CN111221110A - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
CN111221110A
CN111221110A CN202010174077.6A CN202010174077A CN111221110A CN 111221110 A CN111221110 A CN 111221110A CN 202010174077 A CN202010174077 A CN 202010174077A CN 111221110 A CN111221110 A CN 111221110A
Authority
CN
China
Prior art keywords
lens
optical imaging
optical
image
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010174077.6A
Other languages
English (en)
Other versions
CN111221110B (zh
Inventor
吕赛锋
邢天祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN202010174077.6A priority Critical patent/CN111221110B/zh
Publication of CN111221110A publication Critical patent/CN111221110A/zh
Application granted granted Critical
Publication of CN111221110B publication Critical patent/CN111221110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学成像镜头,其沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有正光焦度;第二透镜具有负光焦度;第五透镜具有正光焦度;第六透镜具有负光焦度,其中,第一透镜在光轴上的中心厚度CT1、第二透镜在光轴上的中心厚度CT2与第二透镜和第三透镜在光轴上的间隔距离T23满足0.8<CT1/(CT2+T23)<1.8;以及第四透镜的物侧面的曲率半径R7与第五透镜的物侧面的曲率半径R9满足0<(R7+R9)/(R7‑R9)<1。

Description

光学成像镜头
分案申请
本申请是2018年12月13日递交的发明名称为“光学成像镜头”、申请号为201811524044.9的中国发明专利申请的分案申请。
技术领域
本申请涉及一种光学成像镜头,更具体地,涉及一种包括六片透镜的光学成像镜头。
背景技术
随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的成像镜头的需求逐渐增大。一方面,由于例如智能手机等便携式电子产品趋于小型化,限制了镜头的总长,从而增加了镜头的设计难度。另一方面,随着例如感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对相配套的成像镜头的高成像品质及小型化均提出了更高的要求。
为了满足小型化的要求,现有镜头通常配置的光圈数(F数)均在2.0或2.0以上,以兼顾小型化与良好的光学性能。但是随着智能手机等便携式电子产品的不断发展,对配套使用的摄像镜头的光圈数提出了更高的要求,特别是在光线不足(如阴雨天、黄昏等)、手抖等情况下,需要镜头具有更小的光圈数。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。
一方面,本申请提供了这样一种光学成像镜头,其沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有正光焦度;第二透镜具有负光焦度;第五透镜具有正光焦度;第六透镜具有负光焦度,其中,第一透镜在光轴上的中心厚度CT1、第二透镜在光轴上的中心厚度CT2与第二透镜和第三透镜在光轴上的间隔距离T23可满足0.8<CT1/(CT2+T23)<1.8;以及第四透镜的物侧面的曲率半径R7与第五透镜的物侧面的曲率半径R9可满足0<(R7+R9)/(R7-R9)<1。
在一个实施方式中,光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与光学成像镜头的总有效焦距f可满足0.7<ImgH/f<1.1。
在一个实施方式中,第一透镜的物侧面的最大有效半径DT11、第六透镜的物侧面的最大有效半径DT61与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足0.8<(DT11+DT61)/ImgH<1.2。
在一个实施方式中,第一透镜的有效焦距f1与第五透镜的有效焦距f5可满足1≤f5/f1≤3.5。
在一个实施方式中,第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.3。
在一个实施方式中,第二透镜的像侧面的曲率半径R4与第二透镜的有效焦距f2可满足-2.2<R4/f2<-0.3。
在一个实施方式中,第一透镜的像侧面的曲率半径R2、第一透镜的物侧面的曲率半径R1与光学成像镜头的总有效焦距f可满足0.6<(R2-R1)/f<1.1。
在一个实施方式中,第六透镜的有效焦距f6、第五透镜在光轴上的中心厚度CT5、第五透镜和第六透镜在光轴上的间隔距离T56以及第六透镜在光轴上的中心厚度CT6可满足1.4<|f6|/(CT5+T56+CT6)<2.4。
在一个实施方式中,第三透镜的像侧面的最大有效半径DT32与第一透镜的像侧面的最大有效半径DT12可满足0.8<DT32/DT12<1.3。
在一个实施方式中,光学成像镜头的总有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4可满足0<f/|f3+f4|<0.5。
在一个实施方式中,第六透镜的物侧面的曲率半径R11与第六透镜的像侧面的曲率半径R12可满足0.9<(R11+R12)/(R11-R12)<1.4。
在一个实施方式中,第五透镜在光轴上的中心厚度CT5与第五透镜的边缘厚度ET5可满足1.1<CT5/ET5<2.3。
另一方面,本申请提供了这样一种光学成像镜头,其沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜的物侧面为凸面,像侧面为凹面;第二透镜的像侧面为凹面;第六透镜的物侧面为凸面,其中,其中,第一透镜在光轴上的中心厚度CT1、第二透镜在光轴上的中心厚度CT2与第二透镜和第三透镜在光轴上的间隔距离T23可满足0.8<CT1/(CT2+T23)<1.8;以及第三透镜的像侧面的最大有效半径DT32与第一透镜的像侧面的最大有效半径DT12可满足0.8<DT32/DT12<1.3。
本申请采用了六片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学透镜组具有小型化、超薄、大光圈、高成像质量、大像面等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第六透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的像侧面可为凹面;第六透镜的物侧面可为凸面。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式TTL/ImgH≤1.3,其中,TTL为第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.14≤TTL/ImgH≤1.24。满足条件式TTL/ImgH≤1.3,可有效地压缩***尺寸,保证镜头紧凑的尺寸特性,同时可合理地增大像面尺寸,在兼顾超薄和大像面的情况下保证较好的成像质量。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式1≤f5/f1≤3.5,其中,f5为第五透镜的有效焦距,f1为第一透镜的有效焦距。更具体地,f5和f1进一步可满足1.04≤f5/f1≤3.50。合理分配第一透镜和第五透镜的有效焦距可以减小光线的偏折角度,降低第一透镜的公差敏感性,提高光学***的成像质量。可选地,第一透镜具有正光焦度,第五透镜具有正光焦度。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.6<(R2-R1)/f<1.1,其中,R2为第一透镜的像侧面的曲率半径,R1为第一透镜的物侧面的曲率半径,f为光学成像镜头的总有效焦距。更具体地,R2、R1和f进一步可满足0.71≤(R2-R1)/f≤1.02。将第一透镜像侧面的曲率半径和物侧面的曲率半径之差与***的有效焦距的比值控制在一定范围内,可以将第一透镜的曲率半径控制在合理范围内,降低第一透镜的敏感性。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式-2.2<R4/f2<-0.3,其中,R4为第二透镜的像侧面的曲率半径,f2为第二透镜的有效焦距。更具体地,R4和f2进一步可满足-2.15≤R4/f2≤-0.35。通过合理控制第二透镜有效焦距与其像侧面曲率半径的比值,能够控制边缘视场在第二透镜的偏转角度,能够有效的降低***的敏感性,同时使得第二透镜的像侧面边缘处面倾角减小,消除此处鬼像产生的风险。可选地,第二透镜具有负光焦度。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式1.4<|f6|/(CT5+T56+CT6)<2.4,其中,f6为第六透镜的有效焦距,CT5为第五透镜在光轴上的中心厚度,T56为第五透镜和第六透镜在光轴上的间隔距离,CT6为第六透镜在光轴上的中心厚度。更具体地,f6、CT5、T56和CT6进一步可满足1.64≤|f6|/(CT5+T56+CT6)≤2.23。满足条件式1.4<|f6|/(CT5+T56+CT6)<2.4,可以在保证第五透镜和第六透镜具有合理结构的基础上,通过这两片透镜来校正***的场曲和像散。可选地,第六透镜具有负光焦度。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.7<ImgH/f<1.1,其中,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半,f为光学成像镜头的总有效焦距。更具体地,ImgH和f进一步可满足0.89≤ImgH/f≤0.99。满足条件式0.7<ImgH/f<1.1,可有效压缩***的尺寸,保证镜头的超薄特性。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.8<CT1/(CT2+T23)<1.8,其中,CT1为第一透镜在光轴上的中心厚度,CT2为第二透镜在光轴上的中心厚度,T23为第二透镜和第三透镜在光轴上的间隔距离。更具体地,CT1、CT2和T23进一步可满足0.98≤CT1/(CT2+T23)≤1.62。合理地分布第一透镜、第二透镜的中心厚度以及第二透镜和第三透镜的空气间隔,可以在保证良好加工性的同时使镜头具有较好平衡像差的能力。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.8<DT32/DT12<1.3,其中,DT32为第三透镜的像侧面的最大有效半径,DT12为第一透镜的像侧面的最大有效半径。更具体地,DT32和DT12进一步可满足1.04≤DT32/DT12≤1.20。合理控制第一透镜和第三透镜的最大有效半径可以减小镜头头部的体积,做到小头部的效果。当将该成像镜头作为手机前摄镜头使用时,有利于提高手机的屏占比。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.8<(DT11+DT61)/ImgH<1.2,其中,DT11为第一透镜的物侧面的最大有效半径,DT61为第六透镜的物侧面的最大有效半径,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半。更具体地,DT11、DT61和ImgH进一步可满足0.98≤(DT11+DT61)/ImgH≤1.04。合理控制第一透镜和第六透镜的最大有效半径,在保证光学***的大像面的特性的同时减小镜头体积。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0<f/|f3+f4|<0.5,其中,f为光学成像镜头的总有效焦距,f3为第三透镜的有效焦距,f4为第四透镜的有效焦距。更具体地,f、f3和f4进一步可满足0.01≤f/|f3+f4|≤0.32。合理分配第三透镜和第四透镜的光焦度,能够平衡***的像差,使得光学***具有较好的平衡场曲的能力。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.9<(R11+R12)/(R11-R12)<1.4,其中,R11为第六透镜的物侧面的曲率半径,R12为第六透镜的像侧面的曲率半径。更具体地,R11和R12进一步可满足1.07≤(R11+R12)/(R11-R12)≤1.27。合理设置第六透镜的曲率半径,可以平衡***的像差,提高***的成像质量。可选地,第六透镜的物侧面为凸面,像侧面为凹面。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式1.1<CT5/ET5<2.3,其中,CT5为第五透镜在光轴上的中心厚度,ET5为第五透镜的边缘厚度。更具体地,CT5和ET5进一步可满足1.15≤CT5/ET5≤2.20。合理约束第五透镜的中心厚度与边缘厚度的比值,可以保证光学元件具有良好的可加工特性,且可以保证***总长TTL在一定合适的范围内。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0<(R7+R9)/(R7-R9)<1,其中,R7为第四透镜的物侧面的曲率半径,R9为第五透镜的物侧面的曲率半径。更具体地,R7和R9进一步可满足0.10≤(R7+R9)/(R7-R9)≤0.95。合理设置第四透镜和第五透镜的曲率半径比值,可以减小光线的偏折角,能较容易平衡***的像差,提高***的成像质量。可选地,第四透镜的物侧面为凹面,第五透镜的物侧面为凸面。
在示例性实施方式中,上述光学成像镜头还可包括光阑,以提升透镜组的成像质量。光阑可设置在物侧与第一透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学透镜组还可具有超薄、大光圈、高成像质量、大像面等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像镜头不限于包括六个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure BDA0002410194040000081
表1
由表1可知,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure BDA0002410194040000082
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S12的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20
Figure BDA0002410194040000083
Figure BDA0002410194040000091
表2
表3给出了实施例1中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 3.15 f6(mm) -2.35
f2(mm) -9.21 f(mm) 3.35
f3(mm) 20.61 TTL(mm) 4.00
f4(mm) -9.81 ImgH(mm) 3.26
f5(mm) 3.28
表3
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure BDA0002410194040000101
表4
由表4可知,在实施例2中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -9.6300E-03 3.4173E-01 -2.2981E+00 9.2426E+00 -2.2451E+01 3.2070E+01 -2.4916E+01 7.9892E+00 0.0000E+00
S2 -1.3687E-01 1.3056E-01 -9.8672E-01 5.7257E+00 -1.7705E+01 2.9571E+01 -2.5867E+01 9.3523E+00 0.0000E+00
S3 -1.5530E-01 4.0065E-01 -3.1760E-02 -3.3879E-01 -5.4265E-01 2.1380E+00 -1.5664E+00 3.2836E-01 0.0000E+00
S4 -5.6600E-02 3.8633E-01 1.5080E-01 -7.7855E-01 1.2701E-01 1.0346E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 -3.1708E-01 2.1299E+00 -2.2381E+01 1.4366E+02 -5.9022E+02 1.5304E+03 -2.4199E+03 2.1207E+03 -7.8577E+02
S6 -4.0070E-01 2.1627E+00 -1.4807E+01 6.8078E+01 -2.0962E+02 4.1511E+02 -5.0711E+02 3.4711E+02 -1.0099E+02
S7 -6.0293E-01 1.4432E+00 -4.3694E+00 1.1428E+01 -2.3314E+01 3.1939E+01 -2.5898E+01 1.1310E+01 -2.1352E+00
S8 -4.9382E-01 6.6645E-01 -7.4099E-01 5.5071E-01 -1.0408E+00 2.8933E+00 -3.5058E+00 1.8716E+00 -3.7316E-01
S9 -7.9660E-02 -6.6240E-02 9.3002E-02 -1.8750E-02 -1.8787E-01 2.2159E-01 -1.0182E-01 2.1294E-02 -1.6900E-03
S10 -3.2100E-03 -1.3209E-01 3.0204E-01 -3.4788E-01 1.9701E-01 -5.3270E-02 4.6040E-03 6.4500E-04 -1.1000E-04
S11 -7.6962E-01 8.8836E-01 -5.8572E-01 2.4727E-01 -6.8130E-02 1.2183E-02 -1.3600E-03 8.7000E-05 -2.4000E-06
S12 -3.3683E-01 3.1412E-01 -1.8033E-01 6.6569E-02 -1.5900E-02 2.3810E-03 -2.1000E-04 9.6100E-06 -1.6000E-07
表5
表6给出了实施例2中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 2.93 f6(mm) -2.34
f2(mm) -8.38 f(mm) 3.50
f3(mm) 96.27 TTL(mm) 4.00
f4(mm) -56.72 ImgH(mm) 3.26
f5(mm) 4.67
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure BDA0002410194040000111
Figure BDA0002410194040000121
表7
由表7可知,在实施例3中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.4720E-02 4.1578E-01 -2.9613E+00 1.2627E+01 -3.2428E+01 4.8774E+01 -3.9636E+01 1.3288E+01 0.0000E+00
S2 -1.5021E-01 3.1875E-01 -2.7401E+00 1.5321E+01 -4.8111E+01 8.4802E+01 -7.9243E+01 3.0603E+01 0.0000E+00
S3 -1.6504E-01 4.8467E-01 -8.9601E-01 4.5870E+00 -1.7087E+01 3.4430E+01 -3.5291E+01 1.4844E+01 0.0000E+00
S4 -5.6960E-02 4.1155E-01 -2.8990E-02 -3.3020E-01 -3.6352E-01 1.2049E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 -3.0863E-01 1.9690E+00 -2.0946E+01 1.3763E+02 -5.7725E+02 1.5226E+03 -2.4421E+03 2.1664E+03 -8.1135E+02
S6 -3.7269E-01 2.0100E+00 -1.5133E+01 7.4385E+01 -2.3885E+02 4.8747E+02 -6.0957E+02 4.2447E+02 -1.2499E+02
S7 -4.9795E-01 3.2654E-01 2.0697E+00 -1.2990E+01 3.5613E+01 -5.5429E+01 5.0194E+01 -2.3903E+01 4.4003E+00
S8 -4.2464E-01 4.1251E-02 2.0319E+00 -7.2390E+00 1.2829E+01 -1.2414E+01 6.6705E+00 -1.8774E+00 2.1612E-01
S9 -6.4740E-02 -8.1210E-02 5.4324E-02 1.2836E-01 -4.1655E-01 4.1000E-01 -1.8642E-01 4.0831E-02 -3.5100E-03
S10 -6.7400E-03 -1.2471E-01 3.2017E-01 -3.9907E-01 2.4831E-01 -8.0680E-02 1.2946E-02 -7.3000E-04 -1.8000E-05
S11 -7.4152E-01 8.3698E-01 -5.5404E-01 2.4134E-01 -6.9740E-02 1.3180E-02 -1.5600E-03 1.0600E-04 -3.1000E-06
S12 -3.2952E-01 3.2574E-01 -2.0704E-01 8.4928E-02 -2.2440E-02 3.7260E-03 -3.7000E-04 1.9600E-05 -4.2000E-07
表8
表9给出了实施例3中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 2.94 f6(mm) -2.52
f2(mm) -8.75 f(mm) 3.50
f3(mm) 107.35 TTL(mm) 4.00
f4(mm) -85.56 ImgH(mm) 3.32
f5(mm) 4.80
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同像高情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure BDA0002410194040000131
Figure BDA0002410194040000141
表10
由表10可知,在实施例4中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 8.2790E-03 9.8111E-02 -5.8828E-01 2.5025E+00 -6.5079E+00 9.8598E+00 -7.9623E+00 2.5293E+00 0.0000E+00
S2 -9.8060E-02 5.8062E-02 -9.5132E-01 6.1245E+00 -2.0627E+01 3.8001E+01 -3.6565E+01 1.4301E+01 0.0000E+00
S3 -1.2813E-01 1.3946E-01 8.4784E-01 -3.2650E+00 6.7333E+00 -8.1312E+00 5.4588E+00 -1.4663E+00 0.0000E+00
S4 -4.7580E-02 2.8026E-01 1.7227E-01 -1.5320E-02 -1.3219E+00 2.0883E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.6310E-01 -1.2730E-02 -1.9829E+00 2.1720E+01 -1.2739E+02 4.2201E+02 -8.0317E+02 8.1430E+02 -3.3863E+02
S6 -2.9245E-01 1.1367E+00 -8.1061E+00 3.9244E+01 -1.2607E+02 2.5767E+02 -3.2250E+02 2.2467E+02 -6.6042E+01
S7 -4.8411E-01 5.0802E-01 1.0769E+00 -9.3145E+00 2.8166E+01 -4.6813E+01 4.4809E+01 -2.2922E+01 4.7732E+00
S8 -4.3727E-01 4.4067E-01 8.1918E-02 -1.8286E+00 4.0670E+00 -3.9504E+00 1.7840E+00 -3.0075E-01 -4.1000E-03
S9 -1.0743E-01 1.0222E-01 -3.4327E-01 6.6433E-01 -8.8311E-01 6.6979E-01 -2.7522E-01 5.7735E-02 -4.8800E-03
S10 -8.5170E-02 3.7416E-02 1.1559E-01 -2.3017E-01 1.6021E-01 -5.2820E-02 7.8630E-03 -2.4000E-04 -3.6000E-05
S11 -7.4400E-01 8.1349E-01 -5.1765E-01 2.1705E-01 -6.0840E-02 1.1248E-02 -1.3200E-03 8.8100E-05 -2.6000E-06
S12 -3.3483E-01 3.2885E-01 -2.0643E-01 8.3298E-02 -2.1700E-02 3.5700E-03 -3.5000E-04 1.8900E-05 -4.1000E-07
表11
表12给出了实施例4中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 3.05 f6(mm) -2.81
f2(mm) -11.95 f(mm) 3.52
f3(mm) -389.68 TTL(mm) 4.00
f4(mm) -68.53 ImgH(mm) 3.30
f5(mm) 5.30
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure BDA0002410194040000151
表13
由表13可知,在实施例5中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure BDA0002410194040000152
Figure BDA0002410194040000161
表14
表15给出了实施例5中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 2.98 f6(mm) -2.17
f2(mm) -11.72 f(mm) 3.63
f3(mm) -37.55 TTL(mm) 3.85
f4(mm) 18.03 ImgH(mm) 3.36
f5(mm) 10.42
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视场所对应的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure BDA0002410194040000171
表16
由表16可知,在实施例6中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.3650E-03 1.3747E-01 -9.3792E-01 3.9146E+00 -9.5721E+00 1.3390E+01 -9.9283E+00 2.9586E+00 0.0000E+00
S2 -1.0326E-01 1.8402E-01 -1.4596E+00 6.2299E+00 -1.5331E+01 2.1526E+01 -1.6180E+01 5.0957E+00 0.0000E+00
S3 -1.2466E-01 3.6690E-01 -4.5734E-01 1.1701E+00 -2.7572E+00 3.7770E+00 -2.6159E+00 9.2812E-01 0.0000E+00
S4 -8.5220E-02 5.3204E-01 -8.5641E-01 2.4177E+00 -4.3724E+00 3.2020E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 -2.6983E-01 6.6583E-01 -5.1852E+00 3.0382E+01 -1.2274E+02 3.1663E+02 -4.9888E+02 4.3061E+02 -1.5468E+02
S6 -2.9139E-01 1.7440E+00 -1.4921E+01 7.7597E+01 -2.5443E+02 5.2292E+02 -6.5361E+02 4.5194E+02 -1.3150E+02
S7 -3.6120E-01 5.8420E-01 -3.8484E+00 1.7503E+01 -5.4035E+01 1.0853E+02 -1.3206E+02 8.8624E+01 -2.5212E+01
S8 -3.4126E-01 6.9795E-01 -4.1464E+00 1.5993E+01 -3.8046E+01 5.5798E+01 -4.7629E+01 2.1551E+01 -3.9995E+00
S9 -4.7080E-02 -1.1960E-01 -4.3440E-02 2.8654E-01 -8.6943E-01 1.1202E+00 -6.7527E-01 1.9424E-01 -2.1710E-02
S10 5.3410E-03 -1.2476E-01 2.6629E-01 -5.4498E-01 5.6258E-01 -3.0835E-01 9.4028E-02 -1.5220E-02 1.0250E-03
S11 -7.4212E-01 8.7022E-01 -5.7663E-01 2.4049E-01 -6.4930E-02 1.1361E-02 -1.2500E-03 7.8400E-05 -2.2000E-06
S12 -2.2066E-01 1.2786E-01 -3.9780E-02 5.6220E-03 5.3400E-04 -4.3000E-04 8.9300E-05 -8.4000E-06 3.0300E-07
表17
表18给出了实施例6中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 2.98 f6(mm) -2.16
f2(mm) -8.86 f(mm) 3.73
f3(mm) -154.48 TTL(mm) 3.95
f4(mm) 23.88 ImgH(mm) 3.32
f5(mm) 9.41
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure BDA0002410194040000181
Figure BDA0002410194040000191
表19
由表19可知,在实施例7中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.4390E-03 1.5989E-01 -8.3745E-01 2.8822E+00 -6.2263E+00 8.2310E+00 -6.0653E+00 1.8100E+00 0.0000E+00
S2 -5.7180E-02 7.2918E-02 -1.2766E+00 8.1552E+00 -2.7926E+01 5.2379E+01 -5.1512E+01 2.0768E+01 0.0000E+00
S3 -9.4380E-02 4.3660E-01 -1.7051E+00 8.2498E+00 -2.5191E+01 4.4234E+01 -4.1421E+01 1.6239E+01 0.0000E+00
S4 -6.9220E-02 4.1079E-01 -3.8453E-01 1.0195E+00 -2.1874E+00 2.0232E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 -2.6786E-01 1.4517E+00 -1.4076E+01 8.5212E+01 -3.3016E+02 8.0664E+02 -1.2025E+03 9.9398E+02 -3.4723E+02
S6 -1.8848E-01 3.9952E-01 -3.3688E+00 1.6331E+01 -5.2758E+01 1.0861E+02 -1.3707E+02 9.6088E+01 -2.8220E+01
S7 -3.6939E-01 3.4692E-01 -9.8845E-01 2.7017E+00 -6.2123E+00 1.1378E+01 -1.2987E+01 8.1916E+00 -2.2437E+00
S8 -3.2714E-01 1.9418E-01 -8.9610E-02 2.3553E-01 -1.4575E+00 3.8288E+00 -4.2916E+00 2.1869E+00 -4.2225E-01
S9 -9.8330E-02 1.2087E-01 -4.7467E-01 8.8973E-01 -1.0458E+00 7.2590E-01 -2.8441E-01 5.8533E-02 -4.9500E-03
S10 -1.0037E-01 1.3748E-01 -1.9568E-01 2.2893E-01 -2.0682E-01 1.1657E-01 -3.7386E-02 6.2650E-03 -4.3000E-04
S11 -7.4686E-01 8.6089E-01 -5.6588E-01 2.3644E-01 -6.4430E-02 1.1432E-02 -1.2761E-03 8.1500E-05 -2.3000E-06
S12 -2.5404E-01 2.1410E-01 -1.0655E-01 3.3167E-02 -6.5500E-03 7.9700E-04 -5.5808E-05 1.9600E-06 -2.4000E-08
表20
表21给出了实施例7中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 3.21 f6(mm) -2.28
f2(mm) -10.48 f(mm) 3.27
f3(mm) 15.78 TTL(mm) 3.99
f4(mm) -25.90 ImgH(mm) 3.23
f5(mm) 4.24
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure BDA0002410194040000201
Figure BDA0002410194040000211
表22
由表22可知,在实施例8中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.3160E-03 1.4714E-01 -9.3732E-01 3.6705E+00 -8.5065E+00 1.1411E+01 -8.1875E+00 2.3688E+00 0.0000E+00
S2 -7.4590E-02 1.3426E-01 -9.7656E-01 3.9849E+00 -9.8694E+00 1.3773E+01 -1.0037E+01 2.9963E+00 0.0000E+00
S3 -7.6050E-02 2.8164E-01 1.4406E-01 -2.3626E+00 7.6254E+00 -1.2947E+01 1.1773E+01 -4.2971E+00 0.0000E+00
S4 -7.4980E-02 5.0897E-01 -7.8443E-01 1.6652E+00 -2.6415E+00 2.0253E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 -2.6564E-01 1.0995E+00 -9.8545E+00 5.8306E+01 -2.2826E+02 5.6848E+02 -8.6657E+02 7.3207E+02 -2.6120E+02
S6 -2.8932E-01 1.7052E+00 -1.2941E+01 6.1478E+01 -1.8845E+02 3.6703E+02 -4.3883E+02 2.9216E+02 -8.2170E+01
S7 -4.2309E-01 6.6598E-01 -2.6374E+00 9.6951E+00 -2.8445E+01 5.9202E+01 -7.6491E+01 5.4283E+01 -1.6091E+01
S8 -4.0857E-01 6.6719E-01 -2.7544E+00 9.4040E+00 -2.1268E+01 3.0644E+01 -2.5947E+01 1.1664E+01 -2.1512E+00
S9 -2.9280E-02 -1.7479E-01 1.4620E-01 -7.2326E-02 -2.8273E-01 4.8962E-01 -3.0453E-01 8.5194E-02 -9.0700E-03
S10 1.9245E-02 -1.5443E-01 3.0123E-01 -4.7980E-01 4.1935E-01 -2.0237E-01 5.5128E-02 -8.0200E-03 4.8600E-04
S11 -7.6098E-01 8.9584E-01 -5.9347E-01 2.4703E-01 -6.6490E-02 1.1587E-02 -1.2700E-03 7.8800E-05 -2.1000E-06
S12 -2.4159E-01 1.6071E-01 -6.2590E-02 1.5574E-02 -2.4900E-03 2.0700E-04 9.0000E-07 -1.5000E-06 7.2700E-08
表23
表24给出了实施例8中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 2.98 f6(mm) -2.13
f2(mm) -7.81 f(mm) 3.63
f3(mm) 45.58 TTL(mm) 3.95
f4(mm) 74.41 ImgH(mm) 3.39
f5(mm) 6.78
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure BDA0002410194040000221
表25
由表25可知,在实施例9中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure BDA0002410194040000222
Figure BDA0002410194040000231
表26
表27给出了实施例9中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 2.90 f6(mm) -2.23
f2(mm) -7.64 f(mm) 3.73
f3(mm) 83.59 TTL(mm) 3.95
f4(mm) 68.09 ImgH(mm) 3.40
f5(mm) 8.21
表27
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例9分别满足表28中所示的关系。
条件式/例 1 2 3 4 5 6 7 8 9
TTL/ImgH 1.23 1.22 1.20 1.21 1.14 1.19 1.24 1.17 1.16
f5/f1 1.04 1.59 1.64 1.74 3.50 3.16 1.32 2.27 2.83
(R2-R1)/f 1.01 1.02 0.98 0.76 0.71 0.81 0.80 0.90 0.81
R4/f2 -0.35 -0.86 -0.67 -0.67 -0.79 -1.02 -2.15 -1.52 -1.47
|f6|/(CT5+T56+CT6) 1.74 1.78 2.01 2.23 1.78 1.69 1.64 1.64 1.69
ImgH/f 0.97 0.93 0.95 0.94 0.93 0.89 0.99 0.93 0.91
CT1/(CT2+T23) 0.98 1.31 1.30 1.31 1.52 1.56 1.48 1.62 1.51
DT32/DT12 1.20 1.11 1.11 1.14 1.05 1.04 1.15 1.06 1.11
(DT11+DT61)/ImgH 1.04 1.02 0.98 0.99 0.99 1.01 1.04 1.01 0.98
f/|f3+f4| 0.31 0.09 0.16 0.01 0.19 0.03 0.32 0.03 0.02
(R11+R12)/(R11-R12) 1.08 1.07 1.12 1.25 1.27 1.23 1.18 1.20 1.23
CT5/ET5 2.00 1.73 1.74 1.72 1.21 1.15 2.20 1.38 1.15
(R7+R9)/(R7-R9) 0.57 0.95 0.76 0.78 0.90 0.80 0.10 0.79 0.82
表28
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

1.光学成像镜头,沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
其特征在于,
所述第一透镜具有正光焦度;
所述第二透镜具有负光焦度;
所述第五透镜具有正光焦度;
所述第六透镜具有负光焦度;
所述第一透镜在所述光轴上的中心厚度CT1、所述第二透镜在所述光轴上的中心厚度CT2与所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23满足0.8<CT1/(CT2+T23)<1.8;
所述第四透镜的物侧面的曲率半径R7与所述第五透镜的物侧面的曲率半径R9满足0<(R7+R9)/(R7-R9)<1。
2.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第五透镜的有效焦距f5满足1≤f5/f1≤3.5。
3.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.3。
4.根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的像侧面的曲率半径R4与所述第二透镜的有效焦距f2满足-2.2<R4/f2<-0.3。
5.根据权利要求4所述的光学成像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2、所述第一透镜的物侧面的曲率半径R1与所述光学成像镜头的总有效焦距f满足0.6<(R2-R1)/f<1.1。
6.根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜的有效焦距f6、所述第五透镜在所述光轴上的中心厚度CT5、所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56以及所述第六透镜在所述光轴上的中心厚度CT6满足1.4<|f6|/(CT5+T56+CT6)<2.4。
7.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与所述光学成像镜头的总有效焦距f满足0.7<ImgH/f<1.1。
8.根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的像侧面的最大有效半径DT32与所述第一透镜的像侧面的最大有效半径DT12满足0.8<DT32/DT12<1.3。
9.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第三透镜的有效焦距f3与所述第四透镜的有效焦距f4满足0<f/|f3+f4|<0.5。
10.光学成像镜头,沿光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
其特征在于,
所述第一透镜具有正光焦度;
所述第二透镜具有负光焦度;
所述第五透镜具有正光焦度;
所述第六透镜具有负光焦度;
所述第一透镜在所述光轴上的中心厚度CT1、所述第二透镜在所述光轴上的中心厚度CT2与所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23满足0.8<CT1/(CT2+T23)<1.8,
所述第三透镜的像侧面的最大有效半径DT32与所述第一透镜的像侧面的最大有效半径DT12满足0.8<DT32/DT12<1.3。
CN202010174077.6A 2018-12-13 2018-12-13 光学成像镜头 Active CN111221110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010174077.6A CN111221110B (zh) 2018-12-13 2018-12-13 光学成像镜头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811524044.9A CN109343204B (zh) 2018-12-13 2018-12-13 光学成像镜头
CN202010174077.6A CN111221110B (zh) 2018-12-13 2018-12-13 光学成像镜头

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201811524044.9A Division CN109343204B (zh) 2018-12-13 2018-12-13 光学成像镜头

Publications (2)

Publication Number Publication Date
CN111221110A true CN111221110A (zh) 2020-06-02
CN111221110B CN111221110B (zh) 2022-01-07

Family

ID=65304098

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202010174077.6A Active CN111221110B (zh) 2018-12-13 2018-12-13 光学成像镜头
CN202010181722.7A Active CN111239978B (zh) 2018-12-13 2018-12-13 光学成像镜头
CN201811524044.9A Active CN109343204B (zh) 2018-12-13 2018-12-13 光学成像镜头

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202010181722.7A Active CN111239978B (zh) 2018-12-13 2018-12-13 光学成像镜头
CN201811524044.9A Active CN109343204B (zh) 2018-12-13 2018-12-13 光学成像镜头

Country Status (3)

Country Link
US (1) US11927727B2 (zh)
CN (3) CN111221110B (zh)
WO (1) WO2020119146A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111221110B (zh) * 2018-12-13 2022-01-07 浙江舜宇光学有限公司 光学成像镜头
KR20200127484A (ko) * 2019-05-02 2020-11-11 삼성전기주식회사 촬상 광학계
CN110398824B (zh) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110231703B (zh) 2019-08-06 2019-11-12 瑞声光电科技(常州)有限公司 摄像光学镜头
CN110471171B (zh) * 2019-09-02 2024-06-04 浙江舜宇光学有限公司 光学成像镜头
TWI696860B (zh) * 2019-09-06 2020-06-21 大立光電股份有限公司 攝影用光學鏡頭、取像裝置及電子裝置
CN111399196B (zh) * 2020-06-08 2020-08-25 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111929873B (zh) * 2020-09-21 2020-12-15 瑞泰光学(常州)有限公司 摄像光学镜头
CN111929871B (zh) * 2020-09-21 2020-12-18 常州市瑞泰光电有限公司 摄像光学镜头
CN113433652B (zh) * 2021-06-02 2023-09-05 江西晶超光学有限公司 光学***、镜头模组和电子设备
CN114265180B (zh) * 2022-01-04 2023-10-13 浙江舜宇光学有限公司 光学成像镜头
CN114280761B (zh) * 2022-01-04 2023-09-26 浙江舜宇光学有限公司 光学成像镜头
CN114167589B (zh) * 2022-01-21 2024-05-10 浙江舜宇光学有限公司 成像镜片组
CN114415337A (zh) * 2022-01-27 2022-04-29 浙江舜宇光学有限公司 光学成像镜头
CN114594571A (zh) * 2022-03-09 2022-06-07 浙江舜宇光学有限公司 摄像镜头
CN114647063B (zh) * 2022-03-29 2023-09-22 浙江舜宇光学有限公司 成像镜片组

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202067015U (zh) * 2011-03-25 2011-12-07 大立光电股份有限公司 摄影用光学镜头组
CN202217102U (zh) * 2011-06-28 2012-05-09 大立光电股份有限公司 光学影像拾取镜片组
CN203759347U (zh) * 2014-03-23 2014-08-06 浙江舜宇光学有限公司 摄像镜头及其模组和终端
CN104932084A (zh) * 2014-03-21 2015-09-23 大立光电股份有限公司 光学影像镜组、取像装置及可携装置
CN105607229A (zh) * 2015-12-31 2016-05-25 浙江舜宇光学有限公司 摄像镜头
CN106802468A (zh) * 2016-12-14 2017-06-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107132638A (zh) * 2016-02-26 2017-09-05 大立光电股份有限公司 光学影像镜片组、取像装置及电子装置
CN107817573A (zh) * 2016-09-12 2018-03-20 大立光电股份有限公司 成像光学镜片***、取像装置及电子装置
CN107817574A (zh) * 2016-09-12 2018-03-20 大立光电股份有限公司 影像撷取***镜组、取像装置及电子装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292800A (ja) * 2007-05-25 2008-12-04 Topcon Corp アナモルフィックレンズ、撮像装置及び監視装置
TWI432823B (zh) * 2011-06-10 2014-04-01 Largan Precision Co Ltd 影像拾取透鏡組
TWI432772B (zh) * 2011-06-10 2014-04-01 Largan Precision Co Ltd 光學影像擷取透鏡組
TWI437258B (zh) * 2011-08-05 2014-05-11 Largan Precision Co Ltd 拾像光學鏡組
TWI438475B (zh) * 2011-09-15 2014-05-21 Largan Precision Co Ltd 光學影像拾取鏡組
TWI438480B (zh) * 2012-03-09 2014-05-21 Largan Precision Co Ltd 光學影像系統組
TWI570467B (zh) * 2012-07-06 2017-02-11 大立光電股份有限公司 光學影像拾取系統組
TWI438521B (zh) * 2012-10-02 2014-05-21 Largan Precision Co Ltd 影像系統鏡頭組
TWI448725B (zh) * 2012-10-22 2014-08-11 Largan Precision Co Ltd 影像擷取光學鏡片系統
JP6394598B2 (ja) * 2013-07-12 2018-09-26 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
TWI484215B (zh) * 2013-09-30 2015-05-11 Largan Precision Co Ltd 光學結像鏡片系統、取像裝置及可攜裝置
TWI467219B (zh) * 2013-11-29 2015-01-01 Largan Precision Co Ltd 攝像透鏡組、取像裝置及可攜式裝置
CN104122651B (zh) * 2014-03-06 2017-04-12 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
JP2016114633A (ja) * 2014-12-11 2016-06-23 ソニー株式会社 撮像レンズおよび撮像装置
CN105445915B (zh) * 2015-12-31 2017-08-11 浙江舜宇光学有限公司 摄像镜头
TWI612324B (zh) * 2016-08-09 2018-01-21 大立光電股份有限公司 影像透鏡組、取像裝置及電子裝置
CN106772931B (zh) * 2016-11-02 2019-05-03 玉晶光电(厦门)有限公司 光学镜片组
CN107153257B (zh) * 2017-05-15 2022-09-06 浙江舜宇光学有限公司 光学成像***
WO2019024490A1 (zh) * 2017-07-31 2019-02-07 浙江舜宇光学有限公司 光学成像镜头
CN107367872A (zh) 2017-08-30 2017-11-21 深圳市华星光电技术有限公司 液晶母基板及其垂直配向固化的方法
CN107436477B (zh) * 2017-09-07 2022-10-28 浙江舜宇光学有限公司 光学成像镜头
CN107367827B (zh) * 2017-09-13 2019-10-18 浙江舜宇光学有限公司 光学成像镜头
CN107643586B (zh) * 2017-11-10 2023-06-16 浙江舜宇光学有限公司 摄像透镜组
JP6374082B1 (ja) * 2017-11-18 2018-08-15 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学レンズ
KR102000009B1 (ko) * 2017-11-20 2019-07-15 삼성전기주식회사 촬상 광학계
CN114137695B (zh) * 2017-11-22 2023-12-22 浙江舜宇光学有限公司 光学成像镜头
CN116679423A (zh) * 2018-10-08 2023-09-01 浙江舜宇光学有限公司 光学成像镜片组
CN209297015U (zh) * 2018-12-13 2019-08-23 浙江舜宇光学有限公司 光学成像镜头
CN111221110B (zh) * 2018-12-13 2022-01-07 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202067015U (zh) * 2011-03-25 2011-12-07 大立光电股份有限公司 摄影用光学镜头组
CN202217102U (zh) * 2011-06-28 2012-05-09 大立光电股份有限公司 光学影像拾取镜片组
CN104932084A (zh) * 2014-03-21 2015-09-23 大立光电股份有限公司 光学影像镜组、取像装置及可携装置
CN203759347U (zh) * 2014-03-23 2014-08-06 浙江舜宇光学有限公司 摄像镜头及其模组和终端
CN105607229A (zh) * 2015-12-31 2016-05-25 浙江舜宇光学有限公司 摄像镜头
CN107132638A (zh) * 2016-02-26 2017-09-05 大立光电股份有限公司 光学影像镜片组、取像装置及电子装置
CN107817573A (zh) * 2016-09-12 2018-03-20 大立光电股份有限公司 成像光学镜片***、取像装置及电子装置
CN107817574A (zh) * 2016-09-12 2018-03-20 大立光电股份有限公司 影像撷取***镜组、取像装置及电子装置
CN106802468A (zh) * 2016-12-14 2017-06-06 瑞声科技(新加坡)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
CN109343204A (zh) 2019-02-15
CN111239978A (zh) 2020-06-05
CN111221110B (zh) 2022-01-07
CN109343204B (zh) 2024-05-28
CN111239978B (zh) 2022-03-29
US20210003828A1 (en) 2021-01-07
WO2020119146A1 (zh) 2020-06-18
US11927727B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
CN111221110B (zh) 光学成像镜头
CN110346897B (zh) 光学成像镜头
CN113296244B (zh) 适用于便携式电子产品的摄像光学***
CN107219613B (zh) 光学成像镜头
CN107843977B (zh) 光学成像镜头
CN108873256B (zh) 光学成像***
CN113341544B (zh) 光学成像***
CN107490841B (zh) 摄像透镜组
CN113484977A (zh) 光学成像***
CN108761737B (zh) 光学成像***
CN113917667A (zh) 摄像镜头
CN109799598B (zh) 光学成像镜头
CN110018556B (zh) 光学成像镜头
CN114047607A (zh) 光学成像镜头
CN108663780B (zh) 光学成像镜头
CN109298514B (zh) 光学成像镜头组
CN111458838A (zh) 光学透镜组
CN113433668B (zh) 光学成像***
CN111208623A (zh) 光学成像镜头
CN112230394A (zh) 光学成像镜头
CN111413787A (zh) 光学成像镜头
CN112748553B (zh) 光学成像镜头
CN111352210A (zh) 成像镜头
CN211698379U (zh) 光学成像镜头
CN210572974U (zh) 光学成像***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant