CN111266110A - 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法 - Google Patents

一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法 Download PDF

Info

Publication number
CN111266110A
CN111266110A CN202010112028.XA CN202010112028A CN111266110A CN 111266110 A CN111266110 A CN 111266110A CN 202010112028 A CN202010112028 A CN 202010112028A CN 111266110 A CN111266110 A CN 111266110A
Authority
CN
China
Prior art keywords
transition metal
titanium oxide
doped titanium
carrier
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010112028.XA
Other languages
English (en)
Other versions
CN111266110B (zh
Inventor
闫常峰
闵祥萍
史言
卢卓信
郭常青
王志达
谭弘毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN202010112028.XA priority Critical patent/CN111266110B/zh
Publication of CN111266110A publication Critical patent/CN111266110A/zh
Application granted granted Critical
Publication of CN111266110B publication Critical patent/CN111266110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • B01J35/23
    • B01J35/33
    • B01J35/393
    • B01J35/399
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

本发明公开了一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法和应用,选用稳定、导电、高比表面积的多孔过渡金属掺杂氧化钛为贵金属氧化物纳米颗粒的载体,结合纳米化的贵金属材料制备的催化剂能大大提高活性贵金属分散性和表面活性位点密度,从而提高贵金属的利用率和质量比活性,进而使析氧质量比活性可达到商业铱氧化物的7‑8倍的同时减少在水电解器的膜电极中贵金属的负载量。

Description

一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化 剂及其制备方法
技术领域:
本发明涉及电催化技术领域,具体涉及一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法和应用。
背景技术:
为了减少化石能源的使用,减少CO2排放,可再生能源如风能、太阳能必须利用起来,但很多可再生能源均为间歇式能源,所以在可再生能源发展的同时能源储存技术也必须发展起来。水电解技术可以将间歇性可再生能源产生的电能转化为氢能储存起来,是一种清洁的制氢方式。在水电解过程中能量损失主要来自于析氧反应的过电位,高活性的析氧催化剂是降低能耗的关键。在酸性体系下氧析出反应过程中,催化剂主要为贵金属Ir、Ru,使膜电极成本过高,所以降低贵金属的用量仍是商业化过程中的主要挑战之一。
降低贵金属用量主要有两种策略,1)提高催化剂暴露活性位点数量;(2)提高本征活性,即单位活性位点活性。为了提高暴露活性位点数量,可以采用纳米化贵金属,掺杂非贵金属于贵金属材料,或将贵金属负载于非贵金属载体材料上等方式。现很多研究制备氧化铱在7-12nm左右,也有将氧化铱做到2-3nm的相关报道。贵金属载体材料的研究主要包括碳化物、掺杂氧化物等。而提高本征活性主要是制备高活性的无定型、具有一定羟基的贵金属氧化物材料。基于现有技术,阴极贵金属用量在0.5-1mg/cm2左右,而阳极贵金属用量在2mg/cm2。为了商业化推进,需进一步降低膜电极贵金属用量。
发明内容:
本发明的目的是提供一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法和应用,选用稳定、导电、高比表面积的多孔过渡金属掺杂氧化钛为贵金属氧化物纳米颗粒的载体,结合纳米化的贵金属氧化物材料制备的催化剂能大大提高活性贵金属分散性和表面活性位点密度,从而提高贵金属的利用率和质量比活性,使析氧质量比活性可达到商业铱氧化物的7-8倍的同时减少在水电解器的膜电极中贵金属的负载量。
本发明是通过以下技术方案予以实现的:
一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂,该催化剂由过渡金属掺杂氧化钛载体和负载于所述载体上的贵金属氧化物组成,过渡金属掺杂氧化钛载体制备方法包括以下步骤:四氯化钛、过渡金属氯化物、醇、水形成混合溶液,然后加热处理,干燥后300-1000℃,优选为300-500℃煅烧得到稳定、导电、高比表面积的多孔过渡金属掺杂氧化钛颗粒。
所述过渡金属掺杂氧化钛粒径小于50nm,贵金属氧化物纳米粒径小于10nm。
所述的过渡金属掺杂氧化钛中过渡金属掺杂摩尔比为5-30%。
所述过渡金属掺杂氧化钛制备方法中,优选地,四氯化钛、过渡金属氯化物、醇、水形成混合溶液中加入抑制剂,例如草酸、柠檬酸、冰醋酸、乙酰丙酮、盐酸、硝酸、三乙醇胺等。
所述过渡金属掺杂氧化钛制备方法中,煅烧过程中通入一定气氛,例如H2气,Ar气,H2/Ar混合气,N2气,H2/N2混合气等,或保持真空。
优选地,所述贵金属选自铱、钌,所述过渡金属选自钨、铌、钽。
优选地,以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂中贵金属的质量分数为10%-50%。
所述的以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂的制备方法,包括以下步骤:
1)将贵金属化合物、上述方法得到的过渡金属掺杂氧化钛、水制成混合溶液,在水浴、搅拌的条件下缓慢加入碱性溶液得到前驱体溶液;
2)前驱体溶液置于水热反应釜中,经过120-200℃水热反应、将之清洗、烘干后得到催化剂。
特别地,步骤1)制备前驱体溶液中通入气氛,例如Ar气,N2气,H2气,H2/Ar混合气,H2/N2混合气等。
本发明还保护所述以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂在水电解制氢的应用,所述催化剂用于制备水电解阳极膜电极。
本发明的有益效果如下:
1)选用稳定、导电、高比表面积的多孔过渡金属掺杂氧化钛为贵金属氧化物纳米颗粒的载体,能大大提高活性贵金属分散性和表面活性位点密度,从而提高贵金属的利用率和质量比活性。
2)采用溶胶凝胶方法制备过渡金属掺杂氧化钛,然后水热合成方法负载贵金属氧化物,通过改进实验方案,可制得尺寸较小、性能优异的催化剂材料。
3)用本发明制备方法制备得到的以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂,其析氧质量比活性可达到商业氧化铱的7-8倍,且稳定性与商业氧化铱类似,用其制得水电解阳极膜电极,可大大降低贵金属的用量。在80℃,1A/cm2的电流下测试其电位仅为1.62V,且此时贵金属铱用量仅为0.114mg/cm2,阴阳两极总贵金属用量小于0.2mg/cm2。在此条件下运行400h电位基本保持稳定。
总之,本发明选用稳定、导电、高比表面积的多孔过渡金属掺杂氧化钛为贵金属氧化物纳米颗粒的载体,结合纳米化的贵金属氧化物材料制备的催化剂能大大提高活性贵金属分散性和表面活性位点密度,从而提高贵金属的利用率和质量比活性,使析氧质量比活性可达到商业铱氧化物的7-8倍的同时减少在水电解器的膜电极中贵金属的负载量。
附图说明:
图1:钨掺杂氧化钛的TEM图;
其中(a)、(b)、(c)、(d)分别指过渡金属钨掺杂摩尔比分别为5%、10%、20%、30%。图2:实施例1-4得到的铱/钨掺杂氧化钛复合催化剂不同钨掺杂量的TEM和粒径分布图;
图3:铱/钨掺杂氧化钛复合催化剂不同铱负载量的TEM和粒径分布图;
图4:铱/钨掺杂氧化钛复合催化剂的线性扫描曲线;
图5:铱/钨掺杂氧化钛复合催化剂XPS图;
图6:用铱/钨掺杂氧化钛复合催化剂和铂碳制得的水电解器的稳态极化曲线和稳定性曲线。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:过渡金属掺杂氧化钛载贵金属氧化物催化剂的制备
(1)取0.19g六氯化钨,0.54g草酸、1mL四氯化钛在磁力搅拌条件下混合乙醇、水,其中W/(Ti+W)摩尔比为5%。对其进行持续的搅拌至均匀混合,随后超声1h处理形成混合溶液。
(2)将步骤(1)所得的混合溶液转移到培养皿中,对其进行80℃加热处理至固体颗粒形成。随后,将其置于80℃干燥箱中干燥12h,进行进一步干燥。
(3)将步骤(2)所得的颗粒在H2氛围下煅烧得到钨掺杂氧化钛,其中升温速率为5℃/min,煅烧温度为500℃,煅烧时间为1h。
(4)将步骤(3)所得的钨掺杂氧化钛称取30mg后加入到6mL水中,随后加入1.5mL的5mgIr/mL的H2IrCl6溶液。将样品超声、80℃水浴1h并搅拌后获得混合溶液。
(5)将步骤(4)的混合溶液在搅拌、50℃水浴、N2氛围保护条件下,缓慢加入KOH溶液,直到[OH-]与[Ir]的摩尔比为10,得到前驱体溶液。
(6)将步骤(5)得到的前驱体溶液放入50mL水热反应釜中,在180℃下水热2h。待反应釜温度降至室温后,对其进行清洗。在烘箱中对其进行80℃干燥获得过渡金属掺杂氧化钛载贵金属氧化物催化剂,所负载贵金属氧化物由铱氧化物及羟基氧化物组成,简记为20%IrOx/5%W-TiO2
(7)将步骤(6)得到的铱/钨掺杂氧化钛复合催化剂运用三电极法在电化学工作站上进行测试,其中滴加催化剂墨水的玻碳电极为工作电极,Ag/AgCl电极为参比电极,Pt片为辅助电极。电解质溶液为0.5mol/LH2SO4溶液。催化剂墨水由催化剂、乙醇、水和Nafion溶液配制而成。采用线性扫描法对材料进行活性测试。
实施例2:
重复实施例1的操作步骤,不同之处在于改变六氯化钨的加入量,使W/(Ti+W)的摩尔比为10%,其中四氯化钛保持体积为1mL。得到的催化剂简记为20%IrOx/10%W-TiO2
实施例3:
重复实施例1的操作步骤,不同之处在于改变六氯化钨的加入量,使W/(Ti+W)的摩尔比为20%,其中四氯化钛保持体积为1mL。得到的催化剂简记为20%IrOx/20%W-TiO2
实施例4:
重复实施例1的操作步骤,不同之处在于改变六氯化钨的加入量,使W/(Ti+W)的摩尔比为30%,其中四氯化钛保持体积为1mL。得到的催化剂简记为20%IrOx/30%W-TiO2
实施例5:
重复实施例1的操作步骤,不同之处在于改变六氯化钨的加入量,使W/(Ti+W)的摩尔比为20%,其中四氯化钛保持体积为1mL,按铱/钨掺杂氧化钛质量比为10%加入H2IrCl6和钨掺杂氧化钛颗粒,其中氯铱酸溶液体积保持1.5mL。得到的催化剂简记为10%IrOx/20%W-TiO2
实施例6:
重复实施例1的操作步骤,不同之处在于改变六氯化钨的加入量,使W/(Ti+W)的摩尔比为20%,其中四氯化钛保持体积为1mL,按铱/钨掺杂氧化钛质量比为30%加入H2IrCl6和钨掺杂氧化钛颗粒,其中氯铱酸溶液体积保持1.5mL。得到的催化剂简记为30%IrOx/30%W-TiO2
实施例7:PEM水电解器
将实施例4制得的催化剂(简记为20%IrOx/30%W-TiO2)作为水电解阳极催化剂,商业的20wt.%Pt/C作为阴极催化剂,组装成膜电极后测试其性能。催化剂颗粒、Nafion溶液、去离子水、异丙醇超声混合形成催化剂墨水,将催化剂墨水喷涂在Nafion膜上制成膜电极。通过称重法确定催化剂负载量。在温度为80℃下进行测试稳态极化曲线。在80℃和1A/cm2下进行稳定性测试。
将实施例1-6制得的催化剂进行析氧活性测试,测试结果见表1和图4。
表1
Figure BDA0002390349910000071
从表1可以看出催化剂质量活性与商业氧化铱(220A/g)相比大大提高,可达到其7-8倍,且稳定性可与其保持类似。从XPS图(图5)可以做看出,制备的催化剂包含Ir4+与Ir3 +,分别对应贵金属颗粒中的贵金属氧化物与或贵金属羟基氧化物。从TEM图可以看出,贵金属颗粒均匀的分散在掺杂氧化钛载体表面,掺杂氧化钛颗粒尺寸在几纳米至几十纳米不等,且制备的贵金属氧化物平均颗粒尺寸可小到1nm左右,与现有技术相比颗粒尺寸大幅降低,大大提高了贵金属的分散性和表面暴露活性位点数量。
从稳态极化曲线可以看出,在电流密度为1A/cm2时,电位仅为1.618V,且此时贵金属铱用量仅为0.114mg/cm2,阴极贵金属Pt用量为0.085mg/cm2,总贵金属用量低于0.2mg/cm2。在1A/cm2和80℃下进行稳定性测试,运行400h电位基本保持稳定。与现有技术相比,膜电极贵金属用量大大降低。

Claims (10)

1.一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂,其特征在于,该催化剂由过渡金属掺杂氧化钛载体和负载于所述载体上的贵金属氧化物组成,过渡金属掺杂氧化钛载体制备方法包括以下步骤:四氯化钛、过渡金属氯化物、醇、水形成混合溶液,然后加热处理,干燥后300-1000℃煅烧得到稳定、导电、高比表面积的多孔过渡金属掺杂氧化钛颗粒。
2.根据权利要求1所述的以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂,其特征在于,所述的过渡金属掺杂氧化钛粒径小于50nm,贵金属氧化物纳米粒径小于10nm;所述的过渡金属掺杂氧化钛载体中过渡金属掺杂摩尔分数为5-30%。
3.根据权利要求1或2所述的以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂,其特征在于,过渡金属掺杂氧化钛载体制备方法中,四氯化钛、过渡金属氯化物、醇、水形成混合溶液中加入抑制剂。
4.根据权利要求3所述的以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂,其特征在于,抑制剂选自草酸、柠檬酸、冰醋酸、乙酰丙酮、盐酸、硝酸、三乙醇胺中的任一种。
5.根据权利要求1或2所述的以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂,其特征在于,过渡金属掺杂氧化钛载体制备方法中,煅烧过程中通入一定气氛或保持真空,气氛选自H2气,Ar气,H2/Ar混合气,N2气,H2/N2混合气,煅烧温度为350-550℃。
6.根据权利要求1或2所述的以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂,其特征在于,所述贵金属选自铱、钌,所述过渡金属选自钨、铌、钽。
7.根据权利要求1或2所述的以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂,其特征在于,以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂中贵金属的质量分数为10%-50%。
8.权利要求1所述的以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂的制备方法,其特征在于,包括以下步骤:
1)将贵金属化合物、过渡金属掺杂氧化钛、水制成混合溶液,在水浴、搅拌的条件下缓慢加入碱性溶液得到前驱体溶液;
2)前驱体溶液置于水热反应釜中,经过120-200℃水热反应、将之清洗、烘干后得到催化剂。
9.根据权利要求8所述的以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂的制备方法,其特征在于,步骤1)制备前驱体溶液中通入气氛,所述气氛选自Ar气,N2气,H2气,H2/Ar混合气,H2/N2混合气中的任一种。
10.权利要求1所述以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂在水电解制氢的应用,其特征在于,所述催化剂用于制备水电解阳极膜电极。
CN202010112028.XA 2020-02-24 2020-02-24 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法 Active CN111266110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010112028.XA CN111266110B (zh) 2020-02-24 2020-02-24 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010112028.XA CN111266110B (zh) 2020-02-24 2020-02-24 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN111266110A true CN111266110A (zh) 2020-06-12
CN111266110B CN111266110B (zh) 2023-02-03

Family

ID=70991341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010112028.XA Active CN111266110B (zh) 2020-02-24 2020-02-24 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111266110B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089018A (zh) * 2021-03-24 2021-07-09 三峡大学 二硫化钼-硫化钴@钝化层的制备方法及其新用途
CN113802130A (zh) * 2021-09-28 2021-12-17 无锡威孚环保催化剂有限公司 一种电解水催化剂及其制备方法
CN114395779A (zh) * 2022-01-06 2022-04-26 清华大学 一种pem水电解用催化剂、制备方法及其用途
CN114921808A (zh) * 2022-03-22 2022-08-19 温州大学 钒掺杂二氧化铱电催化剂及其制备方法和应用
CN116722158A (zh) * 2023-08-09 2023-09-08 珞氢新材料科技(广东)有限公司 一种燃料电池催化剂复合载体及其制备方法与应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874841A (zh) * 2003-10-29 2006-12-06 尤米科尔股份公司及两合公司 水电解用贵金属氧化物催化剂
CN101365537A (zh) * 2005-08-12 2009-02-11 通用汽车环球科技运作公司 燃料电池的电催化剂载体
US20090065738A1 (en) * 2006-10-18 2009-03-12 University Of South Carolina Electrocatalyst Support and Catalyst Supported Thereon
CN101792117A (zh) * 2010-02-23 2010-08-04 武汉理工大学 钨掺杂锐钛矿型纳米二氧化钛复合粉末的制备方法
CN102459085A (zh) * 2009-05-21 2012-05-16 康奈尔大学 导电的金属氧化物和金属氮化物纳米颗粒
CN102477564A (zh) * 2010-11-23 2012-05-30 中国科学院大连化学物理研究所 一种制备spe水电解阳极析氧催化剂的方法
CN103394343A (zh) * 2013-08-16 2013-11-20 河海大学 一种金属掺杂二氧化钛材料的制备方法及其应用
US20140045678A1 (en) * 2012-08-08 2014-02-13 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making
CN104078244A (zh) * 2013-03-26 2014-10-01 中国科学院大连化学物理研究所 一种掺杂金属铌二氧化钛纳米片及其制备方法和应用
WO2017069831A2 (en) * 2015-08-06 2017-04-27 Ballard Power Systems Inc. Fuel cell with improved electro catalyst
CN108808028A (zh) * 2018-06-07 2018-11-13 东莞理工学院 燃料电池催化剂载体其制备方法及电池电极
CN109589974A (zh) * 2018-11-05 2019-04-09 中国科学院广州能源研究所 一种用于水电解器的低贵金属载量的析氧催化剂

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874841A (zh) * 2003-10-29 2006-12-06 尤米科尔股份公司及两合公司 水电解用贵金属氧化物催化剂
CN101365537A (zh) * 2005-08-12 2009-02-11 通用汽车环球科技运作公司 燃料电池的电催化剂载体
US20090065738A1 (en) * 2006-10-18 2009-03-12 University Of South Carolina Electrocatalyst Support and Catalyst Supported Thereon
CN102459085A (zh) * 2009-05-21 2012-05-16 康奈尔大学 导电的金属氧化物和金属氮化物纳米颗粒
CN101792117A (zh) * 2010-02-23 2010-08-04 武汉理工大学 钨掺杂锐钛矿型纳米二氧化钛复合粉末的制备方法
CN102477564A (zh) * 2010-11-23 2012-05-30 中国科学院大连化学物理研究所 一种制备spe水电解阳极析氧催化剂的方法
US20140045678A1 (en) * 2012-08-08 2014-02-13 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making
CN104078244A (zh) * 2013-03-26 2014-10-01 中国科学院大连化学物理研究所 一种掺杂金属铌二氧化钛纳米片及其制备方法和应用
CN103394343A (zh) * 2013-08-16 2013-11-20 河海大学 一种金属掺杂二氧化钛材料的制备方法及其应用
WO2017069831A2 (en) * 2015-08-06 2017-04-27 Ballard Power Systems Inc. Fuel cell with improved electro catalyst
CN108808028A (zh) * 2018-06-07 2018-11-13 东莞理工学院 燃料电池催化剂载体其制备方法及电池电极
CN109589974A (zh) * 2018-11-05 2019-04-09 中国科学院广州能源研究所 一种用于水电解器的低贵金属载量的析氧催化剂

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089018A (zh) * 2021-03-24 2021-07-09 三峡大学 二硫化钼-硫化钴@钝化层的制备方法及其新用途
CN113802130A (zh) * 2021-09-28 2021-12-17 无锡威孚环保催化剂有限公司 一种电解水催化剂及其制备方法
CN113802130B (zh) * 2021-09-28 2024-02-09 无锡威孚环保催化剂有限公司 一种电解水催化剂及其制备方法
CN114395779A (zh) * 2022-01-06 2022-04-26 清华大学 一种pem水电解用催化剂、制备方法及其用途
CN114921808A (zh) * 2022-03-22 2022-08-19 温州大学 钒掺杂二氧化铱电催化剂及其制备方法和应用
CN116722158A (zh) * 2023-08-09 2023-09-08 珞氢新材料科技(广东)有限公司 一种燃料电池催化剂复合载体及其制备方法与应用
CN116722158B (zh) * 2023-08-09 2024-03-19 珞氢新材料科技(广东)有限公司 一种燃料电池催化剂复合载体及其制备方法与应用

Also Published As

Publication number Publication date
CN111266110B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN111266110B (zh) 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法
CN110252335B (zh) 一种碳包覆镍钌纳米材料及其制备方法和应用
CN111545250B (zh) 一种具有高效电催化全解水性能的钌催化剂及其应用
KR101901223B1 (ko) 자동차용 연료전지를 위한 다기능성 비백금 담지 촉매 및 그 제조 방법
CN111054408A (zh) 一种多孔镍钼基纳米片双功能电催化剂的制备方法
JP2005508450A (ja) 改良されたロジウム電極触媒及び製造方法
CN113437314A (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN111085195A (zh) 金属合金催化剂及其制备方法
JP2020059917A (ja) 水分解酸素発生用の四酸化三コバルトアレイ/チタンメッシュ電極及びその製造方法
CN114395779A (zh) 一种pem水电解用催化剂、制备方法及其用途
CN115369422A (zh) 一种低铱电解水催化剂、其制备方法和应用
CN114164452B (zh) 一种制备超薄钒酸钴纳米片负载金属单原子催化剂的方法
CN111203206A (zh) 一种CeO2基电催化产氧催化剂及其制备方法和应用
CN113667995A (zh) 二维片状多巴胺热解碳包覆钌纳米团簇催化剂及制备使用方法
CN113275006A (zh) 一种自支撑复合材料及其制备方法和应用
CN113398923A (zh) 一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用
CN110354870B (zh) 一种高性能的银掺杂的硫化钴析氧催化剂的制备方法及其应用
CN109012673B (zh) 一种析氧催化剂的制备方法及应用
CN113430555B (zh) 氧化铱-铂复合纳米催化剂、制备方法及其应用
CN113174609B (zh) 一种超高性能析氢电解水催化剂的制备方法及应用
CN115522224A (zh) 一种新型催化剂材料、制备方法及其应用
CN114561655A (zh) 一种稀土铈掺杂硫化镍/硫化铁异质结材料的制备方法和应用
Ganesan et al. Preparation and Characterization of Pt/NbTiO2 Cathode Catalysts for Unitized Regenerative Fuel Cells (URFCs).
CN115094475B (zh) 具有高性能析氧催化活性的电极材料及其制备方法
CN114717601B (zh) 三相界面复合的集成式碱水电解制氢电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant