CN111203159A - 姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法及应用 - Google Patents

姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法及应用 Download PDF

Info

Publication number
CN111203159A
CN111203159A CN202010046816.3A CN202010046816A CN111203159A CN 111203159 A CN111203159 A CN 111203159A CN 202010046816 A CN202010046816 A CN 202010046816A CN 111203159 A CN111203159 A CN 111203159A
Authority
CN
China
Prior art keywords
curcumin
titanium dioxide
graphene composite
solution
dimensional graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010046816.3A
Other languages
English (en)
Inventor
袁妍
汤晓蕾
周延慧
蒋莉
董延茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN202010046816.3A priority Critical patent/CN111203159A/zh
Publication of CN111203159A publication Critical patent/CN111203159A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种姜黄素‑二氧化钛‑三维石墨烯复合气凝胶的制备方法及其应用,石墨烯气凝胶的制备方法包括:先将姜黄素与氧化石墨烯超声分散均匀;然后分别加入抗坏血酸、钛酸四丁酯超声分散均匀;再采用溶胶‑凝胶法制备出姜黄素‑二氧化钛‑石墨烯三元复合水凝胶并冷冻干燥获得气凝胶。本发明的有益效果包括:石墨烯的结构在冷冻干燥过程不易被破坏,其结构上的官能团易被保存且冷冻干燥后的石墨烯不易发生团聚现象。该气凝胶多孔表面积大、具有良好的电子迁移能力且可以反复利用。

Description

姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法及应用
技术领域
本发明属于功能材料技术领域,具体涉及一种姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法及用光催化降解水体磺胺类药物的应用。
背景技术
随着环境分析技术的提高和人们环境意识的增强,环境中微量有机污染物引起了广泛的关注,尤其是药品与个人护理用品(PPCPs),是一种新兴污染物,包括人用和兽用的医药品、诊断剂、保健品、麝香、化妆品、遮光剂、消毒剂、防腐剂等。近年来,在不同国家和地区的水体、土壤、污水和污泥中均检测到ng/L~μg/L水平的PPCPs,某些介质中甚至达到了mg/L的水平。由于我国人口众多,且畜牧水产养殖业发达,PPCPs的生产和使用量非常巨大,导致我国PPCPs的环境污染和生态毒害问题日趋严重。
磺胺类药物(SAs)是一种典型的PPCPs,基本化学结构为对氨基苯磺酰胺。水环境中残留磺胺类药物会导致微生物抗药性的发展,促使抗药性细菌大量繁殖,严重破坏水环境中菌落和群落的均衡性和多样性。同时还会通过水循环再次进入人类和动物体内,会破坏人的正常免疫机能和造血***,损害人体泌尿***、脑神经***、消化***等,也会严重损害动物的肌体并影响其生殖能力。现有的去除SAs的方法有树脂吸附法、反渗透膜法、高级氧化法等,其中树脂吸附法由于自身特点并不适合吸附水体中微量的磺胺类药物,反渗透膜法则由于能耗大和操作条件要求高,故大多数废水处理采用高级氧化法。光催化高级氧化法是由光激发产生空穴—电子对,继而通过连锁反应产生·OH自由基,将水溶液中有机污染物逐步转化为小分子有机物,直至完全矿化的方法。
TiO2作为光催化的半导体材料具有性质稳定、无毒、催化活性高、无二次污染等优点,尤其是实现了某些难生物降解的污染物的降解,直至矿化,因而能被广泛应用于有机污染物的削减和减量化。TiO2光催化产生·OH的关键在于光激发产生的空穴和电子能否被TiO2表面所吸附的H2O或OH-和电子受体所捕获,若在TiO2表面没有电子受体或H2O或OH-,有机污染物的降解率低下。因此,如何提高光激发产生的电子—空穴对的分离是提高TiO2催化效率的关键。
姜黄素是一种可以稳定吸附在TiO2表面并可再生的天然染料敏化剂。其是一种从姜科植物中提取的具有食品、药用价值等多种用途的多酚类物质,其主链为不饱和的脂肪族及芳香族基团,并含有对称的双酚和二乙酰丙酮结构,在可见光聚合领域有着广泛的应用,可以作为碘鎓盐的光增感剂,促进电子转移。除此之外,姜黄素上的酚羟基还可以起到络合TiO2的作用,保证姜黄素在TiO2表面的有效吸附。
单一的敏化剂TiO2纳米粒子力度细小,在回收时容易随水流失,重复利用存在限制,所以提高TiO2催化效率的另一个关键是TiO2固定技术。通常可固定在高分子树脂,天然高分子等材料,载体一般要求比表面积高、孔径大、活性好、固载量多、耐冲击性能强等要求。而石墨烯正是一种优良的载体,其拥有较高的比表面积、良好的导电性能、可以有效提高催化效率,此外石墨烯的光透过率不会影响二氧化钛对光的吸收。
因此,本发明选择磺胺类药物为目标污染物,通过溶胶凝胶法制备姜黄素-二氧化钛-三维石墨烯复合光催化材料。本发明将姜黄素与二氧化钛负载在三维石墨烯气凝胶上,不仅可以借助石墨烯的导电性分离光生电子和空穴,而且石墨烯气凝胶使得有机污染物在催化材料中富集,提高了催化效率。另外,由于石墨烯气凝胶具有疏水性,该复合材料也有利于催化剂和水体的分离。
发明内容
本发明的目的提供一种三维石墨烯复合气凝胶的制备方法及应用,以解决现有二氧化钛在可见光下制备的催化活性差,粉体材料难于回收的问题,而提供一种姜黄素-二氧化钛-三维石墨烯气凝胶的制备方法及其应用。
本发明所述一种姜黄素-二氧化钛-三维石墨烯气凝胶复合材料的制备及其应用,包括以下步骤:
步骤一:制备氧化石墨烯溶液。将一定量的氧化石墨烯分散于去离子水中,得到棕黄色的悬浮液,再在超声条件下分散得到稳定的分散液。
步骤二:制备姜黄素溶液。将姜黄素溶于无水乙醇中,在超声条件下分散得到稳定的分散液。
步骤三:制备钛酸四丁酯—无水乙醇溶液。将钛酸四丁酯加入到无水乙醇中,在超声条件下分散得到稳定的分散液。
步骤四:制备姜黄素-二氧化钛-维石墨烯复合水凝胶。量取步骤一制得的氧化石墨烯溶液和步骤二制得的姜黄素溶液,超声使其分散均匀;加入步骤三制得钛酸四丁酯—无水乙醇溶液,超声使其分散均匀;加入适量的抗坏血酸,超声使溶液分散均匀;放入油浴中反应加热一段时间后,冷却至室温后取出,得到水凝胶。
步骤五:制备姜黄素-二氧化钛-三维石墨烯复合气凝胶。将步骤四所制得的水凝胶用去离子水洗涤2~3次除去杂质后,放入冷冻干燥机内冷冻干燥,取出,得到姜黄素-二氧化钛-三维石墨烯复合气凝胶。
本发明还提出一种姜黄素-二氧化钛-三维石墨烯复合气凝胶用于降解水中的磺胺类药物的应用,配置一定浓度的磺胺类药物溶液,用步骤五制得的姜黄素-二氧化钛-三维石墨烯复合气凝胶降解水中的磺胺类药物,同时使用紫外可见光分光光度计检测磺胺类药物溶液的特征吸收峰强度。当特征吸收峰消失时,即说明溶液中的磺胺类药物降解完全,记录下降解所用时间。
优选地,所述的氧化石墨烯溶液的浓度为1-5mg/mL。
优选地,所述的姜黄素溶液的浓度为0.1-2mg/mL。
优选地,所述的钛酸四丁酯—无水乙醇溶液的浓度为0.1-1mg/mL。
优选地,所述的步骤四中氧化石墨烯溶液和姜黄素溶液的体积比为1:0.5-1:5,氧化石墨烯溶液和钛酸四丁酯-无水乙醇的体积比为1:0.5-1:5,氧化石墨烯和抗坏血酸的质量比为1:1-1:20。
优选地,所述的步骤四中超声时间为10-40min。
优选地,所述的步骤四中的反应温度为70-100℃,反应时间为1-2h。
优选地,所述的步骤五中冷冻干燥的温度为-30—-50℃,冷冻干燥同时抽真空,真空度为0.1-0.15托,干燥时间为24-72h。
优选地,所述的步骤六中磺胺类药物的浓度为0.01mol/L-1mol/L。
优选地,所述的步骤六中姜黄素-二氧化钛-三维石墨烯复合材料的用量为0.01g/L-1g/L。
本发明通过溶胶凝胶法,在石墨烯基体材料实现纳米金属二氧化钛的分散,通过控制反应物浓度、反应温度和时间,实现二氧化钛在石墨烯基体材料表面的形貌和结构的调控。
与现有技术相比,本发明的有益效果是:
(1)本发明制备过程简单、环保、易于操作,是一种绿色化学制备方法。
(2)本发明设计新颖,提出利用姜黄素和三维石墨烯两者协同TiO2的电子传输能力,抑制电子—空穴复合,提高光催化效率。
(3)本发明中使用的姜黄素除了作为敏化剂提高TiO2光催化效率外,还可以作为抗氧化剂还原氧化石墨烯,并且利用酚羟基固定TiO2,简化合成过程,提高复合材料催化降解的重复性。
(4)本发明制备姜黄素-二氧化钛-三维石墨烯气凝胶可以在可见光照射下降解磺胺类药物,在地表水有机污染物降解中有着巨大的应用潜能。
附图说明
图1A、图1B是实施例一制备的姜黄素-二氧化钛-三维石墨烯复合气凝胶的数码照片。
图2是实施例一制备的复合气凝胶的SEM图,二氧化钛纳米粒子均匀分散在石墨烯片层上。
图3是纯TiO2的XRD图。
图4是实施例一制备的复合气凝胶的XRD图。
图5为在紫外光下照射利用实施例一制备的复合气凝胶在不同时间下降解磺胺类药物的降解率图。
具体实施方式
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
实施例1
一种姜黄素-二氧化钛-三维石墨烯复合气凝胶,通过采用溶胶凝胶法在氧化石墨烯片层上负载姜黄素和二氧化钛。
本实施例中姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法,包括的具体步骤为:
步骤1:制备氧化石墨烯溶液。向氧化石墨中加入去离子水,在超声功率为60kHz下超声6h,得到棕褐色均匀的氧化石墨烯溶液。其中所述的氧化石墨的质量与去离子水的体积比0.4g:200mL。
步骤2:制备姜黄素溶液。将姜黄素加入到无水乙醇中,在超声功率为30kHz下超声15min。其中所述的姜黄素的质量与无水乙醇的体积比为6mg:30mL。
步骤3:制备钛酸四丁酯—无水乙醇溶液。将钛酸四丁酯加入到无水乙醇中,在超声功率为30kHz下超声15min。其中所述的钛酸四丁酯的质量与无水乙醇的体积比为6mg:30mL。
步骤4:制备姜黄素-二氧化钛-三维石墨烯复合水凝胶。量取5mL姜黄素溶液缓慢加入到10mL氧化石墨烯溶液中,将得到的混合溶液超声15min,得到分散均匀的溶液;再加入5mL钛酸四丁酯—无水乙醇溶液,混合溶液继续超声15min,得到分散均匀的溶液;再在混合溶液中加入0.8g的抗坏血酸,继续超声15min,得到分散均匀的溶液;放入油浴锅中,反应温度为80℃,反应时间为30min,冷却至室温,得到姜黄素-二氧化钛-三维石墨烯复合水凝胶。
步骤5:制备姜黄素-二氧化钛-三维石墨烯复合气凝胶。将上述姜黄素-二氧化钛-三维石墨烯复合水凝胶用去离子水洗涤2~3次除去杂质,之后放入冷冻干燥机内,冷冻干燥温度为-30℃,冷冻干燥同时抽真空,真空度为0.15托,干燥时间为72h,得到姜黄素-二氧化钛-三维石墨烯复合气凝胶,记为Cur-TiO2-GA1。如图1所述是本实施例制备的姜黄素-二氧化钛-三维石墨烯复合气凝胶的数码照片,图2是本实施例制备的姜黄素-二氧化钛-三维石墨烯复合气凝胶的SEM图,图3是纯TiO2的XRD图,图4是本实施例制备的姜黄素-二氧化钛-三维石墨烯复合气凝胶的XRD图,从图3和图4可知,实施例一成功制备出姜黄素-二氧化钛-三维石墨烯复合气凝胶。
实施例2
将实施例1中步骤2中姜黄素溶液的浓度改为0.3mg/mL,步骤3中的钛酸四丁酯—无水乙醇溶液的浓度改为0.3mg/mL,其余均同实施例1,最终所获得的气凝胶,记为Cur-TiO2-GA2。
实施例3
将实施例1中步骤2中姜黄素溶液的浓度改为0.4mg/mL,步骤3中的钛酸四丁酯—无水乙醇溶液的浓度改为0.4mg/mL,其余均同实施例1,最终所获得的气凝胶,记为Cur-TiO2-GA3。
实施例4
将实施例1中步骤2中姜黄素溶液的浓度改为0.5mg/mL,步骤3中的钛酸四丁酯—无水乙醇溶液的浓度改为0.5mg/mL,其余均同实施例1,最终所获得的气凝胶,记为Cur-TiO2-GA4。
实施例5
将实施例1中步骤2中姜黄素溶液的浓度改为0.6mg/mL,步骤3中的钛酸四丁酯—无水乙醇溶液的浓度改为0.6mg/mL,其余均同实施例1,最终所获得的气凝胶,记为Cur-TiO2-GA5。
实施例一、实施例二、实施例三、实施例四和实施例五制备的备姜黄素-二氧化钛-三维石墨烯复合气凝胶分别用于降解含有磺胺类药物的废水,具体是按以下步骤完成的:
将实施例一、实施例二、实施例三、实施例四和实施例五制备的备姜黄素-二氧化钛-三维石墨烯复合气凝胶分别加入到磺胺类药物浓度为100mg/mL的废水中,再在避光下搅拌速度为1000r/min下搅拌30min,再使用紫外光灯照射废水,得到处理后的废水。
所述的姜黄素-二氧化钛-三维石墨烯复合气凝胶的质量与磺胺类药物
Cur-TiO<sub>2</sub>-GA1 Cur-TiO<sub>2</sub>-GA2 Cur-TiO<sub>2</sub>-GA3 Cur-TiO<sub>2</sub>-GA4 Cur-TiO<sub>2</sub>-GA5
降解率 72.2% 66.9% 55.5% 40.9% 38.2%
浓度为100mg/mL废水的体积比为0.3g:500mL。
表一 不同实施例降解磺胺类药物的降解率
表1为不同实施例制备的姜黄素-二氧化钛-三维石墨烯复合气凝胶用于降解含有磺胺类药物的废水时磺胺类药物的降解率。图5是在紫外光下照射利用实施例一制备的姜黄素-二氧化钛-三维石墨烯复合气凝胶在不同时间下降解磺胺类药物的降解率图。从图5可知,在紫外光下降解磺胺类药物,降解后磺胺类药物的降解率为72.2%,在含有机污染物的废水降解中有巨大的应用潜力。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (10)

1.一种姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法,其特征在于通过溶胶凝胶法在氧化石墨烯三维结构上负载姜黄素和二氧化钛,制备方法包括以下步骤:
步骤一,制备氧化石墨烯溶液:向氧化石墨烯中加入去离子水,再在超声功率为30kHz~60kHz下超声,得到棕褐色均匀的氧化石墨烯溶液。
步骤二,制备姜黄素溶液:向姜黄素加入无水乙醇中,再在超声功率为30kHz~60kHz下超声,配制成姜黄素溶液。
步骤三,制备钛酸四丁酯—乙醇溶液:量取钛酸四丁酯加入无水乙醇中,再在超声功率为30kHz~60kHz下超声,配制成钛酸四丁酯—乙醇溶液。
步骤四,制备姜黄素-二氧化钛-三维石墨烯水凝胶:量取姜黄素溶液加入到氧化石墨烯溶液中,将得到的混合溶液超声分散均匀;再依次加入钛酸四丁酯—乙醇溶液和抗坏血酸,超声分散均匀;放入油浴锅中,通过溶胶凝胶法在氧化石墨烯三维结构上负载上姜黄素和二氧化钛颗粒,冷却至室温后取出,得到姜黄素-二氧化钛-三维石墨烯复合水凝胶。
步骤五,制备姜黄素-二氧化钛-三维石墨烯气凝胶:将上述姜黄素-二氧化钛-三维石墨烯复合水凝胶用去离子水洗涤2~3次除去杂质,之后放入冷冻干燥机内冷冻干燥,取出后得到姜黄素-二氧化钛-三维石墨烯复合气凝胶。
2.根据权利要求1所述的姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法,其特征在于,所述步骤一中的氧化石墨烯溶液的浓度为1-5mg/mL。
3.根据权利要求1所述的姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法,其特征在于,所述步骤二中的姜黄素溶液的浓度为0.1-2mg/mL。
4.根据权利要求1所述的姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法,其特征在于,所述步骤三中的钛酸四丁酯—乙醇溶液的浓度为0.1-2mg/mL。
5.根据权利要求1所述的姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法,其特征在于,所述步骤四中的氧化石墨烯溶液和姜黄素溶液的体积比为1:0.5-1:5,氧化石墨烯溶液和钛酸四丁酯—乙醇溶液的体积比为1:0.5-1:5,氧化石墨烯和抗坏血酸的质量比为1:1-1:20。
6.根据权利要求1所述的姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法,其特征在于,所述步骤四中的超声时间为10-40min。
7.根据权利要求1所述的姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法,其特征在于,所述步骤四中的反应温度为70-100℃,反应时间为1-2h。
8.根据权利要求1所述的姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法,其特征在于,所述步骤五中的冷冻干燥的温度为-30至-50℃,冷冻干燥同时抽真空,真空度为0.1-0.15托,干燥时间为24-72h。
9.一种姜黄素-二氧化钛-三维石墨烯复合气凝胶的应用,其特征在于根据权利要求1-8所述的一种姜黄素-二氧化钛-三维石墨烯复合气凝胶来降解含有磺胺类药物的废水。
10.根据权利要求9所述的一种姜黄素-二氧化钛-三维石墨烯复合气凝胶的应用,其特征在于,包括以下步骤:
在含磺胺类药物浓度为50mg/mL~250mg/mL的废水中加入姜黄素-二氧化钛-三维石墨烯复合气凝胶,再在避光下搅拌速度为500r/min~1000r/min下搅拌30min~60min,再使用紫外光照射废水0.5~3h,得到处理后的废水;所述的姜黄素-二氧化钛-三维石墨烯复合气凝胶的质量与含磺胺类药物浓度为50mg/mL~250mg/mL废水的体积比为(0.05g~0.3g):500mL。
CN202010046816.3A 2020-01-16 2020-01-16 姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法及应用 Pending CN111203159A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010046816.3A CN111203159A (zh) 2020-01-16 2020-01-16 姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010046816.3A CN111203159A (zh) 2020-01-16 2020-01-16 姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法及应用

Publications (1)

Publication Number Publication Date
CN111203159A true CN111203159A (zh) 2020-05-29

Family

ID=70783577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010046816.3A Pending CN111203159A (zh) 2020-01-16 2020-01-16 姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法及应用

Country Status (1)

Country Link
CN (1) CN111203159A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569899A (zh) * 2020-06-03 2020-08-25 苏州科技大学 一种MnFe2O4-TiO2-石墨烯气凝胶的制备方法
CN113477276A (zh) * 2021-06-29 2021-10-08 衡水学院 负载型光催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101890344A (zh) * 2010-07-27 2010-11-24 华东理工大学 石墨烯/二氧化钛复合光催化剂的制备方法
CN104368324A (zh) * 2014-11-20 2015-02-25 重庆交通大学 介孔石墨烯/二氧化钛纳米复合材料的制备方法和应用
CN104741094A (zh) * 2015-03-06 2015-07-01 中山大学惠州研究院 一种含聚酰胺树脂复合树脂及其制备方法
CN105658331A (zh) * 2013-08-28 2016-06-08 国家研究与发展部国家农业与食品研究机构 利用还原性有机物的光催化剂
CN105854860A (zh) * 2016-03-22 2016-08-17 江苏大学 一种高比表面积二氧化钛/石墨烯气凝胶的制备方法
CN108940143A (zh) * 2018-09-29 2018-12-07 云南大学 一种色素为模板的钛硅气凝胶的制备方法及其应用
WO2019209493A1 (en) * 2018-04-24 2019-10-31 Lawrence Livermore National Security, Llc Additive manufacturing of hierarchical three-dimensional micro-architected aerogels

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101890344A (zh) * 2010-07-27 2010-11-24 华东理工大学 石墨烯/二氧化钛复合光催化剂的制备方法
CN105658331A (zh) * 2013-08-28 2016-06-08 国家研究与发展部国家农业与食品研究机构 利用还原性有机物的光催化剂
CN104368324A (zh) * 2014-11-20 2015-02-25 重庆交通大学 介孔石墨烯/二氧化钛纳米复合材料的制备方法和应用
CN104741094A (zh) * 2015-03-06 2015-07-01 中山大学惠州研究院 一种含聚酰胺树脂复合树脂及其制备方法
CN105854860A (zh) * 2016-03-22 2016-08-17 江苏大学 一种高比表面积二氧化钛/石墨烯气凝胶的制备方法
WO2019209493A1 (en) * 2018-04-24 2019-10-31 Lawrence Livermore National Security, Llc Additive manufacturing of hierarchical three-dimensional micro-architected aerogels
CN108940143A (zh) * 2018-09-29 2018-12-07 云南大学 一种色素为模板的钛硅气凝胶的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中国科协青少年科技中心著: "《第三十三届全国青少年科技创新大赛获奖作品集》", 31 March 2019, 北京科学普及出版社 *
江国健: "《新材料创新与产业化》", 31 December 2018, 徐州 中国矿业大学出版社 *
王杏等: "《纳米二氧化钛的生产与应用》", 31 July 2014, 贵州科技出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569899A (zh) * 2020-06-03 2020-08-25 苏州科技大学 一种MnFe2O4-TiO2-石墨烯气凝胶的制备方法
CN113477276A (zh) * 2021-06-29 2021-10-08 衡水学院 负载型光催化剂及其制备方法
CN113477276B (zh) * 2021-06-29 2023-08-25 衡水学院 负载型光催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Hayati et al. Ultrasound-assisted photocatalytic degradation of sulfadiazine using MgO@ CNT heterojunction composite: effective factors, pathway and biodegradability studies
Jiang et al. Effective E. coli inactivation of core-shell ZnO@ ZIF-8 photocatalysis under visible light synergize with peroxymonosulfate: Efficiency and mechanism
Safari et al. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution
Amaly et al. Synergistic adsorption‑photocatalytic degradation of tetracycline by microcrystalline cellulose composite aerogel dopped with montmorillonite hosted methylene blue
Robertson et al. Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis
Bekbölet et al. Inactivation of Escherichia coli by photocatalytic oxidation
Samarghandi et al. Photocatalytic removal of cefazolin from aqueous solution by AC prepared from mango seed+ ZnO under uv irradiation
CN111514882B (zh) 一种Ag-AgCl/三氧化钨/类石墨相氮化碳三元复合光催化剂及其制备方法和应用
Akash et al. Remediation of pharmaceutical pollutants using graphene-based materials-A review on operating conditions, mechanism and toxicology
CN107442153B (zh) 一种基于废纸生物质碳修饰的g-C3N4复合光催化剂的制备方法及用途
CN107890877A (zh) 一种Bi3O4Cl/CdS复合材料及制备方法和用途
He et al. Enhanced photocatalytic disinfection of Escherichia coli K-12 by porous g-C3N4 nanosheets: Combined effect of photo-generated and intracellular ROSs
CN111203159A (zh) 姜黄素-二氧化钛-三维石墨烯复合气凝胶的制备方法及应用
Dinesh et al. Mechanistic investigation in degradation mechanism of 5-fluorouracil using graphitic carbon nitride
Chen et al. Hydrodynamic cavitation-enhanced photocatalytic activity of P-doped TiO2 for degradation of ciprofloxacin: Synergetic effect and mechanism
CN105944744A (zh) 一种对双酚a具有高矿化率的可见光响应型复合光催化剂
Ma et al. Ultrasonic-assisted efficient degradation of tetracycline over ZnO/BiOBr heterojunctions: Synergistic effect and role of oxidative species
Dong et al. Electrons of d-orbital (Mn) and p-orbital (N) enhance the photocatalytic degradation of antibiotics by biochar while maintaining biocompatibility: A combined chemical and biological analysis
CN108126718A (zh) 一种In2S3/BiPO4异质结光催化剂的制备方法及其应用
CN110841669B (zh) 利用零维黑磷量子点/一维管状氮化碳复合光催化剂处理重金属和有机污染物的方法
CN108837851A (zh) 一种高效吸附-还原高毒性六价铬离子的纳米TiO2基光催化剂的预辐射接枝合成方法
CN104341037A (zh) 一种羟基自由基去除水中藻毒素的方法和装置
Liu et al. Photocatalytic disinfection of different airborne microorganisms by TiO2/MXene filler: Inactivation efficiency, energy consumption and self-repair phenomenon
Rodrigues et al. Inactivation of Escherichia coli in water by TiO2-assisted disinfection using solar light
Pouthika et al. Design and development of Carissa edulis fruit extract mediated bimetallic CuO-NiO-HNT composites for photocatalytic removal of food dye and antibiotic drug

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200529

RJ01 Rejection of invention patent application after publication