CN111232963B - 一种镀镍石墨烯空心球的制备方法 - Google Patents

一种镀镍石墨烯空心球的制备方法 Download PDF

Info

Publication number
CN111232963B
CN111232963B CN202010061309.7A CN202010061309A CN111232963B CN 111232963 B CN111232963 B CN 111232963B CN 202010061309 A CN202010061309 A CN 202010061309A CN 111232963 B CN111232963 B CN 111232963B
Authority
CN
China
Prior art keywords
nickel
chemical plating
plating solution
graphene
hollow sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010061309.7A
Other languages
English (en)
Other versions
CN111232963A (zh
Inventor
张洪梅
葛宇鑫
才鸿年
程兴旺
刘颖
范群波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202010061309.7A priority Critical patent/CN111232963B/zh
Publication of CN111232963A publication Critical patent/CN111232963A/zh
Application granted granted Critical
Publication of CN111232963B publication Critical patent/CN111232963B/zh
Priority to US17/147,947 priority patent/US11713510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1666Ultrasonics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemically Coating (AREA)

Abstract

本发明涉及一种镀镍石墨烯空心球的制备方法,属于吸波材料制备领域。本发明所述方法中,石墨烯在旋转外力和范德华力的作用下自组装形成空心球结构,在石墨烯自组装的同时利用水热法进行化学镀镍,镀液中电极电位低于镍的金属氧化腐蚀释放电子并传导到石墨烯上,镍离子在石墨烯表面得电子被还原形成自催化的活性中心,在还原剂的配合作用下,镀镍层以活性中心为基础逐渐沉积,形成具有空心结构的镀镍石墨烯球。本发明所述方法操作简单,成本低,成球率高,可重复性好;所制备的镀镍石墨烯空心球能够发挥镍和石墨烯优良的吸波性能,颗粒的整体密度低,在吸波材料领域具有很好的应用前景。

Description

一种镀镍石墨烯空心球的制备方法
技术领域
本发明涉及一种镀镍石墨烯空心球的制备方法,属于吸波材料制备领域。
背景技术
吸波材料的电磁吸波性能对于保障电子设备的正常工作、优化人们的生活环境,提高军事装备的战斗能力具有十分重要的意义。
石墨烯是近些年发现的一种新材料,由稳定的苯六元环紧密堆积而成的二维蜂巢状晶格构成,这种特殊的结构使其具有超轻的密度和大的比表面积。石墨烯的介电常数较高,而且它表面暴露的化学键在电磁场的作用下很容易因为外层电子的极化弛豫而衰减电磁波。另外,用化学方法制备出的石墨烯由于有大量缺陷和官能团的残留,会产生费米能级的局域化态,这有利于对电磁波的吸收和衰减。因此石墨烯可作为潜在的介电损耗基材,应用于吸波领域。
镍是一种银白色金属,具有良好的电磁吸波性能。目前新型磁性金属吸波材料要求具有“厚度薄、质量轻、频带宽、吸收强”等特性,然而镍的密度相对较高,这是限制其在吸波材料领域内广泛应用的重要原因。
磁性金属空心粒子能有效降低材料的密度,一定程度上可以满足电磁波吸收领域对磁性金属材料轻质化的应用要求。在这个基础上,将石墨烯和磁性金属设计成复合空心球结构,可以在保证吸波性能的前提下,进一步降低材料的密度,这对于吸波材料的发展具有重要意义。
发明内容
有鉴于此,本发明提供一种镀镍石墨烯空心球的制备方法,主要是基于具有特殊纳米结构的石墨烯在旋转外力和范德华力作用下进行自组装,并利用水热法对石墨烯进行化学镀镍,为吸波领域提供一种新型的低密度空心磁性微球,该方法工艺简单,成本低,可重复性好。
本发明的目的是通过以下技术方案实现的。
一种镀镍石墨烯空心球的制备方法,所述方法步骤如下,
(1)先用砂纸打磨除去电极电位低于镍的非粉体状的金属介质表面的氧化层,再浸入无机酸溶液中,待金属介质表面产生连续不断的气泡时开始计时,继续反应不少于3min,再进行清洗、干燥,得到酸处理的金属介质;
(2)将石墨烯按照0.08g/L~0.15g/L的浓度均匀分散到化学镀液中,并将酸处理的金属介质浸入化学镀液中,待化学镀液的温度达到60℃~80℃时,再加入还原剂,然后在120r/min~180r/min的搅拌速率下搅拌反应不少于90min,除去未反应完的金属介质并收集固体粉体,再对收集的固体粉体进行清洗、干燥,得到镀镍石墨烯空心球。
其中,化学镀液是由可溶性镍盐、柠檬酸盐、pH调节剂和水配制成的pH为10~13的溶液,Ni2+在化学镀液中的浓度为0.03mol/L~0.06mol/L,柠檬酸根在化学镀液中的浓度为0.02mol/L~0.04mol/L,pH调节剂为NaOH、KOH、氨水等;还原剂为水合肼、次亚磷酸钠或硼氢化钠。
进一步地,无机酸溶液优选盐酸溶液、硫酸溶液或硝酸溶液。
进一步地,金属介质的材质优选铁或者铝。
进一步地,金属介质的形状为片状、块状、条状或颗粒状。
进一步地,将金属介质加工成搅拌桨桨头,并按照步骤(1)的操作对桨头进行酸处理;在步骤(2)中,将搅拌桨的桨头浸入化学镀液中,化学镀过程中桨头的搅拌速度为120r/min~180r/min。
进一步地,桨头由连接杆和叶片组成,叶片为弧形扁片状,一层以上(包含一层)叶片沿轴向安装在连接杆上,每一层中两个以上(包含两片)叶片沿轴向对称安装在连接杆上。
进一步地,化学镀液是由六水合硫酸镍、柠檬酸钠、氢氧化钠和水配制成的pH为10~13的溶液,六水合硫酸镍在化学镀液中的浓度为8g/L~16g/L,柠檬酸钠在化学镀液中的浓度为6g/L~12g/L。
进一步地,石墨烯加入化学镀液中,在超声和机械搅拌的共同作用下分散处理20min~40min,使石墨烯均匀分散在化学镀液中;其中,超声功率为80W~120W,搅拌速率为150r/min~200r/min。
进一步地,水合肼在化学镀液中的质量分数为3%~6%;次亚磷酸钠在化学镀液中的浓度为15g/L~25g/L,硼氢化钠与化学镀液中镍离子的摩尔比为1:(10~1000);
有益效果:本发明所述方法中,石墨烯在旋转外力(即机械搅拌)和范德华力的作用下自组装形成空心球结构,在石墨烯自组装的同时利用水热法进行化学镀镍,镀液中电极电位低于镍的金属氧化腐蚀释放电子并传导到石墨烯上,镍离子在石墨烯表面得电子被还原形成自催化的活性中心,在还原剂的配合作用下,镀镍层以活性中心为基础逐渐沉积,形成具有空心结构的镀镍石墨烯球。本发明所述方法操作简单,成本低,成球率高,可重复性好;所制备的镀镍石墨烯空心球能够发挥镍和石墨烯优良的吸波性能,颗粒的整体密度低,在吸波材料领域具有很好的应用前景。
附图说明
图1为实施例1制备的镀镍石墨烯空心球放大100倍的扫描电子显微镜(SEM)图。
图2为实施例1制备的镀镍石墨烯空心球放大2000倍的扫描电子显微镜图。
图3为实施例1制备的镀镍石墨烯空心球放大5000倍的扫描电子显微镜图。
图4为实施例1制备的镀镍石墨烯空心球的能谱分析图。
图5为实施例中采用金属介质制备的搅拌桨桨头的结构示意图。
具体实施方式
下面结合具体实施方式对本发明作进一步阐述,其中,所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。
以下实施例中:
稀盐酸:质量分数15%的盐酸水溶液;
稀硫酸:质量分数20%的硫酸水溶液;
石墨烯:纯度为99.7%,层数为6~11,苏州碳丰石墨烯有限公司;
水合肼:分析纯,质量分数80%;
扫描电子显微镜:Quanta-200F,美国FEI。
以下实施例中所涉及的搅拌桨桨头由连接杆和叶片组成,叶片为弧形扁片状,且叶片宽度由一端到另一端逐渐变小,连接杆沿其轴向(或长度方向)上安装有三层叶片,每一层包含两片叶片,两片叶片对称安装在连接杆上,叶片的宽头端与连接杆连接,如图5所示。
实施例1
制备镀镍石墨烯空心球的具体步骤如下:
(1)将铁片加工成搅拌桨桨头,先用砂纸打磨除去铁片表面的氧化层,再浸入稀盐酸或稀硫酸中,待铁片表面产生连续不断的气泡时开始计时,继续反应5min,然后用去离子水清洗并干燥,得到酸处理的桨头;
(2)将六水合硫酸镍、柠檬酸钠、氢氧化钠和去离子水配制成六水合硫酸镍浓度为8g/L、柠檬酸钠浓度为6g/L以及pH为10的化学镀液;将石墨烯按照0.08g/L的浓度加入到化学镀液中,在80W的超声功率和150r/min的搅拌速率下分散处理20min,使石墨烯均匀分散在化学镀液中,然后将搅拌桨中酸处理的桨头浸入化学镀液中,待化学镀液的温度到60℃时,将水合肼按照1:10的比例水解后缓慢滴入化学镀液中并使水合肼在化学镀液中的质量分数为3%,随后在120r/min的搅拌速率下搅拌反应90min,利用磁铁收集固体产物,并用去离子水、乙醇将收集的固体产物清洗干净,然后放入40℃的真空干燥箱中烘干,得到镀镍石墨烯空心球。
根据图1可知,石墨烯经过处理后呈现为球形颗粒,从整体上来看成球率很高且粒径比较均匀。根据图2可知,球形颗粒由超声分散后的石墨烯片组装而成,且石墨烯球表面被细小的镍颗粒包覆。根据图3和图4可知,镀镍石墨烯球是由片状石墨烯和镀镍层复合而成,且具有明显的空心结构,另外,能谱结果还表明镍镀层成分纯净,氧化程度很低。
实施例2
制备镀镍石墨烯空心球的具体步骤如下:
(1)将铁片加工成搅拌桨桨头,先用砂纸打磨除去铁片表面的氧化层,再浸入稀盐酸或稀硫酸中,待铁片表面产生连续不断的气泡时开始计时,继续反应3min,然后用去离子水清洗并干燥,得到酸处理的桨头;
(2)将六水合硫酸镍、柠檬酸钠、氢氧化钠和去离子水配制成六水合硫酸镍浓度为12g/L、柠檬酸钠浓度为9g/L以及pH为11的化学镀液;将石墨烯按照0.12g/L的浓度加入到化学镀液中,在100W的超声功率和180r/min的搅拌速率下分散处理30min,使石墨烯均匀分散在化学镀液中,然后将搅拌桨中酸处理的桨头浸入化学镀液中,待化学镀液的温度到70℃时,将水合肼按照1:10的比例水解后缓慢滴入化学镀液中并使水合肼在化学镀液中的质量分数为4%,随后在150r/min的搅拌速率下搅拌反应120min,利用磁铁收集固体产物,并用去离子水、乙醇将收集的固体产物清洗干净,然后放入40℃的真空干燥箱中烘干,得到镀镍石墨烯空心球。
由SEM的表征结果可知,所制备的镀镍石墨烯空心球是由石墨烯片组装而成的空心结构,且石墨烯球表面被细小的镍颗粒包覆;由能谱分析结果可知,镍镀层成分纯净,氧化程度很低。
实施例3
制备镀镍石墨烯空心球的具体步骤如下:
(1)将铁片加工成搅拌桨桨头,先用砂纸打磨除去铁片表面的氧化层,再浸入稀盐酸或稀硫酸中,待铁片表面产生连续不断的气泡时开始计时,继续反应5min,然后用去离子水清洗并干燥,得到酸处理的桨头;
(2)将六水合硫酸镍、柠檬酸钠、氢氧化钠和去离子水配制成六水合硫酸镍浓度为16g/L、柠檬酸钠浓度为12g/L以及pH为13的化学镀液;将石墨烯按照0.15g/L的浓度加入到化学镀液中,在120W的超声功率和200r/min的搅拌速率下分散处理40min,使石墨烯均匀分散在化学镀液中,然后将搅拌桨中酸处理的桨头浸入化学镀液中,待化学镀液的温度到80℃时,将水合肼按照1:10的比例水解后缓慢滴入化学镀液中并使水合肼在化学镀液中的质量分数为6%,随后在180r/min的搅拌速率下搅拌反应150min,利用磁铁收集固体产物,并用去离子水、乙醇将收集的固体产物清洗干净,然后放入40℃的真空干燥箱中烘干,得到镀镍石墨烯空心球。
由SEM的表征结果可知,所制备的镀镍石墨烯空心球是由石墨烯片组装而成的空心结构,且石墨烯球表面被细小的镍颗粒包覆;由能谱分析结果可知,镍镀层成分纯净,氧化程度很低。
实施例4
制备镀镍石墨烯空心球的具体步骤如下:
(1)将铁片加工成搅拌桨桨头,先用砂纸打磨除去铁片表面的氧化层,再浸入稀盐酸或稀硫酸中,待铁片表面产生连续不断的气泡时开始计时,继续反应5min,然后用去离子水清洗并干燥,得到酸处理的桨头;
(2)将六水合硫酸镍、柠檬酸钠、氢氧化钠和去离子水配制成六水合硫酸镍浓度为12g/L、柠檬酸钠浓度为9g/L以及pH为11的化学镀液;将石墨烯按照0.12g/L的浓度加入到化学镀液中,在100W的超声功率和180r/min的搅拌速率下分散处理30min,使石墨烯均匀分散在化学镀液中,然后将搅拌桨中酸处理的桨头浸入化学镀液中,待化学镀液的温度到70℃时,将次亚磷酸钠溶液缓慢滴入化学镀液中并使次亚磷酸钠在化学镀液中的浓度为20g/L,随后在150r/min的搅拌速率下搅拌反应120min,利用磁铁收集固体产物,并用去离子水、乙醇将收集的固体产物清洗干净,然后放入40℃的真空干燥箱中烘干,得到镀镍石墨烯空心球。
由SEM的表征结果可知,所制备的镀镍石墨烯空心球是由石墨烯片组装而成的空心结构,且石墨烯球表面被细小的镍颗粒包覆;由能谱分析结果可知,镍镀层成分纯净,氧化程度很低。
实施例5
制备镀镍石墨烯空心球的具体步骤如下:
(1)将铝片加工成搅拌桨桨头,先用砂纸打磨除去铝片表面的氧化层,再浸入稀盐酸或稀硫酸中,待铝片表面产生连续不断的气泡时开始计时,继续反应5min,然后用去离子水清洗并干燥,得到酸处理的桨头;
(2)将六水合硫酸镍、柠檬酸钠、氢氧化钠和去离子水配制成六水合硫酸镍浓度为12g/L、柠檬酸钠浓度为9g/L以及pH为11的化学镀液;将石墨烯按照0.12g/L的浓度加入到化学镀液中,在100W的超声功率和180r/min的搅拌速率下分散处理30min,使石墨烯均匀分散在化学镀液中,然后将搅拌桨中酸处理的桨头浸入化学镀液中,待化学镀液的温度到70℃时,将水合肼按照1:10的比例水解后缓慢滴入化学镀液中并使水合肼在化学镀液中的质量分数为4%,随后在150r/min的搅拌速率下搅拌反应120min,利用磁铁收集固体产物,并用去离子水、乙醇将收集的固体产物清洗干净,然后放入40℃的真空干燥箱中烘干,得到镀镍石墨烯空心球。
由SEM的表征结果可知,所制备的镀镍石墨烯空心球是由石墨烯片组装而成的空心结构,且石墨烯球表面被细小的镍颗粒包覆;由能谱分析结果可知,镍镀层成分纯净,氧化程度很低。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种镀镍石墨烯空心球的制备方法,其特征在于:所述方法步骤如下,
(1)先用砂纸打磨除去电极电位低于镍的非粉体状的金属介质表面的氧化层,再浸入无机酸溶液中,待金属介质表面产生连续不断的气泡时开始计时,继续反应不少于3min,再进行清洗、干燥,得到酸处理的金属介质;
(2)将石墨烯按照0.08g/L~0.15g/L的浓度均匀分散到化学镀液中,并将酸处理的金属介质浸入化学镀液中,待化学镀液的温度达到60℃~80℃时,再加入还原剂,然后在120r/min~180r/min的搅拌速率下搅拌反应不少于90min,除去未反应完的金属介质并收集固体粉体,再对收集的固体粉体进行清洗、干燥,得到镀镍石墨烯空心球;
其中,金属介质的材质为铁或者铝;
化学镀液是由可溶性镍盐、柠檬酸盐、pH调节剂和水配制成的pH为10~13的溶液,Ni2+在化学镀液中的浓度为0.03mol/L~0.06mol/L,柠檬酸根在化学镀液中的浓度为0.02mol/L~0.04mol/L,pH调节剂为NaOH、KOH或氨水;还原剂为水合肼、次亚磷酸钠或硼氢化钠。
2.根据权利要求1所述的一种镀镍石墨烯空心球的制备方法,其特征在于:无机酸溶液为盐酸溶液、硫酸溶液或硝酸溶液。
3.根据权利要求1所述的一种镀镍石墨烯空心球的制备方法,其特征在于:金属介质的形状为片状、块状、条状或颗粒状。
4.根据权利要求1所述的一种镀镍石墨烯空心球的制备方法,其特征在于:将金属介质加工成搅拌桨桨头,并按照步骤(1)的操作对桨头进行酸处理;在步骤(2)中,将搅拌桨的桨头浸入化学镀液中,化学镀过程中桨头的搅拌速度为120r/min~180r/min。
5.根据权利要求4所述的一种镀镍石墨烯空心球的制备方法,其特征在于:桨头由连接杆和叶片组成,叶片为弧形扁片状,一层以上叶片沿轴向安装在连接杆上,每一层中两个以上叶片沿轴向对称安装在连接杆上。
6.根据权利要求1所述的一种镀镍石墨烯空心球的制备方法,其特征在于:化学镀液是由六水合硫酸镍、柠檬酸钠、氢氧化钠和水配制成的pH为10~13的溶液,六水合硫酸镍在化学镀液中的浓度为8g/L~16g/L,柠檬酸钠在化学镀液中的浓度为6g/L~12g/L。
7.根据权利要求1所述的一种镀镍石墨烯空心球的制备方法,其特征在于:石墨烯加入化学镀液中,在超声和机械搅拌的共同作用下分散处理20min~40min,使石墨烯均匀分散在化学镀液中;其中,超声功率为80W~120W,搅拌速率为150r/min~200r/min。
8.根据权利要求1所述的一种镀镍石墨烯空心球的制备方法,其特征在于:还原剂为水合肼时,水合肼在化学镀液中的质量分数为3%~6%;还原剂为次亚磷酸钠时,次亚磷酸钠在化学镀液中的浓度为15g/L~25g/L;还原剂为硼氢化钠时,硼氢化钠与化学镀液中镍离子的摩尔比为1:(10~1000)。
CN202010061309.7A 2020-01-19 2020-01-19 一种镀镍石墨烯空心球的制备方法 Active CN111232963B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010061309.7A CN111232963B (zh) 2020-01-19 2020-01-19 一种镀镍石墨烯空心球的制备方法
US17/147,947 US11713510B2 (en) 2020-01-19 2021-01-13 Method for forming nickel plated graphene hollow sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010061309.7A CN111232963B (zh) 2020-01-19 2020-01-19 一种镀镍石墨烯空心球的制备方法

Publications (2)

Publication Number Publication Date
CN111232963A CN111232963A (zh) 2020-06-05
CN111232963B true CN111232963B (zh) 2020-12-04

Family

ID=70866855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010061309.7A Active CN111232963B (zh) 2020-01-19 2020-01-19 一种镀镍石墨烯空心球的制备方法

Country Status (2)

Country Link
US (1) US11713510B2 (zh)
CN (1) CN111232963B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113784606B (zh) * 2021-09-29 2024-01-19 西安热工研究院有限公司 一种碳化钛和钴镍合金复合吸波材料及其制备方法
CN114535570B (zh) * 2022-02-13 2024-03-12 西南大学 一种中空双金属微球的制备方法及电磁防护复合材料
CN114700490A (zh) * 2022-03-15 2022-07-05 东北大学 一种镍包石墨复合颗粒的制备方法及其在电磁屏蔽领域的应用
CN114952073A (zh) * 2022-05-09 2022-08-30 广西大学 一种镀镍石墨烯增强锡基焊膏的制备方法
CN115446324B (zh) * 2022-08-09 2024-03-08 西北大学 一种CoNi合金纤维吸波材料及其制备方法和应用
CN115519133B (zh) * 2022-10-21 2023-08-25 雅安百图高新材料股份有限公司 一种镍包石墨粉制备方法
CN116075143B (zh) * 2023-02-13 2024-04-05 中国人民解放军国防科技大学 一种基于激光辐照运动平台制备的ZrO2@C吸波材料及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430413B (zh) * 2011-10-08 2014-12-10 南京师范大学 一种空心结构PtNi合金/石墨烯复合纳米催化剂及其制备方法
CN105018029A (zh) * 2014-04-25 2015-11-04 南京理工大学 一种金属镍/石墨烯复合吸波材料及其制备方法
CN106744902B (zh) * 2017-02-22 2019-03-22 盐城工学院 一种镀镍石墨烯的制备方法
CN109205594B (zh) * 2017-06-29 2022-04-05 中国科学院金属研究所 一种石墨烯导电微球的制备方法及其应用
CN109500385B (zh) * 2018-09-28 2021-06-22 中北大学 一种激光快速成型用镍/石墨烯复合粉末的制备方法
US11959176B2 (en) * 2019-11-07 2024-04-16 Pbtt, Inc. Metallic coating and method

Also Published As

Publication number Publication date
CN111232963A (zh) 2020-06-05
US20210222302A1 (en) 2021-07-22
US11713510B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
CN111232963B (zh) 一种镀镍石墨烯空心球的制备方法
Cheng et al. Growing CoNi nanoalloy@ N-doped carbon nanotubes on MXene sheets for excellent microwave absorption
CN106947994B (zh) 一种基于氧化铜纳米线的金属保护层
CN108807905B (zh) 一种可调空腔结构的氧化铁@氧化钛复合负极材料的制备方法
CN111960481A (zh) 一种Ni(OH)2@CuS复合材料的制备方法
CN111139461A (zh) 一种在石墨烯表面化学镀镍的方法
CN109852344B (zh) 一种复合吸波材料及其制备方法
CN110666157A (zh) 一种核壳结构C@CoNi复合材料及其制备方法和应用
Xu et al. Hollow porous Ni@ SiC nanospheres for enhancing electromagnetic wave absorption
Man et al. In situ-derived carbon nanotubes decorated the surface of CoxNiy@ C composites from MOFs for efficient electromagnetic wave absorption
CN113512215B (zh) 一种基于石墨烯基的柔性电磁波屏蔽薄膜及其制备方法
CN117479513A (zh) 一种NiCo2O4@SiO2/GNs吸波材料及其制备方法
CN101381080A (zh) 一种直接制备碳纳米管复合导电剂的方法
CN115594222B (zh) 一种二维FeNi@MoS2纳米结构电磁波吸收材料及其制备方法
CN116063846A (zh) 一种吸波材料的制备方法
CN109385660A (zh) 基于纳米材料的金属保护层
CN110436441A (zh) 一种介孔空心碳球及其制备和在电磁吸收中的应用
CN109971420A (zh) 一维二氧化锆/碳纳米管纳米复合材料的制备方法及应用
Youh et al. A carbonyl iron/carbon fiber material for electromagnetic wave absorption
CN112811422B (zh) 一种生物质核壳吸波材料、其制备方法及应用
CN114256630A (zh) 一种表面沉积纳米镍多孔炭颗粒微波吸收剂的制备方法
CN114073919B (zh) 碳-磁性金属弥散型中空复合微球及其制备方法和应用
CN109195431B (zh) 一种多层、微米花状NiCo2O4/GN/Fe3O4新型吸波剂的制备方法
CN113328262A (zh) 一种锰氧化物@Ni-Co/石墨碳纳米复合材料的制备方法
Hua et al. 3D printing lamellar Ti 3 C 2 T x MXene/graphene hybrid aerogels for enhanced electromagnetic interference shielding performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant