CN111280019A - 一种土壤水分数字化预测与灌溉预警方法 - Google Patents

一种土壤水分数字化预测与灌溉预警方法 Download PDF

Info

Publication number
CN111280019A
CN111280019A CN202010081838.3A CN202010081838A CN111280019A CN 111280019 A CN111280019 A CN 111280019A CN 202010081838 A CN202010081838 A CN 202010081838A CN 111280019 A CN111280019 A CN 111280019A
Authority
CN
China
Prior art keywords
irrigation
soil
crop
soil moisture
early warning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010081838.3A
Other languages
English (en)
Inventor
苑进
杨坤
刘林
刘雪美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Agricultural University
Original Assignee
Shandong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Agricultural University filed Critical Shandong Agricultural University
Priority to CN202010081838.3A priority Critical patent/CN111280019A/zh
Publication of CN111280019A publication Critical patent/CN111280019A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Environmental Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种土壤水分数字化预测与灌溉预警方法,包括:根据作物所处的气候、土壤、供水等自然条件及农业技术设施确定作物种植区的灌溉方式;测量作物种植区的土壤水分特征曲线、容重及含水率等,获得VG‑M模型水力特性参数;设置模型初始条件与边界条件;作物潜在蒸散量估算及划分;建立作物建立根系吸水模型;根据预测结果在达到作物灌水下限时对灌溉提示预警并根据墒情计算所需补灌量。本发明针对灌溉不合理造成作物产量降低及水资源浪费等现有问题,能精确的控制不同作物在不同生长周期的灌溉预警并提供合理灌溉量,实现按需补灌,促进种植作物的健康生长,为作物节水灌溉提供理论参考。

Description

一种土壤水分数字化预测与灌溉预警方法
技术领域
本发明属于农业灌溉的技术领域,涉及一种土壤水分数字化预测与灌溉预警方法,对土壤水分预测并进行灌溉预警,可以充分利用自然降雨量,同时可根据作物需求进行适时、适量补灌,充分提高水资源利用率。
技术背景
我国水资源短缺十分严重,人均水资源仅占世界平均水平的1/4。预测到2030年,我国人均水资源将下降25%~30%,供需矛盾将更加突出。灌溉用水是水资源的最大用户,目前我国水资源短缺的严峻形势对灌溉农业的发展提出了更高的要求,即提高农业综合生产能力,建设节水、高效的现代农业。实现这一目标的有效措施之一就是制定科学的灌溉制度,提高灌溉水利用效率。科学的灌溉制度,一个重要的方面就是充分利用降雨补充作物生长所必需的土壤水分,从而减少作物的灌溉需水量。把握作物对降雨的有效利用程度,对制定节水高效灌溉制度及提高农田水资源综合利用效率至关重要。另一方面通过土壤墒情对作物进行适时适量补灌,可有效提高水分利用率。有利于作物的生理活动,促进根系生长,以扩大根系吸收面积,同时促使叶面积增大,增强光合作用。
HYDRUS是一个用于分析非饱和介质中水流和溶质运移的界面化模拟软件。其中的HYDRUS程序是用于模拟水流、热及多种溶质在非饱和介质中运移的有限元模型,该模型互动的图形界面可进行数据前处理、结构化和非结构化的有限元网格生成以及结果的图形展示。众多学者的研究成果表明HYDRUS是一个可以很好的模拟水分入渗的科学软件。
综上所述,为降低作物灌溉需水量浪费及提高降雨利用率,利用HYDRUS软件发明一种土壤水分数字化预测与灌溉预警方法,用于农业灌溉领域,这对农业灌溉有着重要的现实意义。
发明内容
本发明针对水资源短缺的严峻形势及现有灌溉制度存在的不足,提出了一种土壤水分数字化预测与灌溉预警方法,能够使作物种植区有效利用自然降雨,同时满足作物按需补灌。
本发明的目的可通过如下技术措施来实现,一种土壤水分数字化预测与灌溉预警方法,其特征在于,包括以下步骤:
步骤1,根据作物所处的气候、土壤、供水等自然条件及农业技术设施确定作物种植区的灌溉方式。
步骤2,测定土壤容重、土壤含水率及土壤水分特征曲线;采用定水头法测定土壤饱和导水率;依据上述参数获得VG-M模型水力特性参数。
步骤3,根据上述步骤2所得基本参数在HYDRUS软件中设定土壤水力特性参数,根据实测土壤含水率在HYDRUS软件中设定不同深度土壤含水率作为初始条件。模型上边界选用HYDRUS已知通量的第二类边界条件,在作物种植区土壤水分预测及灌溉预警期间逐日输入上边界变量值,包括作物潜在蒸腾量、土壤潜在蒸发量、降雨量、灌溉量和植株冠层截留雨量。根据天气及HYDRUS数字化预测,判断上边界条件为灌溉边界、降雨边界还是大气边界;灌溉边界参照选用的灌溉方式设定。下边界条件采用自由排水边界,左右边界采用零通量边界条件。
步骤4,本方法采用作物系数法。使用作物种植区天气预报估算参照作物蒸散量,通过天气预报的信息后,分别计算温度-水汽压曲线斜率,干湿表常数,饱和水汽压差,作物表面净辐射等值,采用修正Penman-Monteith公式计算得到每天的参考作物潜在蒸散量ET0。天气预报估算得参考蒸散发量乘以作物系数计算作物潜在蒸散量ETp。在此基础上,利用实测作物叶面积指数(LAI)将ETp划分成土壤潜在蒸发速率Ep、作物潜在蒸腾速率Tp
步骤5,作物种植区根系吸水模型选用Feddes模型;确定土壤水分胁迫函数参数;依据作物根系生长特性设定根系吸水分布公式相关参数。
步骤6,利用天气预报信息逐天增加预测天数及根据当天实际天气情况修正当天作物潜在蒸散量,通过上述根系吸水模型对HYDRUS模型进行植物根系进行设定。若天气预测无降雨且未达到灌溉下线,则上边界为大气边界;若天气预测无降雨且预测将要达到灌溉下线,提出灌溉预警并则根据墒情计算得出补灌量,上边界为灌溉边界,灌溉结束后仍为大气边界。若天气预报有降雨现象,则根据实际降雨强度及降雨时间,将上边界设定为降雨边界。若根据天气预报数字化预测得知降雨前已达到灌水下线时,结合天气预报降雨量及墒情进行少量补灌,充分提高降雨利用率;灌溉或降雨结束,上边界条件仍未大气边界。根据上述初始条件、根系吸水及边界条件等并结合天气预报及当天天气实际情况进行HYDRUS设定,并运行HYDRUS软件得出每日土壤水分变化,实现土壤水分数字化预测与灌溉预警。
本发明一种土壤水分数字化预测与灌溉预警方法有益效果是:1)为解决作物灌溉不合理且没有有效利用自然降雨造成产量降低及水资源浪费等现有问题,同时减少对技术人员经验的依赖性;2)实现土壤水分数字化预测,精确的控制不同作物所需灌溉量并根据数字化预测提前进行灌溉预警,按需补灌,促进种植作物的健康生长,为作物节水灌溉提供理论参考;3)可对不同种植作物及不同土壤质地进行土壤水分数字化预测及灌溉预警,应用范围较广,避免了取土或传感器测量土壤含水率的繁杂过程。
附图说明
图1为本发明的一种土壤水分数字化预测与灌溉预警方法的流程图。
图2微喷灌求解区域图;
图3每一时刻水分运移分布图。
具体实施方式:
为使本发明的上述目的、特征和优点能更明显易懂,下文特举出以冬小麦微喷灌为实施例,并配合附图所示,作详细说明如下。
如图1所示,如图1为本发明的一种土壤水分数字化预测与灌溉预警方法的流程图。
步骤101,根据冬小麦所处的气候、土壤、供水等自然条件及农业技术设施,确定冬小麦种植区的灌溉方式为微喷灌溉。
步骤102,以地表为基准面,在土壤垂直剖面中用环刀取土层土样0~10、10~20、20~40、40~60和60~100cm土层的土样,并测定土壤容重及土壤含水率,试验数据取三次测量的平均值。通过激光粒度仪测定土壤颗粒组成。按照国际制土壤质地分类标准确定土壤类型,土壤水分特征曲线采用高速离心机测定,RETC软件拟合;饱和导水率采用定水头法测定。获得VG-M水力特性模型参数。
在步骤103中,根据步骤101获得的VG-M模型水力特性参数在HYDRUS软件中设定土壤类型,由于大田土壤水分含水率在不同深度含水率不同,根据实测土壤含水率在HYDRUS软件中设定不同深度土壤含水率作为初始条件。一般作物种植区地下水埋深较深(>5m),忽略地下水向上的补给作用的影响。模型上边界选用HYDRUS已知通量的第二类边界条件,在冬小麦种植区土壤水分预测及灌溉预警期间逐日输入上边界变量值,包括冬小麦潜在蒸腾量、土壤潜在蒸发量、降雨量、灌溉量和植株冠层截留雨量。一般作物种植田间比较平整且表层导水率较大,即使发生强度降雨也会很快入渗,因此地面径流可忽略不计。下边界条件采用自由排水边界,左右边界采用零通量边界条件。当微喷灌溉时,边界条件如图2;灌溉结束后,上边界为大气边界。
步骤104中作物潜在蒸散量计算及预测;作物潜在蒸散量的计算方法有很多,常用的有空气动力学、能量平衡法、彭曼公式法、作物系数法和经验公式法。本方法采用作物系数法,即作物系数乘以参考作物潜在蒸散量ET0得出作物潜在蒸散量ETp。因此使用冬小麦种植区天气预报预测参照作物蒸散量,采用修正Penman-Monteith公式计算得到每天的参考作物潜在蒸散量ET0,具体计算公式为:
Figure BDA0002380581350000041
上式中,ET0为参考作物蒸散量,mm;G为土壤热通量MJ·m-2·d-1;es为饱和水汽压(KPa);es为实际水汽压(KPa);Rn为作物表面的净辐射量,MJ·m-2·d-1;Δ为饱和水汽压与温度曲线的斜率,KPa·℃-1;γ为干湿表常数,KPa·℃-1;μ2为2m高处的日平均风速率,s·m-1
由天气预报信息预测参考作物蒸散量ET0:根据本地区地理位置参数(经纬度、高程等),计算并解析该天对应白昼时数或者晴空辐射;将天气情况预报信息分别对应解析的5种天气情况(晴、晴转多云、多云转阴、阴间阵雨、连阴雨),获得对应的白昼时数或者晴空辐射值范围;解析风力级数与2m高处风速对应数值;相对湿度用来计算实际水汽压;在获得以上预报信息的数字值后,分别计算温度-水汽压曲线斜率,干湿表常数,饱和水汽压差,作物表面净辐射等值,将其带入Penman-Monteith公式计算ET0
天气预报估算得参考蒸散发量,通过下式计算作物潜在蒸散量:
ETp=Kc·ET0
上式中,ETp为作物潜在蒸散量,mm/d;Kc为作物系数,主要取决于作物种类、发育期和作物生长状况,本文采用FAO推荐的作物系数计算方法。在基础上,利用实测作物叶面积指数(LAI)将ETp划分成Ep、Tp,计算公式为:
Tp=(1-e-k·LAI)ETp
Ep=ETp-Tp
上式中,Tp为作物潜在蒸腾速率,mm/d;Ep为土壤潜在蒸发速率,cm/d;LAI是叶面积指数,k为消光系数,取决于太阳角度、植被类型及叶片空间分布特性。冬小麦消光系数经验值取0.438。
在步骤105中,常用作物根系吸水模型有Gardner模型、Feddes根系吸水模型及Molz-Remson模型等,以上模型中,由于Feddes模型考虑了根系密度以及土壤水势对作物根系吸水速率的影响,且计算形式比较简单,在实际应用中比较方便。因此,本方法采用Feddes模型计算,即:
S(h)=α(h)β(x,z)StTp
式中,S(h)为实际根系吸水量,d-1;St为与蒸腾作用相关的土壤表面宽度,cm;Tp为作物潜在蒸腾速率,cm/d;β(x,z)为作物根系吸水特征分布函数;α(h)为土壤水分胁迫反应函数。
Feddes等给出的土壤水分胁迫函数表达式为:
Figure BDA0002380581350000051
式中h1为植物厌氧点的压力水头;(h2,h3)为植物适宜生长压力水头范围;h4为植物生长凋萎时压力水头。根据wesseling研究表明冬小麦生长其h1=0cm,h2=-1cm,h3=-500~-900cm,h4=-16000cm。
Figure BDA0002380581350000052
式中,Zm和Xm分别为作物根系最大垂向及水平分布长度;z*、x*分别为垂直、水平方向根系最大吸水量位置;pz和px为经验系数。根据冬小麦种植特点及根系分布特性,用于后续仿真参考值分别为:Zm=100cm,Xm=580cm,z*=40cm,x*=0cm,pz=1,px=0。
在步骤106中,通过上述根系吸水模型及作物潜在蒸散量预测及计算划分对HYDRUS模型进行植物根系及作物蒸散量进行设定,实现对土壤水分数字化预测。本案例通过天气预报得知近期并无降雨现象,且土壤含水率达到作物需水下限时,开始对作物种植区域做出灌溉预警。根据数字化预测土壤含水率计算所需灌水量,计算公式如下:
M=100H(Wcvt-Wcva)
上式中,M为灌水总量,m3/hm2;H为计划湿润土层深度,cm;Wcvt为目标土壤体积含水率,%;Wcvt为作物灌水下限土壤体积含水率,%。目标土壤含水率可根据不同作物不同时期参考值进行选取。
本实施例为当土壤含水率低于冬小麦灌水下限时,通过数字化预测土壤含水率,计算所需灌水量为60mm,将微喷带湿润区域设定为灌水边界,未湿润区域设定为大气边界,根据实测小麦专用微喷带灌水强度及计算所得灌溉需水量计算得出所需灌溉时间,计算公式如下:
Figure BDA0002380581350000061
上式中,M为微喷灌溉量,mm;Ps为整个湿润区平均灌水强度,mm/h;ts为灌溉时间,d。完成微喷灌溉后,继续将上边界条件改为大气边界条件。根据实际测量得出小麦专用微喷带在0.1MPa灌溉压力下平均灌水强度为:79.9mm/h,同时考虑冬小麦截流量,得出0.1MPa灌溉压力下微喷带灌溉时间为:0.77h。灌溉结束一周并无降雨现象,通过天气预报估算参照作物蒸散量,运行HYDRUS软件得出未来一周土壤水分分布及土壤含水率,实现了对土壤水分的数字化预测,如图3。

Claims (7)

1.一种土壤水分数字化预测与灌溉预警方法,其特征在于:该一种土壤水分数字化预测与灌溉预警方法包括:
步骤1,确定作物种植区的灌溉方式
步骤2,测量作物种植区的土壤水分特征曲线、容重及含水率,获得VG-M模型水力特性参数;
步骤3,设置模型初始条件与边界条件;
步骤4,作物潜在蒸散量估算及划分;
步骤5,建立作物根系吸水模型;
步骤6,利用天气预报信息,通过HYDRUS数值模拟实现土壤水分数字化预测,根据预测结果在达到作物灌水下限时对灌溉提示预警并根据墒情计算所需补灌量。
2.根据权利要求1所述的一种土壤水分数字化预测与灌溉预警方法,其特征在于:步骤1,根据作物所处的气候、土壤、供水等自然条件及农业技术设施确定作物种植区的灌溉方式。
3.根据权利要求1所述的一种土壤水分数字化预测与灌溉预警方法,其特征在于:在步骤2中,测定土壤容重、土壤含水率及土壤水分特征曲线;采用定水头法测定土壤饱和导水率;依据上述参数获得VG-M模型水力特性参数。
4.根据权利要求1所述的一种土壤水分数字化预测与灌溉预警方法,其特征在于:在步骤3中,根据上述步骤2所得基本参数在HYDRUS软件中设定土壤水力特性参数,根据实测土壤含水率在HYDRUS软件中设定不同深度土壤含水率作为初始条件;模型上边界选用HYDRUS已知通量的第二类边界条件,在作物种植区土壤水分预测及灌溉预警期间逐日输入上边界变量值,包括作物潜在蒸腾量、土壤潜在蒸发量、降雨量、灌溉量和植株冠层截留雨量;根据天气及HYDRUS数字化预测,判断上边界条件为灌溉边界、降雨边界还是大气边界;灌溉边界参照选用的灌溉方式设定;下边界条件采用自由排水边界,左右边界采用零通量边界条件。
5.根据权利要求1所述的一种土壤水分数字化预测与灌溉预警方法,其特征在于:在步骤4中,本方法采用作物系数法;使用作物种植区天气预报估算参照作物蒸散量,通过天气预报的信息后,分别计算温度-水汽压曲线斜率,干湿表常数,饱和水汽压差,作物表面净辐射等值,采用修正Penman-Monteith公式计算得到每天的参考作物潜在蒸散量ET0;天气预报估算得参考蒸散发量乘以作物系数计算作物潜在蒸散量ETp;在此基础上,利用实测作物叶面积指数(LAI)将ETp划分成土壤潜在蒸发速率Ep、作物潜在蒸腾速率Tp
6.根据权利要求1所述的一种土壤水分数字化预测与灌溉预警方法,其特征在于:在步骤5中,作物种植区根系吸水模型选用Feddes模型;确定土壤水分胁迫函数参数;依据作物根系生长特性设定根系吸水分布公式相关参数。
7.根据权利要求1所述的一种土壤水分数字化预测与灌溉预警方法,其特征在于:在步骤6中,利用天气预报信息逐天增加预测天数及根据当天实际天气情况修正当天作物潜在蒸散量,通过上述根系吸水模型对HYDRUS模型进行植物根系进行设定;若天气预测无降雨且未达到灌溉下线,则上边界为大气边界;若天气预测无降雨且预测将要达到灌溉下线,提出灌溉预警并则根据墒情计算得出补灌量,上边界为灌溉边界;若天气预报有降雨现象,则根据实际降雨强度及降雨时间,将上边界设定为降雨边界;若根据天气预报数字化预测得知降雨前已达到灌水下线时,结合天气预报降雨量及墒情进行少量补灌,充分提高降雨利用率;灌溉或降雨结束,上边界条件仍未大气边界;根据上述初始条件、根系吸水及边界条件等并结合天气预报及当天天气实际情况进行HYDRUS设定,并运行HYDRUS软件得出每日土壤水分变化,实现土壤水分数字化预测与灌溉预警。
CN202010081838.3A 2020-02-06 2020-02-06 一种土壤水分数字化预测与灌溉预警方法 Pending CN111280019A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010081838.3A CN111280019A (zh) 2020-02-06 2020-02-06 一种土壤水分数字化预测与灌溉预警方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010081838.3A CN111280019A (zh) 2020-02-06 2020-02-06 一种土壤水分数字化预测与灌溉预警方法

Publications (1)

Publication Number Publication Date
CN111280019A true CN111280019A (zh) 2020-06-16

Family

ID=71017025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010081838.3A Pending CN111280019A (zh) 2020-02-06 2020-02-06 一种土壤水分数字化预测与灌溉预警方法

Country Status (1)

Country Link
CN (1) CN111280019A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112493100A (zh) * 2020-12-03 2021-03-16 塔里木大学 基于土壤水势的棉花水分监测滴灌控制方法及***
CN112493084A (zh) * 2020-11-27 2021-03-16 重庆文理学院 一种基于天气预报信息的水平衡茶树浇水方法
CN112881602A (zh) * 2021-01-14 2021-06-01 北京农业智能装备技术研究中心 作物活性根分布的测定方法及装置
CN112931167A (zh) * 2021-03-22 2021-06-11 中国农业大学 植物灌溉决策***和方法
CN113219865A (zh) * 2021-04-19 2021-08-06 西北农林科技大学 基于光辐射量和蒸腾时滞效应的温室番茄超前决策高频智能灌溉方法及***
CN114651708A (zh) * 2022-03-07 2022-06-24 广东省科学院广州地理研究所 基于盐分淋洗率的作物灌溉方法、装置、设备及存储介质
CN114680029A (zh) * 2022-02-17 2022-07-01 广东省科学院广州地理研究所 基于土壤与作物根系的灌溉方法、装置、设备及存储介质
CN115039676A (zh) * 2022-06-27 2022-09-13 东方智感(浙江)科技股份有限公司 一种灌溉方法及***
CN115343422A (zh) * 2022-08-11 2022-11-15 武汉大学 基于改进Feddes模型的水稻蒸腾量计算方法
CN115641015A (zh) * 2022-09-07 2023-01-24 北京爱科农科技有限公司 土壤含水量的估算方法、存储介质及计算机设备
CN117158302A (zh) * 2023-10-12 2023-12-05 郑州大学 智能农业精准灌溉方法及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104521699A (zh) * 2014-11-18 2015-04-22 华北水利水电大学 田间智能灌溉在线控制管理方法
CN109076925A (zh) * 2018-09-27 2018-12-25 扬州大学 一种垄作分根交替滴灌精准控制***及方法
US20190070561A1 (en) * 2006-06-13 2019-03-07 Evoqua Water Technologies Llc Method and system for water treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190070561A1 (en) * 2006-06-13 2019-03-07 Evoqua Water Technologies Llc Method and system for water treatment
CN104521699A (zh) * 2014-11-18 2015-04-22 华北水利水电大学 田间智能灌溉在线控制管理方法
CN109076925A (zh) * 2018-09-27 2018-12-25 扬州大学 一种垄作分根交替滴灌精准控制***及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘战东: "冬小麦降雨利用过程及其模拟", 《中国优秀博士学位论文全文数据库 农业科技辑》 *
吕殿青 等: "非饱和土壤水力参数的模型及确定方法", 《应用生态学报》 *
吴元芝 等: "基于Hydrus-1D模型的玉米根系吸水影响因素分析", 《农业工程学报》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112493084A (zh) * 2020-11-27 2021-03-16 重庆文理学院 一种基于天气预报信息的水平衡茶树浇水方法
CN112493084B (zh) * 2020-11-27 2023-04-21 重庆文理学院 一种基于天气预报信息的水平衡茶树浇水方法
CN112493100A (zh) * 2020-12-03 2021-03-16 塔里木大学 基于土壤水势的棉花水分监测滴灌控制方法及***
CN112881602A (zh) * 2021-01-14 2021-06-01 北京农业智能装备技术研究中心 作物活性根分布的测定方法及装置
CN112931167A (zh) * 2021-03-22 2021-06-11 中国农业大学 植物灌溉决策***和方法
CN113219865B (zh) * 2021-04-19 2022-09-16 西北农林科技大学 基于光辐射量和蒸腾时滞效应的温室番茄超前决策高频智能灌溉方法及***
CN113219865A (zh) * 2021-04-19 2021-08-06 西北农林科技大学 基于光辐射量和蒸腾时滞效应的温室番茄超前决策高频智能灌溉方法及***
CN114680029A (zh) * 2022-02-17 2022-07-01 广东省科学院广州地理研究所 基于土壤与作物根系的灌溉方法、装置、设备及存储介质
CN114651708A (zh) * 2022-03-07 2022-06-24 广东省科学院广州地理研究所 基于盐分淋洗率的作物灌溉方法、装置、设备及存储介质
CN115039676A (zh) * 2022-06-27 2022-09-13 东方智感(浙江)科技股份有限公司 一种灌溉方法及***
CN115039676B (zh) * 2022-06-27 2024-03-29 东方智感(浙江)科技股份有限公司 一种灌溉方法及***
CN115343422A (zh) * 2022-08-11 2022-11-15 武汉大学 基于改进Feddes模型的水稻蒸腾量计算方法
CN115641015A (zh) * 2022-09-07 2023-01-24 北京爱科农科技有限公司 土壤含水量的估算方法、存储介质及计算机设备
CN115641015B (zh) * 2022-09-07 2023-06-27 北京爱科农科技有限公司 土壤含水量的估算方法、存储介质及计算机设备
CN117158302A (zh) * 2023-10-12 2023-12-05 郑州大学 智能农业精准灌溉方法及***
CN117158302B (zh) * 2023-10-12 2024-05-03 郑州大学 智能农业精准灌溉方法及***

Similar Documents

Publication Publication Date Title
CN111280019A (zh) 一种土壤水分数字化预测与灌溉预警方法
CN108446997B (zh) 一种基于多源信息融合的作物节水灌溉决策方法及测控***
Droogers et al. Distributed agro-hydrological modeling of an irrigation system in western Turkey
CN107087539A (zh) 一种基于物联网的果蔬智能灌溉***
CN109452146B (zh) 冬小麦节水灌溉决策方法、控制装置及控制***
Difallah et al. Linear optimization model for efficient use of irrigation water
CN105868864A (zh) 一种套种作物自动灌溉的控制方法及***
CN108958329B (zh) 一种滴灌水肥一体化智能决策方法
CN112931166B (zh) 一种变量灌溉管理决策方法
CN105494033B (zh) 一种基于作物需求的智能节水灌溉方法
Yang et al. Estimation of groundwater use by crop production simulated by DSSAT‐wheat and DSSAT‐maize models in the piedmont region of the North China Plain
CN110992201A (zh) 生态灌区实现节水挖潜的综合措施配置方法
Gao et al. Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales
Serede et al. Calibration of channel roughness coefficient for Thiba Main Canal Reach in Mwea irrigation scheme, Kenya
CN110599360A (zh) 一种干旱区农作物生长季蒸散发高分辨率遥感估算方法
Liu et al. A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater
Fulton et al. Evaluation of crop coefficients and evapotranspiration in English walnut
CN112989560A (zh) 一种基于墒情气象数据计算农作物需水量的方法
CN114757405B (zh) 灌区水资源均衡优化配置方法
Yin et al. Regional agricultural water footprint and crop water consumption study in yellow river basin, China
Khatri et al. Water and salt balances at farmer fields
CN114912247A (zh) 一种考虑植被用水机理的流域实际蒸散估算方法
CN207135771U (zh) 一种基于物联网的果蔬智能灌溉***
CN110889563A (zh) 一种沙米人工种植促进出苗需水量的预测方法及***
Gao et al. Modeling agricultural hydrology and water productivity to enhance water management in the Arid Irrigation District of China

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200616