CN111244569A - 一种风冷和液冷相结合的电池散热装置及方法 - Google Patents

一种风冷和液冷相结合的电池散热装置及方法 Download PDF

Info

Publication number
CN111244569A
CN111244569A CN202010036031.8A CN202010036031A CN111244569A CN 111244569 A CN111244569 A CN 111244569A CN 202010036031 A CN202010036031 A CN 202010036031A CN 111244569 A CN111244569 A CN 111244569A
Authority
CN
China
Prior art keywords
heat dissipation
cooling
battery
liquid
shaped surrounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010036031.8A
Other languages
English (en)
Other versions
CN111244569B (zh
Inventor
栗欢欢
王毅洁
王亚平
竺玉强
陈龙
江浩斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010036031.8A priority Critical patent/CN111244569B/zh
Publication of CN111244569A publication Critical patent/CN111244569A/zh
Application granted granted Critical
Publication of CN111244569B publication Critical patent/CN111244569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种风冷和液冷相结合的电池散热装置及方法,属于汽车电池热管理技术领域;整个散热装置主要通过在电池模组***设置双向型环绕液冷管,以及在电池箱体底部设置冷却风扇,将风冷和液冷结合,对电池模组进行散热;同时还利用BMS控制冷却风扇驱动电机和电子水泵,可以根据实时检测的电池模组温度选择不同的散热形式,而且还能实现根据温度实时控制冷却风扇转速和冷却液进口流量,节约能源,高效散热;散热装置还设置有风摆和排风扇进行辅助散热,进一步提高散热效果。

Description

一种风冷和液冷相结合的电池散热装置及方法
技术领域
本发明属于汽车电池热管理技术领域,尤其涉及一种风冷和液冷相结合的电池散热装置及方法。
背景技术
作为新能源汽车的主要动力源,锂离子电池具有工作电压高、能量密度大、循环寿命长和环境友好等优点,但同时锂离子电池对温度非常敏感。研究证明,锂离子电池的最佳工作温度为20~40℃,电池组中的温差(ΔT)应控制在5℃以下。当环境温度过低时,导电离子的运动速率会下降,锂离子电池的内阻迅速增加,充放电容量显著下降,同时,电池负极表面容易形成锂枝晶,引发电池内部短路;当环境温度过高时,一系列的化学反应相互积累增强,产生大量热,容易引发热失控导致起火爆燃等安全事故的发生。目前锂离子电池热管理***的冷却方式主要包括空气冷却(风冷)、液体冷却(液冷)和相变材料冷却,空气冷却具有结构简单、维护方便等优点,但是在大倍率充放电时无法将电池组最大温度控制在50℃内;现有的液体冷却结构相比于空气冷却有更好地冷却效果,但是整体的结构较为复杂且***能耗较大;相变材料冷却存在自身导热系数较小以及在材料相变点才能大量吸热的缺点,而且材料相变后会引发体积膨胀等问题。目前的电池热管理技术中,很少有将风冷和液冷两种冷却方式结合起来进行有效控制以节约能源的研究。
发明内容
针对现有技术中存在不足,本发明提供了一种风冷和液冷相结合的电池散热装置及方法,将风冷和液冷两种冷却方式结合,通过目标电流对风冷方式中的风扇转速以及液冷方式中的冷却液入口流量进行实时控制,对电池进行有效散热,同时节约能源。
本发明是通过以下技术手段实现上述技术目的的。
一种风冷和液冷相结合的电池散热装置,包括电池箱体、散热组件、电池模组以及BMS,所述散热组件包括环绕包裹在电池模组内的单体电池***的双向S型环绕液冷管,单体电池侧壁设置有温度传感器,液冷管进水口和出水口依次通过进水管、电子水泵、水箱、出水管连通;电池箱体底部还设置有冷却风扇;温度传感器与BMS信号连接,冷却风扇、电子水泵均由BMS控制。
进一步地,所述电池箱体内设有放置电池模组的基板,基板表面设有通孔。
进一步地,所述冷却风扇设置在电池箱体底部两侧,冷却风扇上方均设有由导流片组成的风摆,导流片通过两端转轴固定在电池箱体上,导流片可转动。
进一步地,所述两侧导流片之间设置有挡风隔板。
进一步地,所述双向S型环绕液冷管管体由m个半圆柱形空心管体组成,m≥1且m为正整数,内圆弧半径与单体电池半径一致。
进一步地,所述双向S型环绕液冷管包括环绕方向相反的上S型环绕液冷管和下S型环绕液冷管。
进一步地,所述上S型环绕液冷管进水口A与下S型环绕液冷管出水口A设置在一侧;上S型环绕液冷管出水口B与下S型环绕液冷管进水口B设置在一侧。
进一步地,所述电池箱体顶部设置有排风扇。
一种利用上述散热装置的散热方法,包括如下步骤:BMS采集温度传感器传递的单体电池(5)温度数据,并根据温度数据判断相应的散热方式,控制驱动电机、电子水泵工作,对电池模组进行相应方式的散热;所述散热方式包括风冷散热、液冷散热和风冷液冷结合散热。
进一步地,所述风冷液冷结合散热方式中,BMS利用粒子群算法获得最优的驱动电机目标电流ifbest和电子水泵目标电流iebest,控制冷却风扇的转速和冷却液进水流量。
本发明具有如下有益效果:
与现有技术相比,本发明将风冷和液冷两种冷却方式结合,能够根据检测温度选择不同的散热形式;还能通过粒子群算法获取目标电流,能够实现根据温度实时控制冷却风扇转速和冷却液进口流量,同时还能有效节约能源;本发明的散热装置采用双向S型环绕液冷管结构包裹单体电池进行散热,增加了冷却液与电池表面的接触面积,有效抑制了大倍率放电时电池箱体内热量的大量堆积,使电池能够时刻处于最佳温度范围内;而且上下两个液冷管采用双向互补的冷却液进口位置设计,能够有效弥补冷却液沿流动路径方向温度逐渐升高造成散热不均匀的问题,保证了电池工作时的温度一致性;整个装置连接简单,成本低,在狭小的电池箱体中提高了空间利用率,提升了电池模组的散热性能。
附图说明
图1为本发明所述散热装置结构示意图;
图2为本发明所述S型环绕液冷管结构示意图;
图3为本发明所述冷风摆结构示意图;
图4为本发明所述电池散热方法流程图。
图中:1-基板;2-排风扇;3-温度传感器;4-水箱;5-单体电池;6-电池箱体;7-冷却风扇;8-上S型环绕液冷管;9-下S型环绕液冷管;801-进水口A;802-出水口B;901-进水口B;902-出水口A;10-进水管;11-出水管;12-导流片;13-弯杆;14-传动连杆;15-转杆;16挡风隔板。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1所示,本发明所述的散热装置包括电池箱体6、散热组件、设于电池箱体6中的电池模组以及安装在电池箱体6内的BMS(Battery Management System,电池管理***)。
电池箱体6内若干带有电池盖的单体电池5呈矩形阵列排布构成电池模组,电池箱体6下部设有基板1,用于放置电池模组;基板1表面未与单体电池5接触的部分设有若干通孔,方便散热。散热组件包括排风扇2、温度传感器3、双向S型环绕液冷管、水箱4、电子水泵、风摆和冷却风扇7。排风扇2安装在电池箱体6顶部,依靠自然风力推动运动,将堆积在电池箱体6顶部的热空气排出,方便电池箱体6内冷却空气的流通;每一个单体电池5侧壁上均设有温度传感器3(为了方便观看,图中只画出了一个温度传感器3),温度传感器3与BMS信号连接,将检测到的单体电池5的温度数据传递给BMS。
如图2所示,双向S型环绕液冷管管体由m个半圆柱形空心管体组成,m≥1且m为正整数,内圆弧半径与单体电池5半径一致;双向S型环绕液冷管包括环绕方向相反的上S型环绕液冷管8和下S型环绕液冷管9;上S型环绕液冷管8和下S型环绕液冷管9的高度均为单体电池5主体高度的一半;上S型环绕液冷管8环绕包裹单体电池5上半部分,下S型环绕液冷管9环绕包裹单体电池5下半部分;上S型环绕液冷管8进水口A801与下S型环绕液冷管9出水口A902设置在一侧,上S型环绕液冷管8出水口B802与下S型环绕液冷管9进水口B901设置在一侧,保证均匀散热;本实施例中液冷管优选为铝质材料制成,提高散热效果。进水管10一端穿过电池箱体6并分为两个分支管(图中未画出),分别与进水口A801和进水口B901连接,另一端与电子水泵连接,电子水泵另一端与水箱4连接,水箱4另一端与出水管11连接;出水管11另一端同样穿过电池箱体6并分为两个分支管(图中未画出),分别与出水口B802和出水口A902连接;进水管10、出水管11以及分支管均与双向S型环绕液冷管形状一致;电子水泵还与BMS电连接,方便对冷却水流速进行控制;电子水泵包括电动泵,电动泵可带动转阀进行一定程度的扭转,改变节流孔的面积,进而控制冷却液的流量。
如图1、3所示,两个冷却风扇7通过螺栓固定连接在电池箱体6底部两侧,便于辅助散热,冷却风扇7与驱动电机输出轴连接,驱动电机与BMS电连接,方便对冷却风扇7转速进行控制。两个冷却风扇7上方均设有由若干导流片12组成的风摆,导流片12均通过两端转轴17分别与电池箱体6前部和后部连接;导流片12侧边均固定连接有弯杆13,弯杆13与传动连杆14铰接,传动连杆14另一端穿过电池箱体6与转杆15连接,转杆15与步进电机连接,步进电机与BMS电连接;导流片12的设置便于集中冷却风扇7吹入的气流,增加进入通孔的冷却空气量,提高空气与电池表面对流换热的热通量,使得冷却气流及时带走电池表面热量,帮助散热。两侧风摆之间还设置有挡风隔板16,防止左右两侧冷却气流同时向电池箱体中部流动时产生干涉。
图4展示了本实施例所述电池散热方法的流程图,具体过程如下:
步骤1:BMS采集温度传感器3传递的单体电池5温度数据。
步骤2:BMS内部进行计算获取电池箱体的平均温度T、最大温差ΛTmax、温升速率vT;具体计算公式如下:
Figure BDA0002366030500000041
ΛTmax=max(Ti)-min(Ti) (2)
Figure BDA0002366030500000042
其中,n表示单体电池个数;i表示第i个单体电池;Ti表示温度传感器检测到的第i个单体电池的温度;T(t+t0)表示t+t0时刻的电池箱体温度;T(t)表示t时刻的电池箱体温度;t0是采样时间。
步骤3:BMS内部对冷却方式进行判断,并控制装置进行不同形式的散热:当T≤k1且vT≤p1时,只进行风冷散热,风冷散热过程为:BMS控制驱动电机工作,驱动电机带动冷却风扇7工作,对电池模组进行风冷散热;当k1<T<k2或p1<vT<p2时,只进行液冷散热,液冷散热过程为:BMS控制电子水泵将水箱4中的冷却水通过进水管10分别送入上S型环绕液冷管8的进水口A801和下S型环绕液冷管9的进水口B901,对电池模组进行液冷散热,之后冷却液再从出水管11流回到水箱4中;当T≥k2或vT≥p2时,进行液冷和风冷结合散热。其中,k1、k2为温度判断阈值,p1、p2为温升速率判断阈值;上述阈值与单体电池种类、电池箱体结构以及电池工作状况有关。
步骤3.1:只进行风冷散热时,BMS向步进电机发送高低电平脉冲信号,驱动步进电机按设定的方向转动固定的角度,从而带动导流片12运动,保证挡风隔板16两侧的导流片12分别在电池箱体左侧、右侧固定1s后摆动,达到设定时间后立即回摆,如此循环摆动,提高电池箱体左右两侧的散热效果,防止箱体内局部温度过高;同时BMS输出驱动电机目标电流if,对驱动电机进行控制,从而实现根据单体电池温度对冷却风扇7转速的实时控制。目标电流if的获取过程为:在当前的风冷散热工作状态下,BMS不断改变输入给冷却风扇7驱动电机的电流值,采集电池箱体的温升速率和当前温度,并拟合成如下所示的函数关系,其中,vT0为目标温升速率:
vT=f1(T,if)=vT0 (4)
则驱动电机目标电流if为:
if=f1 -1(T,vT0) (5)
步骤3.2:只进行液冷散热时,BMS控制电子水泵将水箱4中的冷却水输送到液冷管中对电池箱体进行散热,同时BMS输出电子水泵目标电流ie,对液冷管进水口的进水流量进行控制,目标电流ie的获取过程为:在当前的液冷散热工作状态下,BMS不断改变输入给电子水泵的电流值,采集电池箱体的温升速率和当前温度,并拟合成如下所示的函数关系:
vT=f2(T,ie)=vT0 (6)
则电子水泵目标电流ie为:
ie=f2 -1(T,vT0) (7)
步骤3.3:进行风冷和液冷结合散热时,BMS利用粒子群算法(PSO)计算出驱动电机目标电流if和电子水泵目标电流ie,同时对冷却风扇7的转速和冷却液进水流量进行相应的控制,具体计算方法如下:
步骤3.3.1:以冷却风扇7驱动电机目标电流if和电子水泵目标电流ie为寻优对象;初始化粒子群,包括随机位置Xk和速度Vk;将第k个粒子位置表示为Xk=(Xkf,Xke),速度表示为Vk=(Vkf,Vke)。
步骤3.3.2:计算散热装置整体功率损耗P=Pf+Pe,其中Pf、Pe分别为风冷散热时的功率损耗和液冷散热时的功率损耗:
Pf=UifECU+if 2Rm (8)
其中,ifECU为驱动电机ECU待机工作电流;Rm为驱动电机线圈等效内阻;U为驱动电机工作电压。
Pe=PJ+Pv+Ph (9)
其中,PJ为节流孔的功率损耗:
Figure BDA0002366030500000061
Pv为转阀损耗:
Figure BDA0002366030500000062
Ph为电子水泵电损耗:Ph=ie 2Rn+ieECURel 2
其中,ρ为水密度;Qs为电子水泵输出流量;kie为电子水泵驱动电机电磁转矩系数;ie为电子水泵驱动电机工作电流;d为液压缸直径;Ke为流量补偿系数;qp为水泵排量;N为流量安全系数;k10为单位转化系数;Cd为节流孔孔的流量系数;AJ为节流孔的流通面积;p为水压;A为阀口的开口面积;Rn为电子水泵驱动电机线圈等效内阻;ieECU为电子水泵驱动电机ECU待机工作电流;Rel为ECU本身的电阻。
步骤3.3.3:在当前的电池箱风冷液冷共存散热工作状态下,不断改变输入到电子水泵的电流值和输入到冷却风扇7驱动电机的电流值,采集电池的温升速率和当前温度,并拟合成如下所示的函数关系:
vT=f3(if,ie,T) (10)
vT0=f3(if,ie,T) (11)
步骤3.3.4:将步骤3.3.2所得的散热装置整体功率损耗p作为PSO的适应度函数,将步骤3.3.3中的式(11)作为PSO的约束条件,计算每个粒子的适应度函数值Pk;储存t1时刻粒子群体所发现的最佳位置Xbest、每个粒子所经过的最好位置Xkbest和最佳适应度函数值Pkbest
利用Xk(t+1)=Xk(t)+Vk(t)和Vk(t+1)=Vk(t)+c1r1[Xkbest-Xk(t)]+c2r2[Xbest-Xk(t)]分别对每个粒子的位置和速度进行更新,并保证每个粒子速度均满足:Vke∈(ieqs-iemax,iemax-ieqs),Vky∈(iyqs-iymax,iymax-iyqs);其中c1、c2为正的学习因子;r1、r2为0-1之间均匀分布的随机数;Vke为ie的粒子速度;Vky为iy的粒子速度;ieqs、iyqs为初始电流值,iemax、iymax为最大电流值。
步骤3.3.5:将更新后t1+1时刻每个粒子的适应度函数值与t1时刻每个粒子所经历过的最好位置Xkbest对应的适应度函数值作比较,如果适应度函数值更小,则将当前位置作为该粒子的最好位置Xkbest
将更新后t1+1时刻每个粒子的适应度函数值与群体粒子t1时刻所发现的最佳位置Xbest对应的适应度函数值进行比较,如果适应度函数值更小,则将当前位置作为粒子群体所发现的最好位置Xbest
设置更新次数为b,经过b次更新后输出Xbest,则根据Xi=(Xif,Xie)可以得出最终的优化目标:驱动电机目标电流ifbest和电子水泵目标电流iebest
所述实施例中提及的上、下、左、右、前、后均为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

1.一种风冷和液冷相结合的电池散热装置,包括电池箱体(6)、散热组件、电池模组以及BMS,其特征在于,所述散热组件包括环绕包裹在电池模组内的单体电池(5)***的双向S型环绕液冷管,单体电池(5)侧壁设置有温度传感器(3);液冷管进水口和出水口依次通过进水管(10)、电子水泵、水箱(4)、出水管(11)连通;电池箱体(6)底部还设置有冷却风扇(7);温度传感器(3)与BMS信号连接,冷却风扇(7)、电子水泵均由BMS控制。
2.根据权利要求1所述的散热装置,其特征在于,所述电池箱体(6)内设有放置电池模组的基板(1),基板(1)表面设有通孔。
3.根据权利要求2所述的散热装置,其特征在于,所述冷却风扇(7)设置在电池箱体(6)底部两侧,冷却风扇(7)上方均设有由导流片(12)组成的风摆,导流片(12)通过两端转轴(17)固定在电池箱体(6)上,导流片(12)可转动。
4.根据权利要求3所述的散热装置,其特征在于,所述两侧导流片(12)之间设置有挡风隔板(16)。
5.根据权利要求2所述的散热装置,其特征在于,所述双向S型环绕液冷管管体由m个半圆柱形空心管体组成,m≥1且m为正整数,内圆弧半径与单体电池(5)半径一致。
6.根据权利要求5所述的散热装置,其特征在于,所述双向S型环绕液冷管包括环绕方向相反的上S型环绕液冷管(8)和下S型环绕液冷管(9)。
7.根据权利要求6所述的散热装置,其特征在于,所述上S型环绕液冷管(8)进水口A(801)与下S型环绕液冷管(9)出水口A(902)设置在一侧;上S型环绕液冷管(8)出水口B(802)与下S型环绕液冷管(9)进水口B(901)设置在一侧。
8.根据权利要求1所述的散热装置,其特征在于,所述电池箱体(6)顶部设置有排风扇(2)。
9.一种利用权利要求1至8中任一项权利要求所述的散热装置的散热方法,其特征在于,包括如下步骤:BMS采集温度传感器(3)传递的单体电池(5)温度数据,并根据温度数据判断相应的散热方式,控制驱动电机、电子水泵工作,对电池模组进行相应方式的散热;所述散热方式包括风冷散热、液冷散热和风冷液冷结合散热。
10.根据权利要求9所述的散热方法,其特征在于,所述风冷液冷结合散热方式中,BMS利用粒子群算法获得最优的驱动电机目标电流ifbest和电子水泵目标电流iebest,控制冷却风扇(7)的转速和冷却液进水流量。
CN202010036031.8A 2020-01-14 2020-01-14 一种风冷和液冷相结合的电池散热装置及方法 Active CN111244569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010036031.8A CN111244569B (zh) 2020-01-14 2020-01-14 一种风冷和液冷相结合的电池散热装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010036031.8A CN111244569B (zh) 2020-01-14 2020-01-14 一种风冷和液冷相结合的电池散热装置及方法

Publications (2)

Publication Number Publication Date
CN111244569A true CN111244569A (zh) 2020-06-05
CN111244569B CN111244569B (zh) 2022-08-23

Family

ID=70865759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010036031.8A Active CN111244569B (zh) 2020-01-14 2020-01-14 一种风冷和液冷相结合的电池散热装置及方法

Country Status (1)

Country Link
CN (1) CN111244569B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816821A (zh) * 2020-09-11 2020-10-23 南京翔维物流设备制造有限公司 一种新能源汽车电池箱
CN111969275A (zh) * 2020-07-13 2020-11-20 广东工业大学 一种液冷结合强制性风冷的电池冷却箱
CN112701380A (zh) * 2020-12-30 2021-04-23 上海亿边科技有限公司 一种储能电池热管理设计***
CN113291201A (zh) * 2021-05-07 2021-08-24 四川大学锦城学院 一种基于无线通讯的电池管理***
CN113849054A (zh) * 2021-08-31 2021-12-28 兰洋(宁波)科技有限公司 一种应用于数据中心的浸没式液冷散热***
CN113851756A (zh) * 2021-09-23 2021-12-28 中原工学院 一种风冷和液冷混合式电池热管理装置及热管理方法
CN114188635A (zh) * 2021-12-10 2022-03-15 傲普(上海)新能源有限公司 基于特斯拉阀散热的锂离子电池储能***
CN114464917A (zh) * 2022-01-06 2022-05-10 刘运珍 一种新能源汽车电池用可调风式散热器
CN114824557A (zh) * 2022-04-22 2022-07-29 北京科技大学 一种电池包冷却***
CN116031540A (zh) * 2023-03-30 2023-04-28 北京中冠宝新能源科技有限责任公司 一种新能源储电设备及其管理***
CN116566124A (zh) * 2023-07-11 2023-08-08 苏州舍勒智能科技有限公司 一种带有智能热管理的大功率直线电机
CN117748003A (zh) * 2023-12-21 2024-03-22 湖南兆科动力新能源有限公司 一种带有复合散热结构的锂离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208706726U (zh) * 2018-08-28 2019-04-05 深圳市国威科创新能源科技有限公司 一种方块型电池模组
CN209183615U (zh) * 2019-01-14 2019-07-30 李波 一种车用液冷锂电池组
CN110571379A (zh) * 2019-09-03 2019-12-13 四川四美科技有限公司 低温自加热高温散热锂电池及控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208706726U (zh) * 2018-08-28 2019-04-05 深圳市国威科创新能源科技有限公司 一种方块型电池模组
CN209183615U (zh) * 2019-01-14 2019-07-30 李波 一种车用液冷锂电池组
CN110571379A (zh) * 2019-09-03 2019-12-13 四川四美科技有限公司 低温自加热高温散热锂电池及控制方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969275A (zh) * 2020-07-13 2020-11-20 广东工业大学 一种液冷结合强制性风冷的电池冷却箱
CN111816821B (zh) * 2020-09-11 2021-05-11 濉溪野草信息科技有限公司 一种新能源汽车电池箱
CN111816821A (zh) * 2020-09-11 2020-10-23 南京翔维物流设备制造有限公司 一种新能源汽车电池箱
CN112701380A (zh) * 2020-12-30 2021-04-23 上海亿边科技有限公司 一种储能电池热管理设计***
CN113291201B (zh) * 2021-05-07 2023-01-31 四川大学锦城学院 一种基于无线通讯的电池管理***
CN113291201A (zh) * 2021-05-07 2021-08-24 四川大学锦城学院 一种基于无线通讯的电池管理***
CN113849054A (zh) * 2021-08-31 2021-12-28 兰洋(宁波)科技有限公司 一种应用于数据中心的浸没式液冷散热***
CN113849054B (zh) * 2021-08-31 2024-03-26 兰洋(宁波)科技有限公司 一种应用于数据中心的浸没式液冷散热***
CN113851756A (zh) * 2021-09-23 2021-12-28 中原工学院 一种风冷和液冷混合式电池热管理装置及热管理方法
CN114188635A (zh) * 2021-12-10 2022-03-15 傲普(上海)新能源有限公司 基于特斯拉阀散热的锂离子电池储能***
CN114464917A (zh) * 2022-01-06 2022-05-10 刘运珍 一种新能源汽车电池用可调风式散热器
CN114824557A (zh) * 2022-04-22 2022-07-29 北京科技大学 一种电池包冷却***
CN116031540A (zh) * 2023-03-30 2023-04-28 北京中冠宝新能源科技有限责任公司 一种新能源储电设备及其管理***
CN116031540B (zh) * 2023-03-30 2023-06-06 北京中冠宝新能源科技有限责任公司 一种新能源储电设备及其管理***
CN116566124A (zh) * 2023-07-11 2023-08-08 苏州舍勒智能科技有限公司 一种带有智能热管理的大功率直线电机
CN116566124B (zh) * 2023-07-11 2023-10-03 苏州舍勒智能科技有限公司 一种带有智能热管理的大功率直线电机
CN117748003A (zh) * 2023-12-21 2024-03-22 湖南兆科动力新能源有限公司 一种带有复合散热结构的锂离子电池
CN117748003B (zh) * 2023-12-21 2024-06-07 湖南兆科动力新能源有限公司 一种带有复合散热结构的锂离子电池

Also Published As

Publication number Publication date
CN111244569B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
CN111244569B (zh) 一种风冷和液冷相结合的电池散热装置及方法
CN105742752B (zh) 锂离子电池热管理***
CN106450572A (zh) 一种基于锂离子电池组分区域热管理的***及方法
CN205194809U (zh) 电动汽车动力电池的热管理***和电动汽车
CN102544567B (zh) 带有液冷***的动力电池模块
CN205194807U (zh) 电动汽车动力电池的热管理***和电动汽车
CN101000972B (zh) 用于混合动力汽车的电池热控制装置
CN202127079U (zh) 一种基于热电制冷的电动汽车动力电池包水冷***
CN208939116U (zh) 一种车用动力电池组双向均衡散热装置
CN109271700B (zh) 基于深度学习多层网络建模的电池热管理方法及***
CN109888429B (zh) 一种负泊松比防撞控温一体化电池***及其控制方法
CN214706046U (zh) 一种相变与风冷复合的电池散热***
CN108777336A (zh) 锂电池包热管理***
CN114256535A (zh) 基于相变材料和互嵌式肋片的锂离子电池热管理***及方法
CN113830314B (zh) 一种油电混合动力无人机增程器水冷散热***
CN109088123A (zh) 一种新能源汽车电池组通风散热装置
Qi et al. Thermal management of power battery based on flexible Swiss roll type liquid cooling micro-channel
CN206401471U (zh) 一种电池的水冷结构
CN206250348U (zh) 一种插电式混合动力环卫车冷却***
CN206158835U (zh) 一种基于温差发电技术的车用发动机热管理***
Feng et al. Analysis and optimization control of finned heat dissipation performance for automobile power lithium battery pack
CN203562456U (zh) 车辆动力电池包
CN217485563U (zh) 一种风冷散热的方形电池组结构
CN115472954A (zh) 一种电芯单元、锂电池组及其热管控制方法
CN109004311A (zh) 一种锂电池组热管理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant