CN111215095A - Metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material and preparation method thereof - Google Patents

Metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material and preparation method thereof Download PDF

Info

Publication number
CN111215095A
CN111215095A CN201811412978.3A CN201811412978A CN111215095A CN 111215095 A CN111215095 A CN 111215095A CN 201811412978 A CN201811412978 A CN 201811412978A CN 111215095 A CN111215095 A CN 111215095A
Authority
CN
China
Prior art keywords
sulfide
metallic compound
photocatalytic material
oxide
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811412978.3A
Other languages
Chinese (zh)
Other versions
CN111215095B (en
Inventor
刘岗
朱华泽
杨勇强
康向东
杨志卿
叶恒强
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201811412978.3A priority Critical patent/CN111215095B/en
Publication of CN111215095A publication Critical patent/CN111215095A/en
Application granted granted Critical
Publication of CN111215095B publication Critical patent/CN111215095B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to the field of material preparation and photocatalysis, in particular to a three-phase heterojunction photocatalytic material synchronously constructed by metallic compounds, oxides and sulfides and a preparation method thereof. Metallic compounds are respectively used as a precursor and a growth substrate, metal oxides are generated on the surface of the metallic compounds through in-situ hydrolysis, and sulfide precursors grow on the surface of the metallic compounds in situ, so that the three-phase heterojunction photocatalytic material with the Z mechanism is constructed through synchronous growth. The preparation method provided by the invention constructs a three-phase heterojunction structure through synchronous in-situ growth, reduces high Schottky barrier caused by insufficient interface contact and large structural and component differences caused by a conventional multi-step preparation method, remarkably promotes effective separation and transmission capability of photo-generated charges, and greatly improves the photocatalytic hydrogen production performance of the photocatalytic material. The preparation method has the advantages of simple process, universality and high yield, and has application potential in the field of photocatalytic hydrogen production.

Description

Metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material and preparation method thereof
Technical Field
The invention relates to the field of material preparation and photocatalysis, in particular to a three-phase heterojunction photocatalytic material synchronously constructed by metallic compounds, oxides and sulfides and a preparation method thereof.
Background
With the increasing global environmental pressure, it is imperative to find an alternative, clean and pollution-free energy source. Solar energy is increasingly favored by people because of its huge storage capacity, cleanness, and no pollution. Among various ways of utilizing solar energy, the development of highly efficient photocatalytic materials for converting solar energy into chemical energy is considered to be one of the best ways of efficiently utilizing solar energy. The efficiency of the photocatalytic material mainly depends on three key steps of light absorption, separation and transmission of photogenerated carriers and photocatalytic reaction on the surface of the material. However, it is difficult for a single photocatalytic material to satisfy the above three conditions simultaneously, so that the practical application potential of the photocatalytic material is limited, and especially, the difficulty in efficient spatial separation and transmission of photogenerated electrons and holes is a major limiting factor. Besides the addition of noble metal promoter to promote effective charge separation, the construction of composite photocatalytic materials is another modification strategy which is most commonly used, and particularly, the composite photocatalytic materials developed in recent years by the construction of Z-mechanism type are particularly concerned.
Composite photocatalytic materials are typically constructed by separately synthesizing the individual photocatalytic materials and then mixing them together by grinding or wet chemical methods to form the composite photocatalytic material. Due to the interface difference between different photocatalytic materials and the difficulty in close contact, a higher Schottky barrier exists between the interfaces, which is not favorable for the separation and transmission of photon-generated carriers. Therefore, it is very important to develop a new method for preparing the high-efficiency composite photocatalytic material.
Cadmium sulfide (CdS) semiconductor photocatalysts are receiving wide attention due to their broad-spectrum light absorption capability and suitable decomposition of hydrogen production band edge positions, but their space charge separation and transport capability are poor, resulting in actual photocatalytic performance far below the expected level. The Z mechanism type heterostructure is constructed by compounding with other photocatalysts and is an effective modification means. However, the composite photocatalyst prepared by compounding CdS with other photocatalysts by adopting a conventional mixing method is often limited by a high schottky barrier between interfaces, and the effectiveness of the Z-mechanism composite photocatalyst is difficult to effectively exert. Therefore, how to construct a Z mechanism type heterojunction interface structure with close contact between interfaces and low mismatching degree becomes a key for effectively improving the CdS composite photocatalytic material.
Disclosure of Invention
The invention aims to provide a three-phase heterojunction photocatalytic material for synthesizing a metallic compound/oxide/sulfide by a synchronous in-situ hydrothermal method and a preparation method thereof, and solves the defect that heterojunction interfaces are not favorable for charge separation and transmission in the existing preparation method.
The technical scheme of the invention is as follows:
a metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material, which is prepared from a metallic compound and, on the surface of the metallic compound: the metal oxide in-situ growth metallic compound and sulfide three-phase synchronous growth sulfide precursor are combined, and the mass ratio of the metallic compound to the sulfide is 1: 0.1-1: 0.6.
the metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material directly generates a metal oxide with smaller particles and a sulfide with larger particles on the surface of the metallic compound, and the metal oxide and the sulfide are in good interface matching and sufficient interface contact with electronic media of the metallic compound to form a perfect three-phase Z-shaped heterojunction; wherein the particle size range of the metallic compound is 3-9 μm, the particle size range of the metal oxide is 20-70 nm, and the particle size range of the sulfide is 100-500 nm.
The metallic compound is one of transition metal boride and transition metal nitride; the metal oxide is a metal oxide correspondingly generated by the metallic compound; the sulfide is cadmium sulfide.
The transition metal boride is FeB2、NiBx、TiB2、TaB2、WB2(ii) a The transition metal nitride is TiN.
The preparation method of the metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material adopts a reaction kettle hydrothermal synthesis method, firstly deionized water is added into a polytetrafluoroethylene inner container, then the metallic compound and a sulfide precursor are put into the polytetrafluoroethylene inner container water according to a proportion, and stirring and dissolving are carried out, wherein the mass ratio of the metallic compound to the corresponding sulfide is 1: 0.1-1: and 0.6, finally, placing the inner container of the reaction kettle filled with the raw materials in a stainless steel outer sleeve for sealing, placing the inner container in a constant-temperature oven for heat preservation, collecting a product in the reaction kettle, and obtaining the sample after centrifugal washing and drying.
According to the preparation method of the metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material, the heating temperature range of a constant-temperature oven is 160-220 ℃, and the heat preservation time is 4-10 hours.
The design idea of the invention is as follows:
the invention takes metallic compounds as a precursor and a growth matrix respectively, metal oxides are generated on the surface of the metallic compounds through in-situ hydrolysis, sulfide precursors grow in situ on the surface of the metallic compounds, and a three-phase heterojunction photocatalytic material with a Z mechanism is constructed between the oxide and sulfide semiconductor photocatalytic materials which grow synchronously in situ and the metallic compounds as electronic media. The preparation method provided by the invention constructs a three-phase heterojunction structure through synchronous in-situ growth, reduces high Schottky barrier caused by insufficient interface contact and large structural and component differences caused by a conventional multi-step preparation method, remarkably promotes effective separation and transmission capability of photo-generated charges, and greatly improves the photocatalytic hydrogen production performance of the photocatalytic material. The Z mechanism is that two semiconductor photocatalytic materials with staggered energy bands are utilized, low-energy holes and electrons are promoted to be compounded by optimizing an interface or introducing an electron medium, and high-energy electrons and holes are reserved on the two semiconductors respectively, so that the reduction and oxidation capabilities of the photocatalytic reaction of the composite photocatalytic material are promoted.
The invention has the advantages and beneficial effects that:
1. the invention adopts a synchronous in-situ hydrothermal growth method, and synchronously grows metal oxides and sulfides on the surface of a metallic compound in situ to construct a Z mechanism type heterojunction photocatalytic system.
2. The invention adopts metallic compounds as raw materials of the growing metal oxide photocatalyst and charge transmission media in a Z mechanism, reduces the difference of the structure and the components between interfaces and obviously improves the charge transmission capability between the interfaces.
3. The invention can synchronously regulate and control the generation amount and the particle size of the generated metal oxide and sulfide by changing the proportion of the metallic compound and the sulfide.
4. The one-step hydrothermal method provided by the invention is simple and convenient to operate, easy to prepare, universal, high in yield and quite potential in the field of photocatalytic hydrogen production.
Drawings
FIG. 1: TiB prepared by the method provided by the invention2@TiO2X-ray diffraction patterns of/CdS three-phase heterojunction samples. For comparison, TiB is added to the figure2X-ray diffraction patterns of the starting material and separately synthesized CdS samples. In the figure, the abscissa 2Theta represents the diffraction angle 2 θ (°), and the ordinate Intensity represents the relative Intensity (a.u ℃).
FIG. 2: the TiB prepared by the preparation method provided by the invention2@TiO2And a cross section scanning electron microscope microscopic image and an energy spectrum element diagram of the/30% CdS three-phase heterojunction sample. The device comprises a base, a first detector, a second detector, a third detector, a fourth detector, a fifth detector, a sixth detector, a fourth detector and a fifth detector, wherein (a) a section topography, (.
FIG. 3: the TiB prepared by the preparation method provided by the invention2@TiO2CdS and TiO on surface of/40% CdS three-phase heterojunction sample2High resolution transmission electron microscope phase and lattice fringe pattern. Wherein (a)The low-power morphology image, (b) the two-dimensional lattice fringe image of the edge of a large particle, and (c) the two-dimensional lattice fringe image of a small particle.
FIG. 4: the different TiB prepared by the preparation method provided by the invention2@TiO2And comparing the hydrogen performances of the water decomposed by visible light of the/CdS three-phase heterojunction sample. The amount of the test sample was 50mg and the illumination wavelength was lambda>420 nm. In the figure, the abscissa Time is the light irradiation Time (h), and the ordinate represents the hydrogen production (. mu.mol).
FIG. 5: the different TiB prepared by the preparation method provided by the invention2@TiO2Scanning electron micrographs of/CdS three-phase heterojunction samples. FIG. (a) is TiB2Raw materials, the quality of CdS in the graphs (b) to (f) is TiB210%, 20%, 30%, 40%, 50%.
Detailed Description
In the specific implementation process, the metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material consists of a metallic compound, a metal oxide generated by in-situ hydrolysis and oxidation on the surface of the metallic compound and cadmium sulfide generated by a sulfide precursor synchronously, and the Z-structured heterojunction composite photocatalytic material is constructed by synchronously synthesizing the metal oxide and the sulfide on the surface of the metallic compound in situ by a one-step hydrothermal method, wherein the mass ratio of the metallic compound to the sulfide is 1: 0.1-1: 0.6.
the preparation method of the metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material comprises the following specific preparation processes: adding a certain amount of deionized water into the inner container of the polytetrafluoroethylene reaction kettle; putting a metallic compound and a precursor raw material for synthesizing sulfide into polytetrafluoroethylene reaction kettle liner water according to a proportion, stirring and dissolving, wherein the mass ratio of the metallic compound to the corresponding sulfide is 1: 0.1-1: 0.6 (the amount of the precursor raw material to be added is calculated according to the amount of the theoretically synthesized sulfide); placing the inner container of the reaction kettle filled with the raw materials in a stainless steel outer sleeve, sealing, and then placing in a constant-temperature oven which is preheated to a set temperature for heat preservation for a certain time, wherein the heating temperature range of the constant-temperature oven is 160-220 ℃, and the heat preservation time is 4-10 hours; and finally, after the reaction kettle is cooled, collecting a sample in the inner container of the reaction kettle, and centrifugally washing and drying to obtain the sample.
Wherein the metallic compound is transition metal boride FeB2、NiBx、TiB2、TaB2、WB2And transition metal nitride TiN. The precursor raw materials for synthesizing cadmium sulfide are not particularly limited, but thiourea and cadmium nitrate are preferred, and the precursor raw materials are easily available and low in price.
The present invention will be explained in further detail below by way of examples and figures.
Example 1
This example mainly uses TiB2@TiO2The example of CdS is to show the superiority of the sample prepared by the synchronous in-situ hydrothermal method in promoting the interface structure to improve the photocatalytic hydrogen production performance of the heterojunction composite photocatalytic material.
The raw materials are as follows: commercially available cadmium nitrate, thiourea and TiB2Firstly, TiB2Placing the mixture in deionized water for ultrasonic dispersion and then standing to obtain TiB with uniform particle size2Micron particles. 40ml of deionized water and 300mg of screened TiB are added into a polytetrafluoroethylene liner of a reaction kettle with the volume of 100ml2After the dispersion was stirred, 192mg of Cd (NO) was added3)2And 48mg thiourea (mass of corresponding CdS TiB 230% of) and stirred well until dissolution is complete. Sealing the polytetrafluoroethylene inner container into a stainless steel jacket, placing the reaction kettle into an oven preheated to 180 ℃ for heat preservation for 5 hours, naturally cooling to room temperature, collecting a sample in the inner container, centrifuging, washing and drying to obtain the sample.
X-ray test equipment and conditions: rigaku D/max 2500, Cu KaAnd (4) rays. CdS samples, TiB, synthesized separately, as shown in FIG. 12Raw Material and TiB2@TiO2X-ray diffraction patterns of the/30% CdS samples, as confirmed from the figure, except for TiB2In addition to the raw materials, hexagonal CdS phase and anatase phase TiO are generated2It shows that the synchronous hydrothermal method provided by the invention is adopted in TiB2Synchronously growing TiO on the surface2And CdS samples.
Morphology characterization equipment and conditions: scanning electron microscope, FEI Nova620, operating at 10 KV. As shown in FIG. 2, TiB2@TiO2The sectional profile of the/30% CdS sample ultrathin section is combined with the profile and the energy spectrum element diagram, so that the section can be clearly distinguished in TiB2Surface generation of small particles of TiO2And larger granular CdS to form a complete three-phase heterojunction.
Structure characterization equipment and conditions: transmission electron microscope, FEI F20, operating at 200 KV. As shown in FIG. 3, TiB was prepared2@TiO2High resolution morphology and lattice fringe pattern of the/30% CdS sample. The image (a) is a macroscopic image showing that a large number of large particles having a significantly higher contrast than the surrounding small particles are attached to the surface, and the diameter of the large particles is about 300 nm. Graph (b) shows the two-dimensional lattice fringe pattern at the edge of a large particle with a pitch of
Figure BDA0001877265810000051
Can be identified as the (111) and (-121) crystal planes of hexagonal phase CdS. Image (c) is a two-dimensional lattice fringe image of small particles, approximately 40nm in size and spaced apart
Figure BDA0001877265810000052
Corresponding to anatase TiO2{110} crystal plane. The transmission results again demonstrate TiB2@TiO2The large particles on the surface of the/CdS three-phase heterojunction are hexagonal CdS and the small particles are anatase TiO2And it can be seen that a good interface structure is formed between the three phases. The phase, structure and interface observation results are combined to obtain that the sample prepared by the synchronous in-situ growth method provided by the invention forms the composite photocatalytic material with a three-phase heterojunction interface structure with a good interface structure.
The photocatalytic decomposition of water hydrogen test conditions: when the experiment of hydrogen production by photocatalytic water decomposition is carried out, the prepared TiB is weighed2@TiO250 mg/30% CdS sample was added to a reaction solution containing 100ml deionized water, and 3.65g Na was added2S·9H2O、1.89gNa2SO3Is a hole sacrificial agent and 500ul H2PtCl6As a precursor for obtaining the Pt promoter; the light source is Xe lamp with light wavelength of lambda>420nm, product H2Quantitative detection is carried out by the Shimadzu 2014C gas chromatography, and a capillary column and a TCD thermal conductivity cell detector are adopted. The photocatalytic hydrogen production rate of the samples is shown in FIG. 4, and CdS and TiB are given simultaneously for comparison2The photocatalytic hydrogen production rate. As is evident from the comparison of hydrogen production performance, TiB is not considered2@TiO2Under the condition of the absolute content of CdS in a/CdS three-phase heterojunction, the photocatalytic activity of the CdS/CdS three-phase heterojunction can be improved by about 15 times compared with that of pure CdS; if the content of CdS in the three-phase heterojunction is considered, the performance is improved by 2-3 orders of magnitude, and the improvement range is far larger than the improvement degree of a sample prepared by adopting a conventional method in a literature report. These performance results show that: TiB prepared by the method provided by the invention2@TiO2The CdS three-phase heterojunction composite photocatalyst greatly improves the hydrogen production performance of CdS by decomposing water with visible light.
Example 2
The difference from example 1 is that Cd (NO) is obtained by changing the sulfide precursor3)2The amount of the synthesized cadmium sulfide is changed by the amount of thiourea, and the TiB can be synchronously changed2Number of CdS particles on surface and TiO2The size of the hydrogen production catalyst can be adjusted and regulated.
The difference from example 1 is that Cd (NO) is added3)2Molar ratio of Cd (NO) to thiourea of 1:13)2The mass is 64mg, 128mg, 192mg, 256mg and 320mg in turn; the corresponding thiourea masses were, in order, 15.8mg, 31.6mg, 47.4mg, 63.2mg, 79 mg. Further, the mass of the corresponding CdS is TiB210%, 20%, 30%, 40%, 50%.
As shown in fig. 5, TiB2And the samples with different CdS contents obtained by the method. FIG. (a) is TiB2Raw materials, the quality of CdS in the graphs (b) to (f) is TiB210%, 20%, 30%, 40%, 50% of the samples. It is clear from the graphs (b) to (f) that Cd (NO) is accompanied by Cd3)2And increasing the amount of thiourea added, TiB2The generation amount of CdS on the surface is increased, and the CdS is generatedAlso increases the particle size of, at the same time, TiB2Surface TiO2The size of the particles is simultaneously gradually increased. This shows that by varying the amount of CdS precursor, in situ growth of TiO on the surface can be achieved2And the quantity and the size of the CdS are synchronously regulated and controlled.
TiB of different CdS content, as shown in FIG. 42@TiO2Comparison graph of photocatalytic hydrogen production performance of/CdS sample. As can be seen from the figure, the photocatalytic hydrogen production rate is increased and then reduced along with the gradual increase of the CdS content, and when the CdS content is TiB2The best hydrogen production performance is achieved when the mass is 30% and 40%, and the comprehensive effect results mainly come from the three-phase interface, the photocatalyst amount and the particle size.
The results of the examples show that the invention provides for the preparation of TiB2@TiO2The one-step hydrothermal method of the CdS three-phase heterojunction composite photocatalyst can remarkably promote the interface quality of a heterojunction, promote the effective separation and transmission of photo-generated charges and remarkably improve the photocatalytic hydrogen production performance of a composite system.

Claims (6)

1. A metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material is characterized in that the photocatalytic material is prepared from a metallic compound and a metal oxide/sulfide three-phase heterojunction photocatalytic material, wherein the surface of the metallic compound is: the metal oxide in-situ growth metallic compound and sulfide three-phase synchronous growth sulfide precursor are combined, and the mass ratio of the metallic compound to the sulfide is 1: 0.1-1: 0.6.
2. the metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material as recited in claim 1, wherein a smaller-particle metal oxide and a larger-particle sulfide are directly formed on the surface of the metallic compound, and both the metal oxide and the sulfide have good interface matching and sufficient interface contact with the electronic medium of the metallic compound to form a perfect three-phase Z-type heterojunction; wherein the particle size range of the metallic compound is 3-9 μm, the particle size range of the metal oxide is 20-70 nm, and the particle size range of the sulfide is 100-500 nm.
3. A metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material as claimed in claim 1, wherein the metallic compound is one of a transition metal boride and a transition metal nitride; the metal oxide is a metal oxide correspondingly generated by the metallic compound; the sulfide is cadmium sulfide.
4. A metallic compound/oxide/sulphide triple-phase heterojunction photocatalytic material as claimed in claim 3, characterized in that the transition metal boride is FeB2、NiBx、TiB2、TaB2、WB2(ii) a The transition metal nitride is TiN.
5. A preparation method of the metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material as claimed in any one of claims 1 to 4 is characterized in that a reaction kettle hydrothermal synthesis method is adopted, firstly deionized water is added into a polytetrafluoroethylene inner container, then the metallic compound and a sulfide precursor are put into the polytetrafluoroethylene inner container water according to a proportion, and stirring and dissolving are carried out, wherein the mass ratio of the metallic compound to the corresponding sulfide is 1: 0.1-1: and 0.6, finally, placing the inner container of the reaction kettle filled with the raw materials in a stainless steel outer sleeve for sealing, placing the inner container in a constant-temperature oven for heat preservation, collecting a product in the reaction kettle, and obtaining the sample after centrifugal washing and drying.
6. The preparation method of the metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material as claimed in claim 5, wherein the heating temperature of the constant temperature oven is 160-220 ℃, and the heat preservation time is 4-10 hours.
CN201811412978.3A 2018-11-23 2018-11-23 Metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material and preparation method thereof Active CN111215095B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811412978.3A CN111215095B (en) 2018-11-23 2018-11-23 Metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811412978.3A CN111215095B (en) 2018-11-23 2018-11-23 Metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN111215095A true CN111215095A (en) 2020-06-02
CN111215095B CN111215095B (en) 2023-01-13

Family

ID=70832185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811412978.3A Active CN111215095B (en) 2018-11-23 2018-11-23 Metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN111215095B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113289664A (en) * 2021-06-23 2021-08-24 淮北师范大学 Schottky junction Sn/Cd3(C3N3S3)2Photocatalyst and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224036A (en) * 2005-02-18 2006-08-31 Hokkaido Univ Photocatalyst and method of photocatalytic reaction
CN101204652A (en) * 2007-12-19 2008-06-25 中国科学院上海硅酸盐研究所 High efficiency semiconductor photocatalysis and preparation method thereof
CN102343260A (en) * 2011-06-28 2012-02-08 中国科学院金属研究所 Method for preparing boron-doped titanium dioxide crystal containing specific crystal plane
CN104307536A (en) * 2014-10-22 2015-01-28 上海大学 Ternary Z-type visible light water-photocatalytic hydrogen making catalyst and preparation method
WO2016104072A1 (en) * 2014-12-26 2016-06-30 シャープ株式会社 Visible light-responsive photocatalyst
CN107649150A (en) * 2017-09-28 2018-02-02 福州大学 A kind of preparation method and applications of the Cd/CdS hetero-junctions visible light catalysts rich in sulphur room
CN108067267A (en) * 2017-12-19 2018-05-25 中国计量大学 A kind of visible light-responded cadmium telluride/titanium dioxide Z-type photochemical catalyst and its preparation method and application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224036A (en) * 2005-02-18 2006-08-31 Hokkaido Univ Photocatalyst and method of photocatalytic reaction
CN101204652A (en) * 2007-12-19 2008-06-25 中国科学院上海硅酸盐研究所 High efficiency semiconductor photocatalysis and preparation method thereof
CN102343260A (en) * 2011-06-28 2012-02-08 中国科学院金属研究所 Method for preparing boron-doped titanium dioxide crystal containing specific crystal plane
CN104307536A (en) * 2014-10-22 2015-01-28 上海大学 Ternary Z-type visible light water-photocatalytic hydrogen making catalyst and preparation method
WO2016104072A1 (en) * 2014-12-26 2016-06-30 シャープ株式会社 Visible light-responsive photocatalyst
CN107649150A (en) * 2017-09-28 2018-02-02 福州大学 A kind of preparation method and applications of the Cd/CdS hetero-junctions visible light catalysts rich in sulphur room
CN108067267A (en) * 2017-12-19 2018-05-25 中国计量大学 A kind of visible light-responded cadmium telluride/titanium dioxide Z-type photochemical catalyst and its preparation method and application

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AIYUN MENG ET AL.: ""Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity"", 《APPLIED SURFACE SCIENCE》 *
FEI HUANG ET AL.: ""Effect of hydrogen peroxide on TiB2-based materials"", 《ADVANCED MATERIALS RESEARCH》 *
QINGCUI MA ET AL.: ""Strategic modulation of electron migration in the TiO2-Au-CdS: Z-scheme design for the enhancement in hydrogen evolution reaction"", 《ELECTROCHEMISTRY COMMUNICATIONS》 *
YONGQIANG YANG ET AL.: ""Homogeneous boron doping in a TiO2 shell supported on a TiB2 core for enhanced photocatalytic water oxidation"", 《CHINESE JOURNAL OF CATALYSIS》 *
ZHAO ZHAO ET AL.: ""Constructing CdS/Cd/doped TiO2 Z-scheme type"", 《SCIENCE CHINA MATERIALS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113289664A (en) * 2021-06-23 2021-08-24 淮北师范大学 Schottky junction Sn/Cd3(C3N3S3)2Photocatalyst and preparation method and application thereof
CN113289664B (en) * 2021-06-23 2022-03-11 淮北师范大学 Schottky junction Sn/Cd3(C3N3S3)2Photocatalyst and preparation method and application thereof

Also Published As

Publication number Publication date
CN111215095B (en) 2023-01-13

Similar Documents

Publication Publication Date Title
CN109589991B (en) Zinc indium sulfide/copper indium sulfide two-dimensional heterojunction photocatalyst, and preparation method and application thereof
Chen et al. Enhancement of photocatalytic H2 evolution on ZnIn2S4 loaded with in-situ photo-deposited MoS2 under visible light irradiation
Wang et al. MoS 2/CQDs obtained by photoreduction for assembly of a ternary MoS 2/CQDs/ZnIn 2 S 4 nanocomposite for efficient photocatalytic hydrogen evolution under visible light
Mao et al. Pt-loading reverses the photocatalytic activity order of anatase TiO2 {0 0 1} and {0 1 0} facets for photoreduction of CO2 to CH4
Chen et al. Ball-milling combined calcination synthesis of MoS2/CdS photocatalysts for high photocatalytic H2 evolution activity under visible light irradiation
Zhang et al. Significantly improved photocatalytic hydrogen production activity over Cd1-xZnxS photocatalysts prepared by a novel thermal sulfuration method
CN110124706B (en) Preparation method of titanium carbide/indium zinc sulfide composite visible-light-driven photocatalyst
Cheng et al. Efficient Photocatalytic Hydrogen Evolution via Band Alignment Tailoring: Controllable Transition from Type‐I to Type‐II
Yue et al. Schottky junction enhanced H2 evolution for graphitic carbon nitride-NiS composite photocatalysts
CN109364933A (en) A kind of copper-bismuth/composite bismuth vanadium photocatalyst preparation and application
Zhang et al. Building {0001} and {101 1} facet heterojunctions on hexagonal pyramid CdS single crystals with high photoactivity and photostability for hydrogen evolution
CN110385146A (en) A kind of Ni0.85Se/PDA/g-C3N4Composite photo-catalyst and its application
Wu et al. One‐pot hydrothermal synthesis and photocatalytic hydrogen evolution of pyrochlore type K2Nb2O6
CN107814408B (en) SnS rich in S vacancy2Preparation method of ultrathin nanosheet
Li et al. Hydrothermal synthesis of zinc indium sulfide microspheres with Ag+ doping for enhanced H 2 production by photocatalytic water splitting under visible light
CN107138169B (en) Two-dimensional sulfide nano-junction hydrogen production photocatalyst, and preparation method and application thereof
CN111151275B (en) MoS 2 /Mo 2 C Complex, MoS 2 /Mo 2 C/CdS composite material and preparation method and application thereof
CN112958096B (en) Preparation method and application of flower-ball-shaped nickel-aluminum hydrotalcite/titanium dioxide in-situ growth in sheet-shaped tri-titanium carbide composite photocatalyst
CN111215095B (en) Metallic compound/oxide/sulfide three-phase heterojunction photocatalytic material and preparation method thereof
CN110627116A (en) Hydrogen-doped TiO (titanium dioxide)2Phase-change nano material and application thereof
CN115709086A (en) Purple phosphorus-based photocatalytic material and preparation method and application thereof
CN114452990A (en) Method for preparing transition metal carbide and composite catalyst
Ding et al. Construction of two-dimensional zinc indium sulfide/bismuth titanate nanoplate with S-scheme heterojunction for enhanced photocatalytic hydrogen evolution
CN111659422A (en) Molybdenum diselenide/redox graphene compound with metal structure and preparation method of copper-doped compound powder thereof
CN115501892B (en) Tubular In 2 O 3 CdSe composite photocatalytic material and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant