CN111257696A - 一种有限pmu下基于估计的输电线路故障检测方法 - Google Patents

一种有限pmu下基于估计的输电线路故障检测方法 Download PDF

Info

Publication number
CN111257696A
CN111257696A CN202010138423.5A CN202010138423A CN111257696A CN 111257696 A CN111257696 A CN 111257696A CN 202010138423 A CN202010138423 A CN 202010138423A CN 111257696 A CN111257696 A CN 111257696A
Authority
CN
China
Prior art keywords
fault
bus
line
pmu
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010138423.5A
Other languages
English (en)
Other versions
CN111257696B (zh
Inventor
童晓阳
张生鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202010138423.5A priority Critical patent/CN111257696B/zh
Publication of CN111257696A publication Critical patent/CN111257696A/zh
Application granted granted Critical
Publication of CN111257696B publication Critical patent/CN111257696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)

Abstract

本发明公开了一种有限PMU下基于估计的输电线路故障检测方法,采用间隔母线布置PMU策略,将电网分成几个区域,估计出未布置PMU母线的总估计电流,根据它是否超出阈值来检测疑似故障区域,采用t检验对疑似故障区域进行数据不同步的检查与校正;利用各PMU数据,较精确地估计得到未布置PMU母线的正序估计电压和估计电流,利用双端测距原理,分别计算各疑似线路的故障距离,建立有限PMU下的输电线路故障检测判据。本发明能够正确地检测故障线路,不受故障位置、故障类型、过渡电阻的影响,对于线路参数的一定误差,仍具有较高的检测准确性,并具有一定的抗不同步能力。

Description

一种有限PMU下基于估计的输电线路故障检测方法
技术领域
本发明属于电力***故障检测领域,具体涉及一种有限PMU下基于估计的输电线路故障检测方法。
背景技术
随着电力***的发展,电网结构日益复杂,基于本地信号的传统保护整定变得困难[1-3]。由于相量测量单元(Phasor Measurement Unit,PMU)具有时间精度高和测量结果准确等优点,引入PMU为输电线路的故障检测和定位提供了新手段[4,5]。考虑到PMU布局的经济性,因此需要研究有限PMU布局的输电线路故障检测方法。
文献[6]通过比较疑似故障线路两端正序电流相角的绝对值来检测故障线路;文献[7]采用最小二乘法,估计各节点的电压,然后估计出各线路电流,计算电流残差来判断故障,但是估计的电压并不够准确;文献[8]利用故障关联因子识别疑似故障线路;文献[9]提出基于差动有功功率的线路保护原理,抗过渡电阻能力强;文献[10]提出基于电压故障分量和功率分布的后备保护方案,但是需要所有母线布置PMU。
文献[11][12]在有限PMU策略下利用分布参数模型,推算故障点的电压电流,从故障通路纯电阻性角度建立方程,准确求得故障位置,但是其计算过程较复杂;文献[13]利用有限PMU的故障分量,结合两种纯故障等值模型,对故障点进行精确定位,但是它基于集中参数模型,对实际的长线路可能并不太适用。
参考文献
[1]季修.防御大停电的广域保护和紧急控制[M].中国电力出版社,2007.
[2]鞠平.电力***广域测量技术[M].北京:机械工业出版社,2008.
[3]王晓茹,Hopkinson K M,Thorp J S,et al.利用Agent实现新的电网后备保护[J].电力***自动化,2005,29(21):57-62.
[4]De L R J,Centeno V,Thorp J S,et al.Synchronized Phasor MeasurementApplications in Power Systems[J].IEEE Transactions on Smart Grid,2010,1(1):20-27.
[5]Aminifar F,Fotuhi-Firuzabad M,Safdarian A,et al.SynchrophasorMeasurement Technology in Power Systems:Panorama and State-of-the-Art[J].IEEEAccess,2014,2:1607-1628.
[6]Eissa M M,Masoud M E,Elanwar M M M.A Novel Back Up Wide AreaProtection Technique for Power Transmission Grids Using Phasor MeasurementUnit[J].IEEE Transactions on Power Delivery,2010,25(1):270-278.
[7]王晨,童晓阳,王睿晗,等.有限相量测量单元下最小二乘估计的广域后备保护算法[J].电力***自动化,2015(20):124-129.
[8]马静,李金龙,王增平,等.基于故障关联因子的新型广域后备保护[J].中国电机工程学报,2010,30(31):100-107.
[9]童晓阳,连文超,滕予非.有限PMU下采用差动有功功率抗过渡电阻的广域后备保护[J].中国电机工程学报,2018,38(8):2335-2347.
[10]Seyed-Sattar,Mirhosseini,Mahdi,et al.Wide area backup protectionalgorithm for transmission lines based on fault component complex power[J].International Journal of Electrical Power&Energy Systems,2016.
[11]姜臻,苗世洪,刘沛.基于故障可观性的输电线路故障定位方法[J].电力***保护与控制,2016,44(15):1-9.J
[12]罗深增,李银红,陈博,等.计及PMU最优配置的输电线路广域自适应故障定位算法[J].中国电机工程学报,2016,36(15):4134-4144.
[13]徐浩,苗世洪,姜臻,等.基于有限相量测量单元测量故障分量信息的故障定位算法[J].电力***自动化,2013,37(02):43-48.
发明内容
为解决上述问题,本发明提供了一种有限PMU下基于估计的输电线路故障检测方法。
本发明的一种有限PMU下基于估计的输电线路故障检测方法,步骤如下:
步骤1:对整个电网拓扑结构进行区域划分,各区域的边界节点布有PMU;针对一个区域中未布置PMU的母线M,在线路正常运行时,从与母线M相连任一条线路布有PMU侧的正序电压电流推算得到故障前母线M的正序推算电压
Figure BDA0002398147800000021
从各条相连线路布有PMU侧的正序电压电流推算得到母线M的各侧正序推算电流
Figure BDA0002398147800000022
1≤i≤N,N是与母线M相连的各线路的个数,利用下式计算出母线M的负载正序阻抗Zpre,具体为:
Figure BDA0002398147800000023
步骤2:通过PMU收集每个区域中各边界节点的电压电流,由相连线路布有PMU的i侧的正序电压、电流推算得到未布PMU的M侧的正序推算电流
Figure BDA0002398147800000024
正序推算电压
Figure BDA0002398147800000025
如下:
Figure BDA0002398147800000026
其中,
Figure BDA0002398147800000031
分别为正常线路Mi布有PMU的i侧实测的正序电压、电流;γi为线路Mi的传播系数;Zi为线路Mi的特征阻抗;LM,i为线路Mi的全长。
为了精确计算得到母线M的正序电压,首先要舍去N个推算电压中幅值最小的推算电压
Figure BDA0002398147800000032
然后为了减小各线路的推算电压误差的影响,取剩下N-1个推算电压的平均值,作为未布PMU的母线M的正序估计电压
Figure BDA0002398147800000033
Figure BDA0002398147800000034
其中,
Figure BDA0002398147800000035
是根据式(2)从i侧的正序电压电流推算得到母线M的正序推算电压;
Figure BDA0002398147800000036
是N个正序推算电压中幅值最小的推算电压。
未布PMU的母线M的正序估计负载电流为
Figure BDA0002398147800000037
Figure BDA0002398147800000038
计算M侧的总估计电流的幅值Itotal
Figure BDA0002398147800000039
如果Itotal大于区域故障阈值Iset,则判断该区域为疑似故障区域,进入下一步;
步骤3:计算得到疑似故障区域中未布PMU的母线M的正序推算电压相角序列,采用t检验准则找到不同步的推算电压相角;如果找到一个不同步角,则对该侧的电压和电流进行校正,使之同步化,然后回到步骤2,重新进行疑似故障区域判别;否则,不存在不同步问题,进入下一步判别其它故障。
步骤4:针对疑似故障区域中各条输电线路,分别假设它们故障,分别计算得到它们的故障距离;
对于疑似故障区域中输电线路Mi,母线M侧未布有PMU,母线i侧布有PMU,从M侧到i侧的正序估计电流
Figure BDA00023981478000000310
可由下式得到:
Figure BDA00023981478000000311
利用线路Mi从M侧到i侧的正序估计电流
Figure BDA00023981478000000312
i侧由PMU实测的电流
Figure BDA00023981478000000313
采用双端测距公式计算得到线路Mi的故障距离ai,1≤i≤N;
将各线路的故障距离中最小值记为amin,如果0<amin<0.99,且其它线路的故障距离满足0.99<aelse<1.01,则amin所在的线路为故障线路。
如果所有线路的故障距离ai都在(0.99,1.01)区间内,则为母线故障或负载阻抗发生变化,此时引入母线差动保护来辅助判断,如果母线差动保护动作,则判断为母线故障;否则为负载阻抗发生了变化。
进一步的,疑似故障包括以下4种情形:1、存在数据不同步;2、公共母线M故障;3、与母线M相连的任一条输电线路发生故障;4、母线M处负载阻抗发生变化。
进一步的,区域故障阈值Iset设定为0.1倍的额定电流。
本发明的有益技术效果为:
本发明基于分布参数模型,计算简单,不需要迭代,计算结果准确,不受过渡电阻和故障类型的影响,一定程度上解决了传统双端测距应用的局限性。
附图说明
图1为本发明流程图。
图2为隔点布置PMU的典型区域示意图。
图3为双端故障示意图。
图4为IEEE39节点测试***。
图5为未进行同步校验时的Itotal值。
图6为线路的不同步角度。
图7同步处理后的Itotal值。
图8为负载增加一倍时的仿真结果。
图9为转换性故障时的仿真结果。
具体实施方式
下面结合附图和具体实施方法对本发明做进一步详细说明。
本发明一种有限PMU下基于估计的输电线路故障检测方法流程图如图1所示,具体步骤如下:
步骤1:对整个电网拓扑结构进行区域划分,各区域的边界节点布有PMU;如图2是隔点布PMU的一个典型区域示意图。区域网络由多条线路组成,除中间公共母线M没有布置PMU外,其余母线均配置PMU。假定负载为恒阻抗模型,在线路正常运行时,从与母线M相连任一条线路布有PMU侧的正序电压电流推算得到故障前母线M的正序推算电压
Figure BDA0002398147800000041
从各条相连线路布有PMU侧的正序电压电流推算得到故障前母线M的各侧正序推算电流
Figure BDA0002398147800000051
1≤i≤N,N是与母线M相连的各线路的个数,利用下式计算出母线M的负载正序阻抗Zpre,具体为:
Figure BDA0002398147800000052
步骤2:通过PMU收集每个区域中各边界节点的电压电流,由相连线路布有PMU的i侧的正序电压、电流推算得到未布PMU的M侧的正序推算电流
Figure BDA0002398147800000053
正序推算电压
Figure BDA0002398147800000054
如下:
Figure BDA0002398147800000055
其中,
Figure BDA0002398147800000056
分别为正常线路Mi布有PMU的i侧实测的正序电压、电流;γi为线路Mi的传播系数;Zi为线路Mi的特征阻抗;LM,i为线路Mi的全长;
当线路MN正常时,来自N个PMU的各正序推算电压的幅值理论上相等。当线路MN发生故障时,对于金属性接地故障、相间故障等多数故障情景,来自故障线路PMU侧(如N侧)推算的正序推算电压幅值要明显小于由正常线路PMU侧推算的各推算电压幅值,会影响母线M电压的准确获得。为了精确计算得到母线M的正序电压,首先要舍去图2中N个推算电压中幅值最小的推算电压
Figure BDA0002398147800000057
然后为了减小各线路的推算电压误差的影响,取剩下N-1个推算电压的平均值,作为未布PMU的母线M的正序估计电压
Figure BDA0002398147800000058
Figure BDA0002398147800000059
其中,
Figure BDA00023981478000000510
是根据式(2)从i侧的正序电压电流推算得到母线M的正序推算电压;
Figure BDA00023981478000000511
是N个正序推算电压中幅值最小的推算电压;通过式(3),在大多数情况下能够较精确地估计未布PMU的母线M的正序电压。对于近末端高阻故障情形,即使舍去的不是来自故障线路的推算电压(此时来自故障线路PMU侧的推算电压与来自正常线路的推算电压的差异很小),对母线M的正序推算电压的准确估计影响较小。
未布PMU的母线M的正序估计负载电流为
Figure BDA00023981478000000512
Figure BDA00023981478000000513
计算M侧的总估计电流的幅值Itotal
Figure BDA0002398147800000061
由基尔霍夫电流定律KCL可知,当发生以下4种情形之一时,母线M的Itotal不等于零:1)存在数据不同步;2)公共母线M故障;3)与母线M相连的任一条输电线路发生故障;4)母线M处负载阻抗发生变化。
在正常情况下,母线M的Itotal值等于零,而实际的测量装置不可避免地存在着误差,为了躲过误差的影响,可设置区域故障阈值Iset为0.1倍的额定电流。
如果Itotal小于区域故障阈值Iset,说明与母线M相连的区域没有发生故障;反之,说明发生了上述母线M的4种故障之一。
步骤3:数据不同步的检查与校正:
利用故障前的电压电流对图2的疑似故障区域中各PMU数据的不同步进行检查和校正。假定该区域只存在一个PMU的电压与电流数据不同步。先利用故障前各PMU测量的正序电压、电流推算得到公共母线M的正序电压。从PMU数据不同步的一侧推算的正序电压相角必然和其它侧推算的电压相角有一定的差距,应该将该侧推算电压从所有推算结果中剔除。
一般情况下本方法的推算次数较少,本文采用罗曼洛夫斯基准则,即t检验准则,判别错误的推算电压。其做法是先选择一个拟剔除的可疑数据,再按t分布检验拟剔除的数据是否为异常数据。
未布PMU的母线M的正序推算电压序列为
Figure BDA0002398147800000062
其元素为
Figure BDA0002398147800000063
其相角序列为θM,其元素为θi,M(1≤i≤N)。
分别假设每个推算电压相角值θj,M可疑,将它去掉后计算出该相角序列的平均值
Figure BDA0002398147800000064
标准差σ:
Figure BDA0002398147800000065
Figure BDA0002398147800000066
根据N、显著度β(取0.9或0.95),从t检验表中查出t检验系数K。
如果
Figure BDA0002398147800000067
则认为θj,M确实为可疑不同步数据,应该剔除它,否则保留它。
采用t检验准则找到不同步的推算电压相角,然后剔除它,取剩余推算电压的相量平均值作为母线M的正序电压
Figure BDA0002398147800000068
再处理其它线路的相角。
假定用t检验准则找到不同步的线路为Mi,i侧数据超前M侧数据的角度为θ,则由i侧正序电压
Figure BDA0002398147800000071
电流
Figure BDA0002398147800000072
推算出母线M的电压的公式可重新写为:
Figure BDA0002398147800000073
则不同步角度θ为:
Figure BDA0002398147800000074
如果利用t检验准则没有找出可疑不同步电压相角,则不存在不同步问题,可进一步判断故障;如果找到了可疑的不同步数据,并求得不同步角度θ,则再对该侧的正序电压和正序电流数据进行校正,使该侧的数据同步化:
Figure BDA0002398147800000075
其中,
Figure BDA0002398147800000076
分别为i侧未校正的正序电压和电流;
Figure BDA0002398147800000077
分别为i侧校正后的正序电压和电流。
存在不同步情况下的疑似故障区域判别可能会出现错误,需要将校正后的数据
Figure BDA0002398147800000078
重新代入计算,重新进行疑似故障区域判别。
在检测故障线路前,需要说明双端测距原理:
该方法是根据线路两端的电压电流及必要的线路参数计算出故障距离的传统方法。本文以图3所示双端故障示意图介绍双端测距原理。
设线路ij在距离母线i端的a比例f处发生故障,线路全长为L,两端测量的电压电流分别为
Figure BDA0002398147800000079
基于线路的分布参数模型,线路ij上任意一点的电压、电流可从一端(以i端为例)的电压、电流推算得到:
Figure BDA00023981478000000710
其中:γ为线路的传播系数;Zc为线路的特征阻抗;a为该点与i端之间的距离占全长L的比值。
当以i端的电压、电流为边界条件,f点的电压可表示为:
Figure BDA00023981478000000711
当以j端的电压、电流为边界条件,f点的电压也可表示为:
Figure BDA0002398147800000081
将式(12)与式(13)联立解方程,当两端的电压和电流都是已知量的情况下,方程中只有一个未知量a,可解方程求出故障距离a:
Figure BDA0002398147800000082
其中:
Figure BDA0002398147800000083
从式(14)可看到,双端故障测距公式利用了两端的电压和电流,能够在理论上消除故障点过渡电阻和故障类型对测距的影响,不存在原理上的误差,具有精确的测距能力。这是有限PMU下利用广域信息进行线路故障检测的基础。
步骤4:故障线路检测判据:
当排除数据不同步的影响后,如果疑似故障区域依然存在,需要对其它3种故障情形进行区分,进一步确定故障线路和故障点位置。
分别假设图2疑似区域中每条输电线路为疑似故障线路,先估计该线路的未布PMU的母线侧的电压、电流,利用该线路布有PMU的母线侧的实测电压、电流,再应用双端测距公式(14),分别计算得到每条疑似线路的故障距离,检查其值是否在(0,1)之间。
设置线路MN为故障线路,母线N侧布有PMU,电压和电流为已知量测量,母线M侧未布PMU,通过式(3)得到母线M的正序估计电压
Figure BDA0002398147800000084
得到线路从M侧到N侧的正序估计电流
Figure BDA0002398147800000085
Figure BDA0002398147800000086
此时线路MN两侧的正序电压、电流都是准确的,代入双端故障测距公式(14),可准确求解出故障线路MN的故障距离a(0<a<1)。
对于其它正常线路Mi(1≤i≤N-1),母线i侧布有PMU。同理,可类似通过式(3)、式(15)估计得到母线M侧的正序估计电压
Figure BDA0002398147800000087
从M侧到i侧的正序估计电流
Figure BDA0002398147800000088
Figure BDA0002398147800000089
将正常线路Mi两侧的电压、电流代入测距公式(14),计算其故障距离,理论值为1,现证明如下:
对于图2中正常线路Mi,式(14)中的A、B为:
Figure BDA00023981478000000810
Figure BDA0002398147800000091
虽然上面两个式子中母线M侧的正序估计电流
Figure BDA0002398147800000092
由于故障线路影响估计不准确,但此时母线M侧的正序电压仍能准确得到,它可用式(2)中i侧正序电压电流推算得到的正序推算电压
Figure BDA0002398147800000093
替换。
将式(17)、式(18)中的
Figure BDA0002398147800000094
Figure BDA0002398147800000095
代替,再将式(2)代入,得到:
Figure BDA0002398147800000096
Figure BDA0002398147800000097
将式(19)左右两边同时乘以cosh(γiLM,i)得到:
Figure BDA0002398147800000098
将恒等变换公式cosh2iLM,i)=1+sinh2iLM,i)代入式(21),整理得到:
Figure BDA0002398147800000099
由式(22)可得到:
Figure BDA00023981478000000910
将式(23)代入式(14),可得到正常线路Mi的故障距离ai
Figure BDA00023981478000000911
通过公式推导可发现,虽然正常线路上来自未布PMU的母线M侧的估计电流不准确,但是只要M侧的估计电压准确,对正常线路求出的故障距离仍等于1,而故障线路求出的故障距离为真实故障距离a(0<a<1)。这个可作为故障线路检测的判据。
母线M发生故障可认为是各条线路末端发生故障,此时所有线路求出的故障距离都等于1。
当负载阻抗发生变化时,恒阻抗模型将不再适用,负载电流将估计不准确,导致所有线路母线M侧的估计电流都不准确,而此时估计电压仍然准确,参照正常线路的分析,各条线路的故障距离也是1。
当发生线路区内故障时,0<a<1;当发生线路区外故障时,a=1。考虑到数据测量误差、计算误差等因素,区外故障的a值可能出现不完全等于1的情况,对区外故障的计算故障距离应留有一定的裕度,因此设置区外故障a-1<0.01。
将一个区域中所有线路计算的故障距离ai(1≤i≤N)中的最小值记为amin,如果0<amin<0.99,并且其它线路的故障距离0.99<aelse<1.01,则最小故障距离所在的线路就是故障线路。
如果所有的故障距离ai都在(0.99,1.01),则该区域无输电线路发生故障,故障情形为母线故障或负载阻抗发生变化。此时需要引入母线差动保护作为辅助判据,如果母线差动保护动作,则判断是母线故障,否则为负载阻抗发生了变化。
仿真验证
利用电磁暂态软件PSCAD/EMTDC搭建IEEE10机39节点***,***结构图如图4所示。***电压等级为345kV,频率为60Hz,采样频率为3kHz。取额定功率为1000MVA、额定电压为345kV,则额定电流为1.67kA,Itotal的阈值为0.167kA。
各种故障情景的仿真结果
为了验证故障点位置、故障类型和过渡电阻对本方法的影响,在IEEE39节点***中,设置线路L26_29在距离母线29的5%、50%、95%处分别发生故障。故障类型有AG、ABG、AB、ABC,对于接地故障设置有300Ω的过渡电阻。其中,母线25、27、28、29布有PMU,而母线26未布PMU。
故障线路L26_29和相邻正常线路L26_27、L26_25、L26_28在L26_29发生各种故障情景下故障距离的计算结果如表1所示,其中a(27-26)、a(25-26)、a(28-26)、a(29-26)分别表示各线路的故障位置离装设PMU母线的距离与线路全长的比值。
表1线路L26_29各种故障情形下的检测结果
Figure BDA0002398147800000101
Figure BDA0002398147800000111
由表1可看出,正常线路L26_27、L26_25、L26_28与故障线路L26_29的故障距离有较大的差异,线路L26_29的故障距离a总是所有故障距离中的最小值且小于0.99,而线路L26_27、L26_25、L26_28的故障距离都约为1。根据故障检测判据,最小故障距离对应的线路L26_29为故障线路,其值即为故障点位置。
设置线路L26_29发生A-G、95%、300Ω故障时,分别计算线路L26_25、L26_27、L26_28、L26_29的故障距离,分别为1.0001、1.0000、1.0000、0.94987。其中线路L26_29的故障距离最小为0.94987,且小于0.99,其它线路的故障距离均在区间(0.99,1.01)之间,满足故障检测判据,则判断线路L26_29为故障线路,判断正确,其故障位置为0.94987,测距误差为0.013%。
由表1的故障定位误差可知,过渡电阻的增大会导致故障定位误差略微增加,但故障定位结果仍有较高的精度,最大误差值为0.046%,完全满足精度要求。本文线路故障检测方法对故障点位置、故障类型、过渡电阻不敏感。
为了验证存在一侧线路不同步时对本方法的影响,在IEEE39节点***中,设置线路L26_29的29侧电压、电流存在3ms(64.8°)的延时不同步,且线路中无故障。此时,计算得到26侧的Itotal值为0.208kA,超出阈值,该区域被判为疑似故障区域,需要对该区域进行同步性检查,如图5所示。
母线26的正序推算电压序列
Figure BDA0002398147800000112
依次为204.68kV∠-94.7764°、204.68kV∠-94.7763°、204.68kV∠-94.7765°、204.68kV∠-159.7907°。对推算电压相角序列进行t检验,可得到θ26,29为异常值,应该舍去来自29侧的推算电压,并且取其余推算电压的相量平均值作为母线26的估计电压。找到存在不同步角度的线路L26_29后,利用式(9)求得该线路的不同步角度为-64.816°,如图6所示。
采用式(10)对29侧的电压电流数据进行同步化处理(如图7),再重新对该区域判别疑似故障区域。重新计算的Itotal值近似等于0.01kA,低于给定的区域故障阈值,说明该区域正常,而第一次判断该区域为疑似故障区域是错误的,它是由数据不同步引起。
为了验证母线故障时本方法的性能,在0.27s时设置母线26发生故障,此时线路L26_27、L26_25、L26_28、L26_29计算的故障距离如表2所示。
表2母线26各种故障情形下的检测结果
Figure BDA0002398147800000121
同时,为了验证负载变化时方法的性能,在0.27s时分别将与母线26相连的负载增加一倍,此时线路L26_27、L26_25、L26_28、L26_29计算的故障距离如图8所示。
仿真结果表明,母线26发生故障及负载发生变化时,线路L26_27、L26_25、L26_28、L26_29的故障距离都接近于1。此时,计算结果不能对这两种情况作出区分,需要进一步引入母线差动保护进行判别。如果此时母线差动保护动作,则判断母线故障;否则为负载阻抗发生变化。
为了验证本方法对转换型故障的适用性,0.28s设置线路L26_28在距离母线28端5%处发生A相短路接地,并于0.35s转换成线路L26_29正向区内发生BG故障进行实验,区内故障均设置在线路L26_29上距母线29端50%处。仿真结果如图9所示。
由图9可见,在区外线路L26_28发生故障时,线路L26_28的故障距离为0.05,其余线路的故障距离都在1左右,能够准确识别出故障线路为L26_28;当故障转换到区内线路L26_29故障时,线路L26_29的故障距离为0.5,其余线路的故障距离也都在1左右,也能准确识别出故障线路为L26_29。验证了在区外故障转区内故障时,本方法能够检测出故障线路。
当前,输电线路测距往往采用线路工频电气量,但实际运行时,电气参数易受天气、温度、湿度、大地电阻率等环境影响而动态变化。为了验证本方法在电气参数变化时的性能,设置线路L26_29的线路参数误差分别为1%、5%,过渡电阻分别为0Ω、50Ω、100Ω,在发生AG故障时故障距离的计算误差如表3所示。
表3线路L26_29存在参数误差时发生AG故障时故障距离的计算误差%
Figure BDA0002398147800000122
Figure BDA0002398147800000131
从表3可看到故障距离的计算误差随线路参数误差和过渡电阻的增大有所增大。当线路误差为1%,计算误差从0.003%到0.350%,相对比较精确;当线路误差为5%、过渡电阻为100Ω时,计算误差最大,其值为1.975%,也在可承受的范围内,说明了本方法具有一定的抗参数变化的能力。

Claims (3)

1.一种有限PMU下基于估计的输电线路故障检测方法,其特征在于,步骤如下:
步骤1:对整个电网拓扑结构进行区域划分,各区域的边界节点布有PMU;针对一个区域中未布置PMU的母线M,在线路正常运行时,从与母线M相连任一条线路布有PMU侧的正序电压电流推算得到故障前母线M的正序推算电压
Figure FDA0002398147790000011
从各条相连线路布有PMU侧的正序电压电流推算得到故障前母线M的各侧正序推算电流
Figure FDA0002398147790000012
N是与母线M相连的各线路的个数,利用下式计算出母线M的负载正序阻抗Zpre,具体为:
Figure FDA0002398147790000013
步骤2:通过PMU收集每个区域中各边界节点的电压电流,由相连线路布有PMU的i侧的正序电压、电流推算得到未布PMU的M侧的正序推算电流
Figure FDA0002398147790000014
正序推算电压
Figure FDA0002398147790000015
如下:
Figure FDA0002398147790000016
其中,
Figure FDA0002398147790000017
分别为正常线路Mi布有PMU的i侧实测的正序电压、电流;γi为线路Mi的传播系数;Zi为线路Mi的特征阻抗;LM,i为线路Mi的全长;
为了精确计算得到母线M的正序电压,首先要舍去N个推算电压中幅值最小的推算电压
Figure FDA0002398147790000018
然后为了减小各线路的推算电压误差的影响,取剩下N-1个推算电压的平均值,作为未布PMU的母线M的正序估计电压
Figure FDA0002398147790000019
Figure FDA00023981477900000110
其中,
Figure FDA00023981477900000111
是根据式(2)从i侧的正序电压电流推算得到母线M的正序推算电压;
Figure FDA00023981477900000112
是N个正序推算电压中幅值最小的推算电压;
未布PMU的母线M的正序估计负载电流为
Figure FDA00023981477900000113
Figure FDA00023981477900000114
计算M侧的总估计电流的幅值Itotal
Figure FDA00023981477900000115
如果Itotal大于区域故障阈值Iset,则判断该区域为疑似故障区域,进入下一步;
步骤3:计算得到疑似故障区域中未布PMU的母线M的正序推算电压相角序列,采用t检验准则找到不同步的推算电压相角;如果找到一个不同步角,则对该侧的电压和电流进行校正,使之同步化,然后回到步骤2,重新进行疑似故障区域判别;否则,不存在不同步问题,进入下一步判别其它故障;
步骤4:针对疑似故障区域中各条输电线路,分别假设它们故障,分别计算得到它们的故障距离;
对于疑似故障区域中输电线路Mi,母线M侧未布有PMU,母线i侧布有PMU,从M侧到i侧的正序估计电流
Figure FDA0002398147790000021
可由下式得到:
Figure FDA0002398147790000022
利用线路Mi从M侧到i侧的正序估计电流
Figure FDA0002398147790000023
i侧由PMU实测的电流
Figure FDA0002398147790000024
采用双端测距公式计算得到线路Mi的故障距离ai,1≤i≤N;
将各条线路的故障距离中最小值记为amin,如果0<amin<0.99,且其它线路的故障距离满足0.99<aelse<1.01,则amin所在的线路为故障线路;
如果所有线路的故障距离ai都在(0.99,1.01)区间内,则为母线故障或负载阻抗发生变化,此时引入母线差动保护来辅助判断,如果母线差动保护动作,则判断为母线故障;否则为负载阻抗发生了变化。
2.根据权利要求1所述的一种有限PMU下基于估计的输电线路故障检测方法,其特征在于,所述疑似故障包括以下4种情形:1、存在数据不同步;2、公共母线M故障;3、与母线M相连的任一条输电线路发生故障;4、母线M处负载阻抗发生变化。
3.根据权利要求1所述的一种有限PMU下基于估计的输电线路故障检测方法,其特征在于,所述区域故障阈值Iset设定为0.1倍的额定电流。
CN202010138423.5A 2020-03-03 2020-03-03 一种有限pmu下基于估计的输电线路故障检测方法 Active CN111257696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010138423.5A CN111257696B (zh) 2020-03-03 2020-03-03 一种有限pmu下基于估计的输电线路故障检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010138423.5A CN111257696B (zh) 2020-03-03 2020-03-03 一种有限pmu下基于估计的输电线路故障检测方法

Publications (2)

Publication Number Publication Date
CN111257696A true CN111257696A (zh) 2020-06-09
CN111257696B CN111257696B (zh) 2021-05-04

Family

ID=70952899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010138423.5A Active CN111257696B (zh) 2020-03-03 2020-03-03 一种有限pmu下基于估计的输电线路故障检测方法

Country Status (1)

Country Link
CN (1) CN111257696B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983384A (zh) * 2020-08-18 2020-11-24 国网天津市电力公司 一种用于配电网故障定位的微型pmu装置及其故障定位方法
CN114755530A (zh) * 2022-04-20 2022-07-15 西南交通大学 一种输电线路鲁棒故障定位方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060013131A1 (en) * 2004-06-30 2006-01-19 Jakke Makela Selecting downloading site of data element in telecommunications system
JP4117201B2 (ja) * 2003-01-31 2008-07-16 三菱電機株式会社 配電線の断線検出装置
CN101788629A (zh) * 2009-07-23 2010-07-28 西安爱邦电气有限公司 电力***常规变压器继电保护ct回路接线分析方法
CN102081132A (zh) * 2010-12-04 2011-06-01 西南交通大学 一种动态条件下的输电线路故障双端测距方法
US8044801B1 (en) * 2007-03-07 2011-10-25 Impinj, Inc. RFID tag with double-switch rectifier
CN102253315A (zh) * 2011-06-28 2011-11-23 中电普瑞科技有限公司 基于单端测距的故障定位方法
CN103197204A (zh) * 2013-04-07 2013-07-10 山东电力集团公司德州供电公司 多端线路故障定位的混合型方法
CN103278747A (zh) * 2013-06-03 2013-09-04 东南大学 一种结合时频特征的高压输电线路单端行波故障测距方法
CN105652151A (zh) * 2015-12-30 2016-06-08 武汉大学 基于线路参数检测与数据非同步校验的双端测距方法
CN105759178A (zh) * 2016-04-28 2016-07-13 国网上海市电力公司 一种架空-电缆混合线路单相接地故障的双端测距方法
US10088516B2 (en) * 2016-02-10 2018-10-02 General Electric Company Systems and methods for detecting turn-to-turn faults in windings
CN108872792A (zh) * 2018-07-16 2018-11-23 西南交通大学 一种输电线路故障检测方法
CN109856503A (zh) * 2018-12-27 2019-06-07 国网江苏省电力有限公司检修分公司 一种基于s变换及同步相量测量的输电线路故障定位方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4117201B2 (ja) * 2003-01-31 2008-07-16 三菱電機株式会社 配電線の断線検出装置
US20060013131A1 (en) * 2004-06-30 2006-01-19 Jakke Makela Selecting downloading site of data element in telecommunications system
US8044801B1 (en) * 2007-03-07 2011-10-25 Impinj, Inc. RFID tag with double-switch rectifier
CN101788629A (zh) * 2009-07-23 2010-07-28 西安爱邦电气有限公司 电力***常规变压器继电保护ct回路接线分析方法
CN102081132A (zh) * 2010-12-04 2011-06-01 西南交通大学 一种动态条件下的输电线路故障双端测距方法
CN102253315A (zh) * 2011-06-28 2011-11-23 中电普瑞科技有限公司 基于单端测距的故障定位方法
CN103197204A (zh) * 2013-04-07 2013-07-10 山东电力集团公司德州供电公司 多端线路故障定位的混合型方法
CN103278747A (zh) * 2013-06-03 2013-09-04 东南大学 一种结合时频特征的高压输电线路单端行波故障测距方法
CN105652151A (zh) * 2015-12-30 2016-06-08 武汉大学 基于线路参数检测与数据非同步校验的双端测距方法
US10088516B2 (en) * 2016-02-10 2018-10-02 General Electric Company Systems and methods for detecting turn-to-turn faults in windings
CN105759178A (zh) * 2016-04-28 2016-07-13 国网上海市电力公司 一种架空-电缆混合线路单相接地故障的双端测距方法
CN108872792A (zh) * 2018-07-16 2018-11-23 西南交通大学 一种输电线路故障检测方法
CN109856503A (zh) * 2018-12-27 2019-06-07 国网江苏省电力有限公司检修分公司 一种基于s变换及同步相量测量的输电线路故障定位方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
M. M. EISSA等: "A Novel Back Up Wide Area Protection Technique", 《 IEEE TRANSACTIONS ON POWER DELIVERY》 *
ROBERTO FERRERO等: "Employment of Interpolated DFT-based PMU Algorithms in Three-Phase Systems", 《2017 IEEE INTERNATIONAL WORKSHOP ON APPLIED MEASUREMENTS FOR POWER SYSTEMS (AMPS)》 *
童晓阳等: "有限PMU 下采用差动有功功率抗过渡电阻的", 《中国电机工程学报》 *
靳夏宁等: "基于PMU动态同步相量测量的故障测距", 《电网技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983384A (zh) * 2020-08-18 2020-11-24 国网天津市电力公司 一种用于配电网故障定位的微型pmu装置及其故障定位方法
CN114755530A (zh) * 2022-04-20 2022-07-15 西南交通大学 一种输电线路鲁棒故障定位方法

Also Published As

Publication number Publication date
CN111257696B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
Liao et al. Online optimal transmission line parameter estimation for relaying applications
US11211800B2 (en) Method and system for locating the source of events in power distribution systems using distribution-level PMU data
CN111257696B (zh) 一种有限pmu下基于估计的输电线路故障检测方法
Khoshbouy et al. Transmission line adaptive protection scheme: A new fault detection approach based on pilot superimposed impedance
Nam et al. Single line-to-ground fault location based on unsynchronized phasors in automated ungrounded distribution systems
CN112731047A (zh) 一种适用于灵活接地***的故障选线方法
CN104977499A (zh) 一种小电流接地***单相接地故障选线方法
CN113671314A (zh) 一种配电网环网单相接地故障区段定位及测距方法
CN104682361B (zh) 基于电压相位比较的单相接地距离保护***及其方法
Ghaedi et al. Modified WLS three-phase state estimation formulation for fault analysis considering measurement and parameter errors
Costa et al. Identification and correction of transmission line parameter errors using SCADA and synchrophasor measurements
CN108429245B (zh) 基于序电流灰色关联与多信息融合的广域后备保护方法
Jegarluei et al. Wide-area backup protection using sparse synchronized/unsynchronized PMU measurements
CN110879332A (zh) 一种适用于小电流接地***的单相接地故障选相方法
CN109633357A (zh) 三母线中多母线接地绝缘监测方法和监测装置
Hinge et al. Novel fault location algorithm for transmission line using synchronized measurements
Cheng et al. One-terminal impedance fault location algorithm for single phase to earth fault of transmission line
Muddebihalkar et al. Analysis of fault location algorithm for transmission line protection based on synchronized phasor measurement
CN108445352B (zh) 面向被保护元件模型的智能配电网故障检测方法及***
Khorashadi-Zadeh et al. A novel PMU-based transmission line protection scheme design
Chen et al. Fast and accurate fault detection/location algorithms for double‐circuit/three‐terminal lines using phasor measurement units
CN113805012A (zh) 适用于中性点经小电阻接地电缆配电网故障区段辨识方法
CN112526294A (zh) 基于同步相位状态估计的分布式电源配电网故障检测方法
Budak et al. Estimation of High Impedance Fault Location in Electrical Transmission Lines Using Artificial Neural Networks and RX Impedance Graph
Anand et al. A modified mutual impedance based backup protection for series-compensated transmission lines

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant