现有技术,这里经常使用控制热电偶,优选地使用热电偶。
热电偶在大量的公开物中均有描述。例如,GB1097695A示出了一种带有玻璃的热电偶。US5137582A示出了一种热电偶,其具有由玻璃(例如硼硅酸盐玻璃)或瓷器制成的壳体。US4114444A公开了一种包括热电偶的炉。然而,根据US4114444A的热电偶不是由玻璃管而是由氮化硼管包围。与玻璃管相反,氮化硼管是一种陶瓷管。DE3528161A公开了一种由具有保护管的热电偶组成的热电偶,用于测量300℃至1300℃范围的温度。在DE3528161A中保护管的材料使用石英玻璃而非陶瓷。
在根据现有技术的冷却装置中使用例如前述申请中描述的热电偶作为传感器进行测量时,发现实际温度与目标温度之间存在显著的偏差。
因此,在将温度传感器、特别是热电偶直接与待处理的玻璃产品、特别是玻璃管连接并被引导与玻璃产品同时通过炉以冷却的测试中,已经证实,在玻璃产品处(即在待冷却的玻璃管处)测得的实际温度与在炉处设定的目标温度相差近100K。
发明内容
因此,本发明的目的是克服现有技术的缺点,并且特别是允许可靠地测定炉腔内作用于待冷却的玻璃产品的温度。
根据本发明,所述目的通过根据权利要求1所述的炉实现。
根据本发明的用于消除玻璃产品的应力的炉、特别是冷却炉具有用于测量温度的测量装置、特别是热电偶。待冷却的玻璃产品优选为玻璃管。
根据本发明,测量装置、特别是热电偶由套管包围、优选地完全包围,套管由无机材料、特别是玻璃材料制成。这种设计使得在炉中设定的目标温度与在待处理的玻璃产品、特别是玻璃管处测量的实际温度之间的差异实际上不复存在。因此,通过这种结构,能够可靠地测定目标温度和实际温度,特别是从以下附图描述中可以看出的。
如果玻璃产品、特别是待冷却的玻璃管的吸收系数与测量装置、特别是包围热电偶的套管的吸收系数基本一致,则是特别优选的。在一致的情况下,目标温度与实际温度之间的差异特别小。
优选的是,玻璃产品、特别是玻璃管的吸收系数与包围玻璃的吸收系数之间的差异为至多20%、优选地10%、特别地5%。通过使热电偶的套管和待冷却的玻璃产品、特别是玻璃管的吸收系数相匹配,可以最小化在产品处通过例如附加的测量传感器或热电偶直接测量的并且由热电偶指示的温差,结果是由***到炉中的具有套管的热电偶测得的温度是产品本身处的温度的指示,而不需要附加的热电偶。附加的热电偶可以直接与产品连接,使得通过牵引测量可以在炉运行中记录完整的温度曲线。通过本发明,可以实现炉中目标温度与实际温度之间非常小的差异,当热电偶的套管与待冷却的玻璃产品、特别是玻璃管的吸收系数彼此之间不大于20%、优选地不大于10%、特别是不大于5%时,尤其可以成功。
特别优选地,热电偶设计为护套热电偶,其中热电偶线隔离在金属管中并且形成热电偶。护套材料可以使用不锈钢。
在本发明的一个特定实施例中,具有温度曲线的待处理的玻璃产品由硼硅酸盐玻璃或铝硅酸盐玻璃形成。围绕热电偶放置的包围玻璃也由硼硅酸盐玻璃或铝硅酸盐玻璃或石英玻璃形成。选择石英玻璃用于套管具有实现非常高的熔化和软化温度的优点,并且由于它们长时间保持尺寸稳定,因此这些玻璃特别适合在高温下使用。
优选的是,将套管推到热电偶上而具有尽可能最小的间隙。小的间距使热传导、辐射和对流之间的稳定状态。
在本发明的另一个改进实施例中,套管在热电偶上并超过1cm,优选地超过5cm。这使得套管能够呈敞开形式并且使测量误差最小化。敞开的套管避免了管端复杂的封闭,极大地促进了套管的生产。因此,温度偏差得以充分最小化。本发明也可以使用封闭的/闭合的管端,虽然敞开的管端是有利的,但不是强制性的。
在本发明的另一个实施例中,热电偶穿过炉隔热层伸入炉中,从而测定炉腔内的温度。
除炉之外,本发明还提供了一种用于测量炉的温度曲线的方法,其中根据本发明,借助于热电偶测量玻璃产品、特别是玻璃管的温度。特别地,本发明中也可以进行牵引测量,其中热电偶直接与玻璃产品连接并被引导与玻璃产品通过炉。然后可以由这种牵引测量测定空间温度曲线。牵引测量的优点是,玻璃产品设置有附加的热电偶,可以实现非常高的精度。
附图说明
下面参考附图以示例的方式说明本发明,其中:
图1示出了炉腔的侧视图,具有玻璃产品和热电偶上的玻璃套管;
图2示出了炉腔的俯视图,设置有包括套管的热电偶和玻璃产品;
图3示出了用没有套管的热电偶进行牵引测量期间目标温度与实际温度的温度偏差图;和
图4示出了用具有套管的热电偶进行牵引测量期间目标温度与实际温度的温度偏差图。
具体实施方式
图1示出了根据本发明的炉1的一部分,热电偶被引导进入到炉腔并由套管包围。炉1衬有炉隔热层10并且在图1中没有完整示出。引导热电偶20穿过炉隔热层10,并伸入到炉腔30中。炉腔30中有多个待处理的玻璃产品50。图1示出了共三个待处理的玻璃产品,在此为玻璃管。根据本发明,套管40包围热电偶20。其中,套管的吸收系数基本上对应于待测量的玻璃的吸收系数。借助于套管40的吸收系数基本上对应于待测量的玻璃的吸收系数的事实,实现待测量的玻璃管和借助于热电偶20测得的炉腔的温度之间不会出现温差。在本申请中,“基本上相同的吸收系数”理解为玻璃产品与热电偶的包围玻璃之间的吸收系数差异为至多20%、优选地至多10%、特别地至多5%。在所示的实施例中,套管40的两侧是敞开的,但不限于此。在本实施例中,套管超过热电偶的长度为L。套管超过热电偶的长度L优选大于1cm、特别地大于5cm。引导待处理的玻璃产品50通过炉腔。因此,炉1是一种连续式炉。
图2示出了根据本发明的炉1的俯视图,与图1相同的部件用相同的附图标记表示。在图2中可以清楚地看到套管40超过热电偶20的长度L。在图2中还可以清楚地看到呈玻璃管形式的待处理的玻璃产品50。还示出了整个炉隔热层10。炉1是连续式炉,引导待处理的产品通过连续式炉。热电偶20固定在炉中。
图3示出了在牵引测量期间目标温度200与实际温度100的偏差。牵引测量是指这样的测量,其中除了炉的热电偶之外,还安装了与玻璃产品直接连接的有线温度传感器并“牵引”其通过炉。图3所示的牵引测量清楚地示出了目标温度与实际温度的偏差。目标温度由附图标记200表示,而实际温度由附图标记100表示。
图3中y轴表示温度,x轴表示牵引待加热的产品通过炉的时间。因此,x轴是待加热的物体在炉中停留时间的度量,从而是炉中的空间温度曲线的度量。
目标是使炉腔的温度曲线尽可能一致,其中目标温度对应于实际温度。从图3可以看出,在热电偶没有被套管包围的情况下,目标温度与实际温度之间存在明显的偏差。因此,在热电偶没有被套管包围的情况下,目标温度与实际温度的偏差高达200K,如图3所示。
在本申请中,“温度偏差”理解为待处理的玻璃产品(玻璃管)处的实际温度与炉中测得的目标温度之间的偏差。如图3所示,如果目标温度与实际温度的偏差大于150K,则这意味着,例如玻璃产品处的温度为550K,而借助于没有套管的热电偶测得的炉腔内的温度仅为400K。
图4示出了用根据本发明的具有套管的热电偶所进行的牵引测量的结果。在此,“牵引测量”也理解为待处理的玻璃产品设置有附加的热电偶,因此还可以测定除炉温外的温度。在套管包围热电偶的情况下,可以清楚地看到,目标温度200和实际温度100之间小的偏差,也就是说,在炉腔内测得的温度与由附加的热电偶测得的玻璃产品(在此为玻璃管)的温度基本一致。
本发明首次提出一种测量装置,该测量装置能够在炉中进行精确的温度测定并且避免了待冷却的玻璃产品处的温度与借助于热电偶测得的温度之间存在温差。因此,可以对炉进行原位控制以精确控制玻璃产品的温度。因此,通过本发明可以使在热工艺之前玻璃产品存在的应力趋于零。同样,可以精确控制其他与温度有关的工艺,例如涂层的烘烤。

Claims (20)

1.一种炉(1),所述炉具有炉腔(30)和用于测量所述炉腔内的温度的测量装置,所述测量装置是热电偶(20),其特征在于,
所述热电偶(20)由套管(40)包围,所述套管由玻璃制成,
其中套管(40)布置在所述炉(1)的内部并且与位于炉中的玻璃产品间隔开,其中所述套管(40)具有与玻璃产品的吸收系数相差至多20%的吸收系数,
其中所述套管(40)在两侧是敞开的。
2.根据权利要求1所述的炉,其特征在于,所述炉是用于消除玻璃产品(50)的应力的冷却炉。
3.根据权利要求1所述的炉,其特征在于,所述玻璃产品(50)为玻璃管。
4.根据权利要求1所述的炉,其特征在于,所述热电偶(20)由套管(40)完全包围。
5.根据权利要求1至4任一项所述的炉,其特征在于,
所述玻璃产品(50)具有第一吸收系数,并且所述套管(40)具有第二吸收系数,
并且所述第一吸收系数与所述第二吸收系数之间的差异为至多10%。
6.根据权利要求5所述的炉,其特征在于,所述第一吸收系数与所述第二吸收系数之间的差异为至多5%。
7.根据权利要求1至4任一项所述的炉,其特征在于,
所述热电偶是护套热电偶。
8.根据权利要求1至4任一项所述的炉,其特征在于,
所述玻璃产品(50)和/或包封玻璃是高熔点玻璃。
9.根据权利要求1至4任一项所述的炉,其特征在于,所述玻璃产品和/或包封玻璃是铝硅酸盐玻璃或石英玻璃。
10.根据权利要求1至4中任一项所述的炉,其特征在于,
包围所述热电偶的套管(40)与所述热电偶的间距为0.5mm至5mm。
11.根据权利要求1至4任一项所述的炉,其特征在于,包围所述热电偶的套管(40)与所述热电偶的间距为1mm至2mm。
12.根据权利要求7所述的炉,其特征在于,
所述护套热电偶的护套为金属护套。
13.根据权利要求1至4任一项所述的炉,其特征在于,
所述套管超过所述热电偶。
14.根据权利要求1至4任一项所述的炉,其特征在于,所述套管超过所述热电偶大于1cm。
15.根据权利要求1至4任一项所述的炉,其特征在于,所述套管超过所述热电偶大于5cm。
16.根据权利要求1至4任一所述的炉,其特征在于,
所述炉(1)包括炉隔热层(10),具有所述套管(40)的热电偶(20)被引导穿过所述炉隔热层(10)进入到所述炉腔中。
17.一种测量用于玻璃产品的根据权利要求1至16任一项所述的炉的温度曲线的方法,其特征在于以下步骤:
-在待冷却的玻璃产品(50)上设置热电偶,所述玻璃产品具有第一吸收系数;
-引导所述玻璃产品(50)与所述热电偶通过所述炉,从而得到所述炉的温度曲线。
18.根据权利要求17所述的方法,其特征在于,所述炉是冷却炉。
19.根据权利要求17或18所述的方法,其特征在于,所述玻璃产品是玻璃管。
20.根据权利要求17或18所述的方法,其特征在于,所述玻璃产品具有对波长范围0.7μm至80μm的红外辐射的第一吸收系数。
CN201911302784.2A 2018-12-18 2019-12-17 炉、特别是冷却炉 Active CN111333311B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018222111.1 2018-12-18
DE102018222111.1A DE102018222111A1 (de) 2018-12-18 2018-12-18 Ofen, insbesondere Kühlofen

Publications (2)

Publication Number Publication Date
CN111333311A CN111333311A (zh) 2020-06-26
CN111333311B true CN111333311B (zh) 2023-09-05

Family

ID=70859195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911302784.2A Active CN111333311B (zh) 2018-12-18 2019-12-17 炉、特别是冷却炉

Country Status (4)

Country Link
US (1) US11591250B2 (zh)
CN (1) CN111333311B (zh)
CZ (1) CZ2019738A3 (zh)
DE (1) DE102018222111A1 (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1259453A (zh) * 1968-01-25 1972-01-05
US4519830A (en) * 1984-04-25 1985-05-28 Ford Motor Company Temperature sensing structure for a furnace
US4553530A (en) * 1983-05-17 1985-11-19 Kyocera Corporation Device for collecting solar heat
US4558959A (en) * 1984-10-25 1985-12-17 Bethlehem Steel Corporation Contact thermocouple assembly
CA1212235A (en) * 1981-11-04 1986-10-07 Ronald W. Palmquist Glass-melting furnaces
US4717787A (en) * 1985-08-06 1988-01-05 Degussa Aktiengesellschaft Thermoelement for measurement of temperature in vacuum furnaces
US5752772A (en) * 1994-09-21 1998-05-19 Heraeus Electro-Nite International, N.V. Sensor arrangement for temperature measurement
US20030231698A1 (en) * 2002-03-29 2003-12-18 Takatomo Yamaguchi Apparatus and method for fabricating a semiconductor device and a heat treatment apparatus
US6772610B1 (en) * 1999-08-19 2004-08-10 Stein Heurtey Flat glass annealing lehrs
CN1771204A (zh) * 2003-04-02 2006-05-10 梅特勒-托莱多有限公司 用于处理玻璃体的方法和装置以及玻璃体和测量探头
JP2007271199A (ja) * 2006-03-31 2007-10-18 Tdk Corp 管状炉
JP2009234873A (ja) * 2008-03-28 2009-10-15 Nippon Electric Glass Co Ltd ガラス管又はガラス棒の製造装置
US20130017504A1 (en) * 2011-07-11 2013-01-17 Samsung Electro-Mechanics Co., Ltd. Furnace
CN103718010A (zh) * 2011-03-09 2014-04-09 Tsi技术有限公司 构造为消除与应力相关的温度测量值的不准确性的微丝温度传感器以及制造所述传感器的方法
CN104359935A (zh) * 2014-11-24 2015-02-18 山东省化工研究院 熔点测定仪
CN106116127A (zh) * 2016-06-16 2016-11-16 湖北新华光信息材料有限公司 一种高均匀度箱式退火炉及其退火方法
CN206974559U (zh) * 2017-06-28 2018-02-06 福建华夏金刚科技股份有限公司 一种用于发热元器件的测温装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1097695A (en) 1965-03-18 1968-01-03 Lionel Rupert Graham Improvements in or relating to thermal converters
US4114444A (en) * 1977-01-05 1978-09-19 Ppg Industries, Inc. Measuring glass surface temperature during annealing
JPS5819546A (ja) * 1981-07-28 1983-02-04 Shisaka Kenkyusho:Kk 浴液加熱式融点測定装置
US5137582A (en) 1990-11-14 1992-08-11 Kasman David H Thermocouple assembly
KR100419923B1 (ko) * 2001-05-04 2004-02-25 삼성전자주식회사 클린룸 온도센서장치
JP3785062B2 (ja) * 2001-07-17 2006-06-14 株式会社山武 温度センサ用保護管のパルスレーザ溶接方法
US7121098B2 (en) * 2003-04-30 2006-10-17 Siemens Power Generation, Inc. High-temperature inspection device and cooling apparatus therefor
JP5202810B2 (ja) * 2006-02-06 2013-06-05 古河電気工業株式会社 グラファイト加熱炉および光ファイバの製造方法
EP2072645B2 (en) * 2007-12-19 2014-12-24 Schott AG Method for producing a monocrystalline or polycrystalline semiconductor material
CN205898720U (zh) * 2016-07-12 2017-01-18 姚琪旼 串联热电偶堆辐射状dsc传感器
US10996113B2 (en) * 2017-09-29 2021-05-04 Foreman Instrumentation & Controls, Inc. Thermowell with expansion joint

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1259453A (zh) * 1968-01-25 1972-01-05
CA1212235A (en) * 1981-11-04 1986-10-07 Ronald W. Palmquist Glass-melting furnaces
US4553530A (en) * 1983-05-17 1985-11-19 Kyocera Corporation Device for collecting solar heat
US4519830A (en) * 1984-04-25 1985-05-28 Ford Motor Company Temperature sensing structure for a furnace
US4558959A (en) * 1984-10-25 1985-12-17 Bethlehem Steel Corporation Contact thermocouple assembly
US4717787A (en) * 1985-08-06 1988-01-05 Degussa Aktiengesellschaft Thermoelement for measurement of temperature in vacuum furnaces
US5752772A (en) * 1994-09-21 1998-05-19 Heraeus Electro-Nite International, N.V. Sensor arrangement for temperature measurement
US6772610B1 (en) * 1999-08-19 2004-08-10 Stein Heurtey Flat glass annealing lehrs
US20030231698A1 (en) * 2002-03-29 2003-12-18 Takatomo Yamaguchi Apparatus and method for fabricating a semiconductor device and a heat treatment apparatus
CN1771204A (zh) * 2003-04-02 2006-05-10 梅特勒-托莱多有限公司 用于处理玻璃体的方法和装置以及玻璃体和测量探头
JP2007271199A (ja) * 2006-03-31 2007-10-18 Tdk Corp 管状炉
JP2009234873A (ja) * 2008-03-28 2009-10-15 Nippon Electric Glass Co Ltd ガラス管又はガラス棒の製造装置
CN103718010A (zh) * 2011-03-09 2014-04-09 Tsi技术有限公司 构造为消除与应力相关的温度测量值的不准确性的微丝温度传感器以及制造所述传感器的方法
US20130017504A1 (en) * 2011-07-11 2013-01-17 Samsung Electro-Mechanics Co., Ltd. Furnace
CN104359935A (zh) * 2014-11-24 2015-02-18 山东省化工研究院 熔点测定仪
CN106116127A (zh) * 2016-06-16 2016-11-16 湖北新华光信息材料有限公司 一种高均匀度箱式退火炉及其退火方法
CN206974559U (zh) * 2017-06-28 2018-02-06 福建华夏金刚科技股份有限公司 一种用于发热元器件的测温装置

Also Published As

Publication number Publication date
US20200189955A1 (en) 2020-06-18
CN111333311A (zh) 2020-06-26
DE102018222111A1 (de) 2020-06-18
CZ2019738A3 (cs) 2020-07-01
US11591250B2 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
CN108680285B (zh) 短支热电偶温度校验炉及短支热电偶的校准方法
JP6388784B2 (ja) カーボンナノチューブ標準黒体炉装置
CN111333311B (zh) 炉、特别是冷却炉
RU2325622C1 (ru) Способ контроля достоверности показаний термоэлектрического преобразователя в процессе его эксплуатации
CN106052884B (zh) 一种内锥型均温靶热管黑体
CN110887580B (zh) 一种高精度fbg高温传感器及其工作和制作方法
US4187434A (en) Long life radiation shield for gas temperature measurement
US2571700A (en) Method of coating thermocouples
US7445384B2 (en) Pyrometer
US3452598A (en) Immersion radiation pyrometer device
EP0080367A2 (en) Measuring temperature of hot gases
Lovas et al. Meeting RTP temperature accuracy requirements: measurement and calibrations at NIST
CN109211796A (zh) 一种利用温度扰动法测量固体材料高温连续光谱发射率的方法
JPH0572531B2 (zh)
RU2720819C1 (ru) Устройство для калибровки высокотемпературных термопар.
US4070148A (en) Apparatus for monitoring product temperature in an open ended, secondary emission, product carrying conveyor furnace
CN219026392U (zh) 一种用于热电偶焊接前的预热装置
CN113704960B (zh) 一种平行双电缆火蔓延速度的确定方法
RU2780306C1 (ru) Высокотемпературная установка для градуировки термопар
GB2472758A (en) Improved Insulator and Thermocouple
PL422999A1 (pl) Przyłącze termoparowe do pieca próżniowego
JPH0996575A (ja) 貴金属熱電対の定点校正法
KR100399632B1 (ko) 급속열처리 장치의 방사보정계수 추출 방법
Reddy et al. Fiber Bragg grating array as a quasi distributed temperature sensor for furnace boiler applications
Ardissone High temperature heating technologies for mechanical testing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant