CN111208507A - 一种基于Doppler传感网络的室内移动目标定位方法 - Google Patents

一种基于Doppler传感网络的室内移动目标定位方法 Download PDF

Info

Publication number
CN111208507A
CN111208507A CN202010027356.XA CN202010027356A CN111208507A CN 111208507 A CN111208507 A CN 111208507A CN 202010027356 A CN202010027356 A CN 202010027356A CN 111208507 A CN111208507 A CN 111208507A
Authority
CN
China
Prior art keywords
wireless
doppler
radar network
moving target
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010027356.XA
Other languages
English (en)
Other versions
CN111208507B (zh
Inventor
朱铖凯
冉立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010027356.XA priority Critical patent/CN111208507B/zh
Publication of CN111208507A publication Critical patent/CN111208507A/zh
Application granted granted Critical
Publication of CN111208507B publication Critical patent/CN111208507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于Doppler传感网络的室内移动目标定位方法。包括多个无线雷达网络节点和主控节点,每个无线雷达网络节点包括基准时钟和Doppler雷达传感器,但之间没有建立时钟同步关系,由多个无线雷达网络节点的Doppler雷达传感器和主控节点组成无线链路;无线雷达网络节点探测得运动目标的多普勒信息,主控节点以时分复用的轮询方式通过无线链路读取各个无线雷达网络节点获取的多普勒信息,并融合得到运动目标在室内多径环境中的位置和位移信息。本发明具有多节点连接、低功耗传输、工作在多径室内环境,可以灵活配置传感器位置和数量、实现不同维度、不同移动目标的定位追踪的特点,具有很好的应用前景。

Description

一种基于Doppler传感网络的室内移动目标定位方法
技术领域
本发明属于雷达传感领域,涉及雷达原理、信号处理、天线设计的一种室内移动目标定位方法,尤其是涉及了一种基于Doppler传感网络的室内移动目标定位方法。
背景技术
基于传感器的定位方式,在移动机器人和民用设施等领域越来越受到研究人员的关注。此外,随着定位技术的发展,运营商和制造商已开始将重点放在室内定位上。由于人类在私人和公共室内区域中花费大量时间,因此提供准确的室内定位服务具有重要的现实意义。
尽管取得了一些重大进展,但是无线室内定位仍存在众多技术挑战。其主要原因是室内环境中存在非常复杂的电磁波传播导致有效信号被强烈污染,比如严重的多径反射,以及来自家具、墙壁、地板的静散射信号。到目前为止,实现可以适应不同室内环境的实用无线定位是仍然是一项艰巨的任务。
在众多室内定位的应用中,如对移动目标的探测和定位,比如无线探测生命信号,如人体活动和生命体征。如果通过有源方式实现,大大增加***的复杂度,同时也增加了成本。
发明内容
为了解决背景中提出的问题,本发明提出了一种基于Doppler传感网络的室内移动目标定位方法,采用了多个独立无线雷达网络节点和轮询无线链路实现室内多径条件下移动目标定位和跟踪。
本发明所采用的技术方案是:
本发明采用主要由多个无线雷达网络节点和主控节点组成的室内移动目标定位***,每个无线雷达网络节点是主要由一个独立的基准时钟和一个无线通信链路接口的Doppler雷达传感器组成,多个无线雷达网络节点的Doppler雷达传感器和主控节点具有相同的无线通信链路接口,主控节点和独立的无线雷达网络节点之间没有建立时钟同步关系,由多个无线雷达网络节点的Doppler雷达传感器以及主控节点通过无线通信链路接口连接组成无线链路;运动目标在室内运动过程中,通过各个无线雷达网络节点探测运动目标获得运动目标运动产生的多普勒信息,主控节点以时分复用的轮询方式通过无线链路读取各个无线雷达网络节点获取的多普勒信息,并通过上述多普勒信息的融合得到运动目标在室内多径环境中的位置和位移信息。
在无线链路覆盖范围内,无线雷达网络节点所放置的独立的Doppler雷达传感器数量不受限制。
所述的无线链路采用包括蓝牙、WiFi、NB-IoT、移动通信网等商用***的提供的无线终端实现。
所述的无线雷达网络节点具有一个发射天线和一个接收天线,每个无线雷达网络节点的发射天线发射出信号到运动目标反射后被接收天线接收获得多普勒信息;在运动目标在室内运动过程中,所有无线雷达网络节点的同时工作进行探测获得多普勒信息,各个无线雷达网络节点采用频分复用进行探测。
包括至少五个无线雷达网络节点。
针对无线雷达网络节点内部通过AD转换获得的信号,在满足奈奎斯特采样定理或带通采样定理的条件下,对无线雷达网络节点内部通过AD转换获得的信号采用插值对齐方法进行处理。
在获得多普勒信息后,利用多个无线雷达网络节点的多普勒信息针对运动目标的位置建立目标误差函数,并采用模拟狼群搜索方式的群粒子优化方法进行最小化优化求解,获得最优的运动目标的位置作为运动目标的实际位置。
采用模拟狼群搜索方式的群粒子优化方法优化过程如下:
1、初始化优化步进Step
2、定义初始粒子数量N并得到待优化空间坐标random(xi,yi),i=1,2,...,N
3、定义适应度函数P(xk,yk,Phi1,Phi2,Phi3),其中xk与yk为优化计算的二维空间坐标,Phi1、Phi2与Phi3分别为三个无线雷达网络节点分别获得的多普勒相位信息
4、通过迭代方式,计算N个坐标对应的适度函数值,寻找本次全局最优解,并与历史最优解比较。如本次结果优于历史最优解,则更新待优化坐标xk与yk,位置更新关系为:
Figure BDA0002362945670000021
其中γ是局域搜索因子,Step是优化步进,Dqj是第q个坐标变量的第j维,Dbj是全局最优的第j维,
Figure BDA0002362945670000022
是更新后的第q个坐标变量的第j维
5、若计算全局最优解满足设定最小界限或者迭代次数达到设置最大迭代周期,则停止优化。得到最优化坐标(xbest,ybest)。
所述的无线雷达网络节点包括射频发射模块、射频接收模块、接收天线、发射天线、微处理控制模块和时钟分配模块;基准时钟的输出端经时钟分配模块分别和两个锁相环的输入端连接,其中一个锁相环的输出端依次经带通滤波器、射频发射模块后连接到发射天线,另一个锁相环的输出端连接到正交混频器的一个输入端,正交混频器的另外两个输入端经射频接收模块连接接收天线,正交混频器的两个输出端分别经低通滤波器连接到微处理控制模块MCU。
所述的无线雷达网络节点既适用于单频连续波制式,也适用于线性或非线性调频连续波制式,多通道的发射制式保持一致。
本发明通过利用位于不同空间位置的无线雷达网络节点获取由运动目标产生的多普勒信息,通过在主控节点利用同一采样时钟以轮询方式进行多个无线雷达网络节点的时分复用采样和多通道数据融合处理,实现对室内移动目标的定位和跟踪。
本发明通过构建拓扑网络,将多个性能优越的无线雷达网络节点组成传感网络,并通过无线方式与主控节点通讯,由主控节点控制并接收多通道的采集数据。由于各个无线雷达网络节点***时钟独立,单无线雷达网络节点具有良好的多普勒探测能力,并且单独与主控节点通讯,可以大大提高整个网络***的鲁棒性;为避免多个无线雷达网络节点之间的探测信号干扰,采用频分复用或时分复用的方案,各个无线雷达网络节点均能获得较好信噪比的有效探测信号,去除同频干扰因素。
其中采用时分复用时,为避免无效信号的混杂,各个节点的发射机分时开启,各个节点的模数转换也分时传输。由于不同节点之间切换存在固有的时间延迟,故得到的离散数字信号需要通过数据插值移位算法解决,其详细过程在具体实施方式中说明。
将n个节点采集得到的相位信息
Figure BDA0002362945670000031
通过无线数传方式传输到主控节点,进行信号解调与优化处理,呈现定位结果。
本发明的有益效果是:
本发明通过分布于不同空间位置的无线雷达网络节点,采集对应节点的中频信号,获取对应节点的相位信息。借助多路无线雷达网络节点的相位信息,通过冗余架构的优化算法,得到目标物体的运动位置和轨迹跟踪。
本发明只借用物体的多普勒信息,有效地抑制了多径效应和背景散射的影响;同时由于凭借无线传输的优越性,可在不妨碍接收回波条件下,任意布置无线雷达网络节点位置和增减节点数量,具有极大的便携性。
本发明具有多节点连接、低功耗传输、工作在多径室内环境,可以灵活配置传感器位置和数量、实现不同维度、不同移动目标的定位追踪的特点,具有很好的应用前景。
附图说明
图1是本发明Doppler传感网络***架构框图。
图2是无线雷达网络节点的硬件框图。
图3是通道切换延迟修正算法示意图。本图以三个节点为例,深色为模数转换得到的数据,浅色为插值得到的数据。
具体实施方式
结合说明书附图,详细描述本***的工作原理。
如图1所示,具体实施采用主要由至少五个无线雷达网络节点和主控节点组成的室内移动目标定位***,每个无线雷达网络节点是主要由一个独立的基准时钟和一个无线通信链路接口的Doppler雷达传感器组成,多个无线雷达网络节点的Doppler雷达传感器和主控节点具有相同的无线通信链路接口,主控节点和独立的无线雷达网络节点之间没有建立时钟同步关系,由多个无线雷达网络节点的Doppler雷达传感器以及主控节点通过无线通信链路接口连接组成无线链路。
如图2所示,无线雷达网络节点包括射频发射模块、射频接收模块、接收天线、发射天线、微处理控制模块和时钟分配模块;基准时钟的输出端经时钟分配模块分别和两个锁相环的输入端连接,其中一个锁相环的输出端依次经带通滤波器、射频发射模块后连接到发射天线,另一个锁相环的输出端连接到正交混频器的一个输入端,正交混频器的另外两个输入端经射频接收模块连接接收天线,正交混频器的两个输出端分别经低通滤波器连接到微处理控制模块MCU。
运动目标在室内运动过程中,通过各个无线雷达网络节点探测运动目标获得运动目标运动产生的多普勒信息,主控节点以时分复用的轮询方式通过无线链路读取各个无线雷达网络节点获取的多普勒信息,并通过上述多普勒信息的融合得到运动目标在室内多径环境中的位置和位移信息。
无线雷达网络节点具有一个发射天线和一个接收天线,每个无线雷达网络节点的发射天线发射出信号到运动目标反射后被接收天线接收获得多普勒信息;在运动目标在室内运动过程中,所有无线雷达网络节点的同时工作进行探测获得多普勒信息,各个无线雷达网络节点采用频分复用进行探测。
针对无线雷达网络节点内部通过AD转换获得的信号,在满足奈奎斯特采样定理或带通采样定理的条件下,切换通道存在固有延时,影响定位误差,对无线雷达网络节点内部通过AD转换获得的信号采用插值对齐方法进行处理,插值对齐方法例如低通插值,线性插值,三次样条插值等。
在获得多普勒信息后,利用多个无线雷达网络节点的多普勒信息针对运动目标的位置建立目标误差函数,并采用模拟狼群搜索方式的群粒子优化方法进行最小化优化求解,获得最优的运动目标的位置作为运动目标的实际位置:
优化过程如下:
1、初始化优化步进Step
2、定义初始粒子数量N并得到待优化空间坐标random(xi,yi),i=1,2,...,N
3、定义适应度函数P(xk,yk,Phi1,Phi2,Phi3),其中xk与yk为优化计算的二维空间坐标,Phi1、Phi2与Phi3分别为三个无线雷达网络节点分别获得的多普勒相位信息
4、通过迭代方式,计算N个坐标对应的适度函数值,寻找本次全局最优解,并与历史最优解比较。如本次结果优于历史最优解,则更新待优化坐标xk与yk,位置更新关系为:
Figure BDA0002362945670000051
其中γ是局域搜索因子,Step是优化步进,Dqj是第q个坐标变量的第j维,Dbj是全局最优的第j维,
Figure BDA0002362945670000052
是更新后的第q个坐标变量的第j维
5、若计算全局最优解满足设定最小界限或者迭代次数达到设置最大迭代周期,则停止优化。得到最优化坐标(xbest,ybest)。
本发明的实施例及其实施过程如下:
图3所示为通道切换延时修正算法示意图,能够有效修正通道切换导致的延迟,从而获得近似同一时间采样的基带信号。
本图以三个传感节点为例:
通道A的数字信号为A[1],A[2]…A[N],通道B的数字信号为B[1],B[2]…B[N],通道C的数字信号为C[1],C[2]…C[N]。
对各个通道进行2点插值
A’:A[1]、Ab[1]、Ac[1]、A[2]、Ab[2]、Ac[2]…
B’:Ba[1]、B[1]、Bc[1]、Ba[2]、B[2]、Bc[2]…
C’:Ca[1]、Cb[1]、C[1]、Ca[2]、Cb[2]、C[2]…
其中,单个大写字母表示实际采样数据,双字母表示插值数据,由于切换时间保证相等间隔,序列插值也进行等间隔插值。
其余通道同理,则同一时刻的信号通过插值方式近似得到,如{Ab[1],B[1],Cb[1]}。三次样条插值则可以满足二阶连续。

Claims (7)

1.一种基于Doppler传感网络的室内移动目标定位方法,其特征在于:采用主要由多个无线雷达网络节点和主控节点组成的室内移动目标定位***,每个无线雷达网络节点是主要由一个独立的基准时钟和一个无线通信链路接口的Doppler雷达传感器组成,多个无线雷达网络节点的Doppler雷达传感器和主控节点具有相同的无线通信链路接口,主控节点和独立的无线雷达网络节点之间没有建立时钟同步关系,由多个无线雷达网络节点的Doppler雷达传感器以及主控节点通过无线通信链路接口连接组成无线链路;运动目标在室内运动过程中,通过各个无线雷达网络节点探测运动目标获得运动目标运动产生的多普勒信息,主控节点以时分复用的轮询方式通过无线链路读取各个无线雷达网络节点获取的多普勒信息,并通过上述多普勒信息的融合得到运动目标在室内多径环境中的位置和位移信息。
2.根据权利要求1所述的一种基于Doppler传感网络的室内移动目标定位方法,其特征在于:所述的无线雷达网络节点具有一个发射天线和一个接收天线,每个无线雷达网络节点的发射天线发射出信号到运动目标反射后被接收天线接收获得多普勒信息;在运动目标在室内运动过程中,所有无线雷达网络节点的同时工作进行探测获得多普勒信息,各个无线雷达网络节点采用频分复用进行探测。
3.根据权利要求1所述的一种基于Doppler传感网络的室内移动目标定位方法,其特征在于:包括至少五个无线雷达网络节点。
4.根据权利要求1所述的一种基于Doppler传感网络的室内移动目标定位方法,其特征在于:针对无线雷达网络节点内部通过AD转换获得的信号,在满足奈奎斯特采样定理或带通采样定理的条件下,对无线雷达网络节点内部通过AD转换获得的信号采用插值对齐方法进行处理。
5.根据权利要求1所述的一种基于Doppler传感网络的室内移动目标定位方法,其特征在于:在获得多普勒信息后,利用多个无线雷达网络节点的多普勒信息针对运动目标的位置建立目标误差函数,并进行最小化优化求解,获得最优的运动目标的位置作为运动目标的实际位置。
6.根据权利要求1所述的一种基于Doppler传感网络的室内移动目标定位方法,其特征在于:所述的无线雷达网络节点包括射频发射模块、射频接收模块、接收天线、发射天线、微处理控制模块和时钟分配模块;基准时钟的输出端经时钟分配模块分别和两个锁相环的输入端连接,其中一个锁相环的输出端依次经带通滤波器、射频发射模块后连接到发射天线,另一个锁相环的输出端连接到正交混频器的一个输入端,正交混频器的另外两个输入端经射频接收模块连接接收天线,正交混频器的两个输出端分别经低通滤波器连接到微处理控制模块MCU。
7.根据权利要求1所述的一种基于Doppler传感网络的室内移动目标定位方法,其特征在于:所述的无线雷达网络节点既适用于单频连续波制式,也适用于线性或非线性调频连续波制式,多通道的发射制式保持一致。
CN202010027356.XA 2020-01-10 2020-01-10 一种基于Doppler传感网络的室内移动目标定位方法 Active CN111208507B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010027356.XA CN111208507B (zh) 2020-01-10 2020-01-10 一种基于Doppler传感网络的室内移动目标定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010027356.XA CN111208507B (zh) 2020-01-10 2020-01-10 一种基于Doppler传感网络的室内移动目标定位方法

Publications (2)

Publication Number Publication Date
CN111208507A true CN111208507A (zh) 2020-05-29
CN111208507B CN111208507B (zh) 2022-03-22

Family

ID=70782683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010027356.XA Active CN111208507B (zh) 2020-01-10 2020-01-10 一种基于Doppler传感网络的室内移动目标定位方法

Country Status (1)

Country Link
CN (1) CN111208507B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285686A (zh) * 2020-10-19 2021-01-29 西安邮电大学 多基地雷达异步数据的实时在线融合方法
CN113384250A (zh) * 2021-05-26 2021-09-14 上海交通大学 用于生命体征探测的毫米波雷达***低功耗实现方法
CN114167399A (zh) * 2022-02-15 2022-03-11 中国人民解放***箭军工程大学 基于同频感知与机会发射的测距雷达***及实现方法
WO2022083235A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 一种探测与通信***、控制装置及探测***

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101156081A (zh) * 2005-04-11 2008-04-02 纳夫科姆技术公司 用于本地定位的改进的雷达***
CN101669043A (zh) * 2007-03-08 2010-03-10 格库技术有限公司 采用异步的、分离的数据采样和传输的用于地震数据获取的***和方法
CN105044709A (zh) * 2015-06-26 2015-11-11 电子科技大学 基于雷达传感器网络的仅用多普勒信息定位***
CN105786185A (zh) * 2016-03-12 2016-07-20 浙江大学 基于连续波微多普勒雷达的非接触式手势识别***与方法
CN107041011A (zh) * 2017-06-20 2017-08-11 熊猫电子集团有限公司 一种预案可变的轮询控制卫星通信方法和***
CN107206272A (zh) * 2015-01-06 2017-09-26 阿尔法威高尔夫(私人)有限公司 高尔夫球跟踪***
CN108363043A (zh) * 2018-01-26 2018-08-03 浙江大学 分布放置连续波多普勒雷达传感器及多运动目标探测方法
CN108490427A (zh) * 2018-02-07 2018-09-04 浙江大学 一种运动目标室内定位及实时追踪方法
CN110133611A (zh) * 2019-05-17 2019-08-16 浙江大学 一种时分复用的雷达传感***
US20190277939A1 (en) * 2018-03-09 2019-09-12 Abl Ip Holding Llc Network architecture, radio frequency based asset tracking and/or location estimation methods and systems

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101156081A (zh) * 2005-04-11 2008-04-02 纳夫科姆技术公司 用于本地定位的改进的雷达***
CN101669043A (zh) * 2007-03-08 2010-03-10 格库技术有限公司 采用异步的、分离的数据采样和传输的用于地震数据获取的***和方法
CN107206272A (zh) * 2015-01-06 2017-09-26 阿尔法威高尔夫(私人)有限公司 高尔夫球跟踪***
CN105044709A (zh) * 2015-06-26 2015-11-11 电子科技大学 基于雷达传感器网络的仅用多普勒信息定位***
CN105786185A (zh) * 2016-03-12 2016-07-20 浙江大学 基于连续波微多普勒雷达的非接触式手势识别***与方法
CN107041011A (zh) * 2017-06-20 2017-08-11 熊猫电子集团有限公司 一种预案可变的轮询控制卫星通信方法和***
CN108363043A (zh) * 2018-01-26 2018-08-03 浙江大学 分布放置连续波多普勒雷达传感器及多运动目标探测方法
CN108490427A (zh) * 2018-02-07 2018-09-04 浙江大学 一种运动目标室内定位及实时追踪方法
US20190277939A1 (en) * 2018-03-09 2019-09-12 Abl Ip Holding Llc Network architecture, radio frequency based asset tracking and/or location estimation methods and systems
CN110133611A (zh) * 2019-05-17 2019-08-16 浙江大学 一种时分复用的雷达传感***

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YI ZHANG 等: "Efficient algorithms for moving objects localization and tracking based on continuous Wave Doppler radar", 《2018 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM》 *
ZHITAO GU 等: "Remote Blind Motion Separation Using a Single-Tone SIMO Doppler Radar Sensor", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》 *
张文宇 等: "《物联网智能技术》", 30 April 2012, 中国铁道出版社 *
邓丽娟 等: "分布式MIMO雷达中仅使用多普勒频移的直接定位技术", 《信号处理》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285686A (zh) * 2020-10-19 2021-01-29 西安邮电大学 多基地雷达异步数据的实时在线融合方法
CN112285686B (zh) * 2020-10-19 2023-07-18 西安邮电大学 多基地雷达异步数据的实时在线融合方法
WO2022083235A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 一种探测与通信***、控制装置及探测***
CN113384250A (zh) * 2021-05-26 2021-09-14 上海交通大学 用于生命体征探测的毫米波雷达***低功耗实现方法
CN114167399A (zh) * 2022-02-15 2022-03-11 中国人民解放***箭军工程大学 基于同频感知与机会发射的测距雷达***及实现方法
CN114167399B (zh) * 2022-02-15 2022-05-10 中国人民解放***箭军工程大学 基于同频感知与机会发射的测距雷达***及实现方法

Also Published As

Publication number Publication date
CN111208507B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN111208507B (zh) 一种基于Doppler传感网络的室内移动目标定位方法
Kempke et al. Surepoint: Exploiting ultra wideband flooding and diversity to provide robust, scalable, high-fidelity indoor localization
Shi et al. Survey of indoor positioning systems based on ultra-wideband (UWB) technology
KR102009791B1 (ko) Uwb를 이용한 3차원 측위 시스템
Wymeersch et al. Cooperative localization in wireless networks
Zhang et al. Unlocking the beamforming potential of lora for long-range multi-target respiration sensing
EP1188066A1 (en) Narrowband based navigation scheme
CN110572774B (zh) 一种基于uwb自定位的室内多基站扩展方法
CN109975754A (zh) 联合角度、时延与多普勒信息的运动多站直接定位方法
CN110809240A (zh) 一种基于WiFi多维参数特征的室内目标被动跟踪方法
Drutarovsky et al. Real-time wireless UWB sensor network for person monitoring
CN114019450A (zh) 基于uwb的室内移动机器人定位方法
CN113075649B (zh) 一种适用于分布式网络化雷达的信号级直接定位方法
Fei et al. Indoor static localization based on Fresnel zones model using COTS Wi-Fi
US20070133598A1 (en) System and method for determining position of communicating devices
Xiong et al. Enhancing WSN-based indoor positioning and tracking through RFID technology
Chen et al. A weighted compensated localization algorithm of nodes in wireless sensor networks
WO2018032107A1 (en) Apparatus, system and method of tracking a radio beacon
AU2019200145B2 (en) Wireless localisation system
CN106792982A (zh) 一种基于自适应分簇策略的多目标直接定位方法
Friedman et al. Angle-of-arrival-assisted relative interferometric localization using software defined radios
Švecová et al. TOA complementing method for target localization by UWB radar systems
Shi et al. Decimeter-Level Indoor Localization Using WiFi Round-Trip Phase and Factor Graph Optimization
Serasidis et al. ICE: A Low-Cost IoT Platform Targeting Real-Time Anonymous Visitors Flow Tracking at Museums
Wang et al. Research on indoor positioning of power grid equipment based on deep learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant