CN1111800A - 永磁材料、其制造方法和永磁体 - Google Patents

永磁材料、其制造方法和永磁体 Download PDF

Info

Publication number
CN1111800A
CN1111800A CN95103595A CN95103595A CN1111800A CN 1111800 A CN1111800 A CN 1111800A CN 95103595 A CN95103595 A CN 95103595A CN 95103595 A CN95103595 A CN 95103595A CN 1111800 A CN1111800 A CN 1111800A
Authority
CN
China
Prior art keywords
rare earth
earth element
aluminum phosphate
boron
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN95103595A
Other languages
English (en)
Inventor
高桥靖典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1111800A publication Critical patent/CN1111800A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

按照本发明生产的永磁体材料包含一种针状铁 粉,其表面上相继具有(1)一磷酸铝的包覆层,(2)一 稀土元素扩散层或一稀土元素,硼扩散层或一稀土元 素·硼·氨扩散层,以及(3)一磷酸铝的包覆层。生 产这种永磁材料包括以下步骤:(a)用磷酸铝混合并 覆盖针铁矿晶体,(b)用氢气还原得到包覆有磷酸铝 层的针状铁粉(c)在氩气氛和650—1000℃下将稀土 元素或稀土元素和硼扩散到磷酸铝的表面层中(d) 再与磷酸铝混合(e)通过加热在其外面再包覆一层磷 酸铝。

Description

本发明涉及一种永磁体,其制造方法以及制造该产品的材料,该永磁体包括一种稀土元素·铁永磁体,一种稀土元素·铁·硼永磁体和一种稀土元素·铁硼·氮永磁体,它们具有优异的磁学特性。
因为优良的磁性,人们对稀土元素·铁·硼永磁体的评价很高。日本专利B-61-34242公开了一种烧结的具有各向异性磁性的永磁体,组成为Fe-B(2-28原子%)-R(稀土元素,8-30原子%)。生产时,含有上述组份的合金浇铸后,铸件合金被粉碎成合金粉末,然后将该合金粉末铸模并烧结。然而,该方法具有一些缺点,例如铸件合金的粉碎是一个费用很高的步骤,并且在各批次生产之间产品质量不稳定。日本专利B-3-72124公开了一种生产稀土元素·铁·硼永磁体用的合金粉末的方法,该永磁体含8-30原子%的作为主要成份的R(R是包括Y的至少一种稀土元素),2-28原子%的B和65-82原子%的Fe。该方法包括下列步骤:用金属Ca或CaH2还原剂还原含稀土氧化物、金属和/或合金的原料粉末,在惰性气氛下加热经过还原的材料,然后用水沥滤将副产物除掉。由于采用了金属Ca或CaH2,方法中伴随的问题是,去除副产物和干燥的步骤是必须的;所获得的合金粉末细至1-10μm,此粉末在空气中很容易被氧化,而在最终产品中此含氧粉末将导致磁性的降低;对该粉末进行仔细处理则需要在隔绝空气的条件下,对其进行测量,混合和铸模的设备/步骤,这将增加产品成本。需要很多稀土元素也将增加其成本。
本发明的目的是提供一种永磁体,其制造方法以及制造该产品的材料,其中永磁体包括一种稀土元素·铁永磁体,一种稀土元素·铁·硼永磁体和一种稀土元素·铁·硼·氮永磁体,它们容易制得且磁学特性优异。
根据本发明的永磁体材料包含一种针状的铁粉,在其表面具有相继的(1)磷酸铝的包覆层,(2)一种稀土元素的扩散层或一种稀土元素·硼的扩散层或一种稀土元素·硼·氮的扩散层,以及(3)磷酸铝的包覆层。
图1是一种永磁体材料的示意模型,显示出针状的铁粉Fe在表面上相继含有一磷酸铝的包覆层X,一稀土元素Nd和B的扩散层,以Fe·Nd·B·X表示,以及一磷酸铝的包覆层X,
图2是一种永磁体材料的示意模型,显示出针状的含钴铁粉末Fe·Co在表面上相继含有一磷酸铝的包覆层X,一稀土元素Sm和B的扩散层,以Fe·Co·Sm·B·X表示,以及一磷酸铝的包覆层X,
图3是一种永磁体材料的示意模型,显示出针状的含钴铁粉末Fe·Co在表面上相继含有一磷酸铝的包覆层X,一稀土元素Sm、B和N的扩散层,以Fe·Co·Sm·B·N·X表示,以及一磷酸铝的包覆层X。
以下将通过使用附图来说明永磁体材料的结构模型。图1显示一种针状的铁粉Fe在表面上相继具有(1)一磷酸铝的包覆层X,(2)一稀土元素Nd和B的扩散层,以Fe·Nd·B·X表示,以及(3)一磷酸铝的包覆层X。图2显示出一种针状的含钴的铁粉Fe·Co在表面上相继具有(1)一磷酸铝的包覆层X,(2)一稀土元素Sm和B的扩散层,以Fe·Co·Sm·B·X表示,以及(3)一磷酸铝的包覆层X。图3显示出一种针状的含钴的铁粉Fe·Co表面上相继具有(1)一磷酸铝的包覆层X,(2)一稀土元素Sm、B和N的扩散层,以Fe·Co·Sm·B·N·X表示,以及(3)一磷酸铝的包覆层X。
对于稀土元素,包括一般用于稀土元素·铁·硼永磁体的,象Nd,Pr,Dy,Ho,Tb,La,Ce,Pm,Sm,Eu,Gd,Er,Tm,Yb,Lu以及Y这样的稀土元素,并且采用它们中的一种或两种以上。其中,钕(Nd),镨(Pr)和钐(Sm)优选使用。稀土元素可以单独、混合或与铁、钴等的合金的形式使用。使用的硼可以是纯硼,也可以是硼铁合金或含Al,Si,C等的不纯硼。
组份的比例为,磷酸铝分子1-12mol%,优选1-10mol%;稀土元素原子0.5-20mol%,优选0.5-7mol%;硼原子0-12mol%;氮分子0-10mol%;其余的是铁。该组成比例使得本磁体与常规稀土元素·铁·硼永磁体相比虽然昂贵的稀土元素含量较少,但其磁学特性却很优异。
对于制造永磁体材料的方法,其中一种针状的铁粉在表面上相继具有(1)一磷酸铝的包覆层X,(2)一稀土元素的扩散层或一稀土元素·硼的扩散层,以及(3)一磷酸铝的包覆层X,该方法包含下列步骤:
(a)用磷酸铝混合及覆盖一种针状的针铁矿(FeOOH)晶体,
(b)在300~500℃和氢气氛下还原覆盖有磷酸铝的针状针铁矿(FeOOH)晶体以制备包覆有磷酸铝层的针状铁粉,
(c)在有稀土元素或稀土元素和硼存在情况下,通过在氩气氛和650-1000℃下加热包覆有磷酸铝层的针状铁粉,使稀土元素或稀土元素和硼扩散到磷酸铝的表面层中,
(d)用磷酸铝混合并覆盖稀土元素扩散粉末或稀土元素和硼扩散粉末,
(e)在氩气氛和300-500℃条件下,通过加热覆盖有磷酸铝的稀土元素扩散粉末或稀土元素和硼扩散粉末,使稀土元素扩散粉末或稀土元素和硼扩散粉末外有一磷酸铝包覆层。
对于生产下列永磁体材料的方法,该材料中一种针状铁粉在表面上相继具有(1)一磷酸铝的包覆层,(2)一稀土元素·氮的扩散层或一稀土元素·硼·氮的扩散层,和(3)一磷酸铝的包覆层,该方法包括下列步骤:
(a)用磷酸铝混合并覆盖一种针状的针铁矿(FeOOH)晶体,
(b)在300~500℃和氢气氛下还原混合并覆盖有磷酸铝的针状针铁矿(FeOOH)晶体以制备包覆有磷酸铝层的针状铁粉,
(c)在有稀土元素或稀土元素和硼存在情况下,通过在氩气氛和650-1000℃下加热包覆有磷酸铝层的针状铁粉,使稀土元素或稀土元素和硼扩散到磷酸铝的表面层中,
(d)在氮气氛和500-300℃条件下,通过加热稀土元素扩散粉末或稀土元素和硼扩散粉末,将氮扩散到稀土元素扩散表面层或稀土元素和硼扩散表面层中,
(e)用磷酸铝混合并覆盖稀土元素和氮扩散粉末或稀土元素、硼和氮扩散粉末,
(f)在氩气氛和300-500℃条件下,通过加热被磷酸铝覆盖着的稀土元素和氮扩散粉末或稀土元素、硼和氮扩散粉末,使稀土元素和氮扩散层或稀土元素、硼和氮扩散粉末外包有一磷酸铝包覆层。
针状铁粉微粒尺寸优选不大于10μm,而例如长为1.0μm,宽为0.1μm。包覆有磷酸铝层的针状铁粉通过下列步骤获得:用磷酸铝混合并覆盖具有与所需针状铁粉相应的颗粒尺寸的针状针铁矿(FeOOH)晶体,以及在氢气氛和300-500℃条件下,通过还原覆盖有磷酸铝的针状铁矿(FeOOH)晶体来制备包覆有磷酸铝层的针状铁粉。
市场上买得到的磷酸铝粉末可被用于混合并覆盖针状FeOOH,然而,当例如使用10%乙醇溶液的磷酸铝到针状FeOOH时,一均匀而致密的覆盖层就很容易得到。针状铁粉内覆层磷酸铝的用量优选为磷酸铝总用量的一半左右。例如:当使用10mol%磷酸铝,优选而非限定使用其中5mol%作为针状铁粉的内覆层,而其余的5mol%作为外表面的包覆层(外覆层)。对于永磁体,所含的磷酸铝不会产生不利的影响,由于可起氧化抑制剂和磁壁的作用反而可改进磁学特性。至于含钴的针状铁粉,钴粉或钴·铁粉事先与针状FeOOH混合好。
在有稀土元素或稀土元素和硼存在下,通过在氩气氛和650-1000℃下加热包覆有磷酸铝层的针状铁粉,稀土元素或稀土元素和硼扩散到包覆有磷酸铝层的针状铁粉的表面层中以形成一Fe·R·(B)·X层,如图1中的FeNdBX层,其中R指稀土元素而X指磷酸铝。当使用含钴的针状铁粉时,生成如图2所示FeCoSmBX那样的Fe·Co·R·(B)·X层。可通过进一步用磷酸铝将上述稀土元素扩散粉或稀土元素和硼扩散粉混合并覆盖,以及在氩气氛和300-500℃条件下加热覆盖有磷酸铝的稀土元素扩散粉或稀土元素和硼扩散粉,而使上述两种扩散粉包覆上磷酸铝的步骤,即可获得该永磁体材料,其针状铁粉的表面上相继具有一磷酸铝包覆层,一稀土元素或一稀土元素·硼扩散层以及一磷酸铝包覆层。
在有稀土元素或稀土元素和硼存在的条件下加热包覆有磷酸铝层的针状铁粉,是指加热包覆有磷酸铝层的针状铁粉既可以与它粉碎的稀土元素或稀土元素和硼的混合物的形式,也可以让它与稀土元素或稀土元素和硼的蒸气接触的形式进行。稀土元素或稀土元素和硼的蒸气可以这样获得:即加热含有所需组份的低熔点和低沸点合金,如稀土元素-铁合金,稀土元素-钴合金,稀土元素-硼合金和硼铁合金。当稀土元素和硼以粉末的形式混合时,优选将它们粉碎到平均颗粒大小在1-10μm内以便更好地扩散。如果要使稀土元素或稀土元素和硼以气相形式接触,则将含有所需组份的低熔点和低沸点粉末装入旋转炉内,而炉内放置有一不锈钢管,该管上有许多装有包覆有磷酸铝层的针状铁粉的小孔。而后在氩气氛下加热并旋转炉子。在这种条件下,合金组份气化,蒸气通过不锈钢管的小孔,沉积并扩散到包覆有磷酸铝层的针状铁粉的表面层中。在气相接触条件下,稀土元素和硼均匀的沉积而导致产物的重现性和质量得到提高。当稀土元素和硼粉末与包覆有磷酸铝层的针状铁粉混合时,包覆有磷酸铝层的针状铁粉的表面层在扩散量和组成上有产生不均匀性的趋势,这主要是因为不均匀的混合,虽然颗粒大小和混合比例也是影响因素。在每一种情况下,加热是在密闭气氛下进行,氩气不流动。
至于生产含另一氮扩散层的永磁体材料的方法,其包括下列步骤:在稀土元素或稀土元素和硼存在条件下,通过在氩气氛和650-1000℃下加热包覆有磷酸铝层的针状铁粉而使稀土元素或稀土元素和硼扩散到磷酸铝的表面层中,而后通过降温和转换气氛气为氮气氛,在氮气氛和500-300℃下进行加热。加热是在流动的氮气氛下进行的。较高的温度和在气流下经历较长的时间就可获得更多的扩散氮,而气体流动可在500-300℃之间的任一温度或在从500℃至300℃的冷却期间进行。这样,就完成了包覆有磷酸铝层的针状铁粉表面层氮的扩散,形成一Fe·Co·R·(B)·N·X层,例如图3中的FeSmRBNX层,其中R表示稀土元素,而X表示磷酸铝。完成氮扩散后,其表面用磷酸铝覆盖,然后在氩气氛和300-500℃条件下加热,这样获得的永磁体材料在针状铁粉或含钴针状铁粉表面上相继具有一磷酸铝包覆层,-稀土元素·氮或稀土元素·硼·氮扩散层以及一磷酸铝包覆层。
具有本发明结构的永磁体材料的组成为:中央为一柔软的针状铁粉层以及一硬的稀土元素扩散层、稀土元素和硼扩散层或稀土元素·硼·氮扩散层。对该材料进行烧结或粘结而制备永磁体具有如交变弹簧(exchanging  spring)永磁体的特性。
将针状铁粉的表面上相继具有一磷酸铝包覆层、一稀土元素扩散层、稀土元素·硼扩散层或稀土元素·硼·氮扩散层、以及一磷酸铝包覆层的永磁材料,经过下列处理可获得烧结永磁体:对该材料进行压模,而后在磁场下对得到的压实体进行烧结,在磁场作用下,针状铁粉垂直取向。压模及烧结的条件与常规烧结永磁体的相同。
具有各向异性磁性的永磁体可以这样获得:用粘合剂将上述永磁材料混合,而后在磁场下对该混合物进行热压模。磁场的存在导致针状粉末垂直取向。热压模的条件与常规粘结永磁体的相同。粘合剂包括象环氧树脂,聚酰胺树脂这样的聚合材料,如MnO,CuO,Bi2O3,PbO,Tl2O3,Sb2O3,Fe2O3这样的玻璃化试剂,以及它们的混合物。
下面将参考实例来说明本发明,但是,本发明不应受到下面实例的限制。
实例1-9
将10%磷酸铝乙醇溶液的一半加入到针状FeOOH(针铁矿;TITANKOGYO  K.K)中,该乙醇溶液中含有与Fe的mol%含量相对应的磷酸铝的mol%含量示于表1中,而后将所得物质混合并干燥。在450℃(升温或降温的速度为5℃/min.)和以10升/min.的流量通过100vol.%氢气条件下,在旋转炉内还原上述干燥物质1小时,以获得0.9μm长,0.09μm宽的包覆有磷酸铝层的针状铁粉。加入mol%含量如表1所示的粉末状稀土元素和硼到包覆有磷酸铝层的针状铁粉中,并将它们混合。在800℃(升温或降温的速度为10℃/min)和不流动氩气氛下,将混合物在一旋转炉内持续旋转4小时,以使稀土元素和硼扩散到包覆有磷酸铝层的针状铁粉的表面层中。将剩余的10%的磷酸铝乙醇溶液加入到经处理过的铁粉中,并混合、干燥。在氩气氛和450℃(升温或降温速度为5℃/min)下,将干燥物在旋转炉内保持1小时,以便在粉末上形成外磷酸铝层,这样就得到了永磁体材料。
上述永磁体材料通过使用振动地震波图磁强仪(VSM)在16KOe处测定磁化强度4πl16K(室温),在10KOe处测量居里温度Tc,结果示于表1中,基于不管稀土元素的种类,4πl16K值均大于9KG以及除Ce(260℃)外,大多数稀土元素的Tc大于300℃这两点,认为该材料适用于作为高磁通量永磁体。
[表1]
组成 4πl16KTc
(mol%)    (KG)    (℃)
实例1    84Fe    10X    1B    5La    15.2    380
实例2    84Fe    10X    1B    5Ce    10.8    260
实例3    84Fe    10X    1B    5Pr    11.2    340
实例4    84Fe    10X    1B    5Sm    13.6    400
实例5    84Fe    10X    1B    5Gd    10.9    370
实例6    84Fe    10X    1B    5Tb    9.0    410
实例7    84Fe    10X    1B    5Nd    9.2    350
实例8    79Fe    10X    1B    10Nd    9.8    310
实例9    84Fe    10X    1B    2.5Nd+2.5Tb    9.0    370
实施例10-24以及对照例1、2
将10%磷酸铝乙醇溶液的一半加入与实例1-9相同的针状FeOOH中,该乙醇溶液中含有与Fe的mol%含量相对应的磷酸铝的mol%含量显示于表2中,而后将所得物质混合并干燥。在450℃(升温或降温的速度为5℃/min)和以10升/min的流量通过100vol%氢气条件下,在旋转炉内还原上述干燥物质1小时,以获得0.9μm长,0.09μm宽的包覆有磷酸铝层的针状铁粉。加入mol%含量如表2所示的粉末状稀土元素和硼到包覆有磷酸铝层的针状铁粉中,并将它们混合。在800℃(升温或降温的速度为10℃/min)和不流动氩气氛下,将混合物在一旋转炉内持续旋转4小时,以使稀土元素和硼扩散到包覆有磷酸铝层的针状铁粉的表面层中。将剩余的10%的磷酸铝乙醇溶液加入到经处理过的铁粉中,并混合、干燥。在氩气氛和450℃(升温或降温速度为5℃/min)下,将干燥物在旋转炉内保持1小时,以便在粉末上形成外磷酸铝层,这样就得到了永磁体材料。对于对照例1,还原不加入磷酸铝的针状FeOOH为针状铁粉,而后在相同条件下将稀土元素扩散到其表面上,省去在其上包覆磷酸铝的步骤。
将上述永磁体材料经过定向压模(在10KOe磁场和1.5t/cm2压力下)以及在氩气氛和1000-1200℃下烧结1小时而获得永磁体。
对得到的永磁体进行矫磁力iHc,剩余磁通密度Br以及最大磁能积(BH)max的测量,结果示于表2中。所有实例显示iHc高于对永磁体来说是必须的3KOe,以及如Br大于6KG和(BH)max大于10MGOe这样优异的特性。
[表2]
组成    iHc    Br    (BH)max
(mol%)    (KOe)    (KG)    (MGOe)
对照例1    95Fe    5Nd    4.08    1.08    1.20
实例10    94Fe    1X    5Nd    5.0    6.2    10.2
实例11    92Fe    3X    5Nd    5.2    8.0    13.1
实例12    90Fe    5X    5Nd    6.2    10.3    28.5
实例13    85Fe    10X    5Nd    8.9    12.4    39.0
实例14    84Fe    10X    1B    5Nd    9.4    13.8    41.6
实例15    75Fe    10X    10B    5Nd    10.4    11.0    38.4
实例16    88Fe    10X    1B    1Nd    17.0    12.8    55.0
实例17    79Fe    10X    1B    10Nd    8.8    12.6    35.8
实例18    74Fe    10X    1B    15Nd    5.5    10.7    20.4
实例19    69Fe    10X    1B    20Nd    4.6    7.6    12.6
实例20    79Fe    10X    1B    10Pr    7.4    11.5    32.8
实例21    74Fe    10X    1B    15Pr    5.0    9.8    20.0
实例22    69Fe    10X    1B    20Pr    3.8    8.0    15.4
实例23    84Fe    6X    5B    5Nd    16.3    9.6    45.6
实例24    86Fe    6X    3B    5Nd    15.1    12.3    49.2
对照例2    64Fe    10X    1B    25Nd    5.0    3.5    <1
基于示于表2A中的实例和对照例来考察磷酸铝(X)的作用。注意到在没有硼存在条件下,与现有技术相比获得了优异的磁学特性。在具有5mol%扩散Nd的体系内,少至1mol%磷酸铝涂覆层(0.5mol%内层和0.5mol%外层)就会使Br和(BH)max显著增长,并且随着磷酸铝量的增加,增长的趋势继续,当磷酸铝为10mol%时,iHc为8.9KOe,Br为12.4KG,而(BH)max为39MGOe。可推知当磷酸铝量为12mol%或更多时,仍将具有显著的优良磁学特性。
[表2A](节选自表2)
组成    iHc    Br    (BH)max
(mol%)    (KOe)    (KG)    (MGOe)
对照例1    95Fe    5Nd    4.08    1.08    1.20
实例10    94Fe    1X    5Nd    5.0    6.2    10.2
实例11    92Fe    3X    5Nd    5.2    8.0    13.1
实例12    90Fe    5X    5Nd    6.2    10.3    28.5
实例13    85Fe    10X    5Nd    8.9    12.4    39.0
基于示于表2B中的实例来考察扩散硼的作用。在具有10mol%磷酸铝(X)(5mol%在内层,5mol%在外层)和5mol%扩散稀土元素Nd的体系内,1-10mol%的扩散硼显示不出特别的影响。可推知当硼含量为12mol%或更多时,该趋势明显的。
[表2B](节选自表2)
组成    iHc    Br    (BH)max
(mol%)    (KOe)    (KG)    (MGOe)
实例13    85Fe    10X    5Nd    8.9    12.4    39.0
实例14    84Fe    10X    1B    5Nd    9.4    13.8    41.6
实例15    75Fe    10X    10B    5Nd    10.4    11.0    38.4
同样地,在具有低于10mol%,例如6mol%的磷酸铝(X)以及低于5mol%,例如1mol%扩散Nd条件下,存在适量的硼会增加iHc,Br和(BH)max的值,如实例16所示,iHc、Br和(BH)max分别高达17.0  KOe,12.8  KG和55.0  MGOe。
[表2C](节选自表2)
组成    iHc    Br    (BH)max
(mol%)    (KOe)    (KG)    (MGOe)
实例12    90Fe    5X    5Nd    6.2    10.3    28.5
实例23    84Fe    6X    5B    5Nd    16.3    9.6    45.6
实例24    86Fe    6X    3B    5Nd    15.1    12.3    49.2
实例13    85Fe    10X    5Nd    8.9    12.4    39.0
实例16    88Fe    10X    1B    1Nd    17.0    12.8    55.0
基于示于表2的实例和对照实例来考察扩散稀土元素量的影响。在具有10mol%磷酸铝(X)(5mol%在内层,5mol%在外层)和1mol%扩散硼的体系内,较少的稀土元素Nd的含量显示出较好的磁学特性。而含25mol%Nd的对照例2体系由于(BH)max低于1 MGOe实际上没有什么用处。因为即使稀土元素含量较少就会显示优异的效果,这样与常规通过合金方法制备的稀土元素·硼·铁永磁体相比,本发明磁体很少的稀土元素用量在商业上是合算的。
[表2D](节选自表2)
组成    iHc    Br    (BH)max
(mol%)    (KOe)    (KG)    (MGOe)
实例16    88Fe    10X    1B    1Nd    17.0    12.8    55.0
实例14    84Fe    10X    1B    5Nd    9.4    13.8    41.6
实例17    79Fe    10X    1B    10Nd    8.8    12.6    35.8
实例18    74Fe    10X    1B    15Nd    5.5    10.7    20.4
实例19    69Fe    10X    1B    20Nd    4.6    7.6    12.6
对照例2    64Fe    10X    1B    25Nd    5.0    3.5    <1
由于稀土元素Pr显示出与Nd相同的结果,从示于表1中的对照数据和结果可推知,不同的稀土元素或它们的混合物可用于本发明。
[表2E](节选自表2)
组成    iHc    Br    (BH)max
(mol%)    (KOe)    (KG)    (MGOe)
实例20    79Fe    10X    1B    10Pr    7.4    11.5    32.8
实例17    79Fe    10X    1B    10Nd    8.8    12.6    35.8
实例21    74Fe    10X    1B    15Pr    5.0    9.8    20.0
实例18    74Fe    10X    1B    15Nd    5.5    10.7    20.4
实例22    69Fe    10X    1B    20Pr    3.8    8.0    15.4
实例19    69Fe    10X    1B    20Nd    4.6    7.6    12.6
实例25-27
按照示于表3中原材料用量制备永磁体材料,其中包括具有稀土元素Sm(使用含40重量%Sm的Co-Sm合金粉末)和硼扩散层的包覆有磷酸铝层的针状铁粉,如实例25,含Co的针状铁粉,如实例26(结构示于图2)以及扩散有氮的铁粉,如实例27(结构示于图3)。表4是将表3中以重量百分数表示的组成转为以摩尔百分数表示。如上所述在氩气氛和880-900℃条件下进行Sm和B的蒸气扩散,然后在温度降至(10℃/min)500℃时引入氮气进行氮的扩散。如实例10-24相似的方法进行磷酸铝的包覆处理。如实例10-24相同的方式将所得原料制成烧结永磁体,测量其矫磁力iHc,剩余磁通密度Br以及最大磁能积(BH)max,结果示于表5中,采用含钴的针状铁粉(实例26)或扩散氮对iHc没有什么影响,但能增加Br和(BH)max值。
[表3]
组成(重量数)ts)
针状铁粉    内覆层    扩散层    外层
Fe Co X Sm Co B N2X
实例25    95    -    5    2    3    1    -    5
实例26    85    10    5    2    3    1    -    5
实例27    85    10    5    2    3    1    5    5
[表4]
组成(重量数)
针状铁粉    内覆层    扩散层    外层
Fe Co X Sm Co B N2X
实例25    87.7    -    2.1    0.7    2.6    4.8    -    2,1
实例26    78.8    8.8    2.1    0.7    2.6    4.8    -    2.1
实例27    72.2    8,0    1.9    0.6    2.4    4.4    8.5    1.9
[表5]
iHc(KOe)    Br(KG)    (BH)max(MGOe)
实例25    9.5    12.1    35.1
实例26    9.5    15.1    53.5
实例27    9.5    23.9    113.0
通过本发明可得到具有优良磁学特性、生产方法简便的稀土元素·铁永磁体,稀土元素·铁·硼永磁体和稀土元素·铁·硼·氮永磁体及其制备它们的材料。

Claims (23)

1、一种永磁体材料包含有一种针状铁粉,其表面上相继具有(1)一磷酸铝的包覆层,(2)一稀土元素扩散层或一稀土元素,硼扩散层或一稀土元素·硼·氮扩散层,以及(3)一磷酸铝的包覆层。
2、按照权利要求1的永磁体材料,其中组份的比例为:1-12mol%磷酸铝分子,0.5-20mol%稀土元素原子,0-12mol%硼原子,0-10mol%氮分子,剩余为铁原子。
3、按照权利要求2的永磁体材料,其中组份的比例为:1-10mol%磷酸铝分子,0.5-7mol%稀土元素原子,0-12mol%硼原子,0-10mol%氮分子,剩余为铁原子。
4、按照权利要求1、2或3的永磁体材料,其中针状铁粉含钴。
5、一种生产永磁体材料的方法,其中的针状铁粉表面上相继具有(1)一磷酸铝的包覆层,(2)一稀土元素扩散层或一稀土元素·硼扩散层,以及(3)一磷酸铝的包覆层,该方法包括以下步骤:
(a)用磷酸铝混合并覆盖一种针状针铁矿(FeOOH)晶体,
(b)在300-500℃和氢气氛下还原覆盖有磷酸铝的针状针铁矿(FeOOH)晶体以制备包覆有磷酸铝层的针状铁粉,
(c)在有稀土元素或稀土元素和B存在情况下,通过在氩气氛和650-1000℃下加热包覆有磷酸铝层的针状铁粉使稀土元素或稀土元素和B扩散到磷酸铝的表面层中,
(d)用磷酸铝混合并覆盖稀土元素扩散粉末或稀土元素和B扩散粉末,
(e)在氩气氛和300-500℃条件下,通过加热覆盖有磷酸铝的稀土元素扩散粉末或稀土元素和硼扩散粉末,使稀土元素扩散粉末或稀土元素和硼扩散粉末外包覆磷酸铝。
6、按照权利要求5的生产永磁体材料的方法,其中在有稀土元素或稀土元素和硼存在情况下,通过在氩气氛和650-1000℃下加热包覆有磷酸铝层的针状铁粉,使稀土元素或稀土元素和硼扩散到磷酸铝的表面层中的步骤,是在与稀土元素或稀土元素和硼的蒸气相接触条件下加热包覆有磷酸铝层的针状铁粉的步骤。
7、按照权利要求5或6的生产永磁体材料的方法,其中组分比例为:1-12mol%磷酸铝分子,0.5-20mol%稀土元素原子,0-12mol%硼原子,剩余的是铁原子。
8、按照权利要求7的生产永磁体材料的方法,其中组分比例为:1-10mol%磷酸铝分子,0.5-7mol%稀土元素原子,0-12mol%硼原子,剩余的是铁原子。
9、按照权利要求5、6、7或8的生产永磁体材料的方法,其中在制备包覆有磷酸铝层的针状铁粉前,将针状针铁矿(FeOOH)晶体与钴粉末或钴·铁粉末混合。
10、一种生产永磁体材料的方法,其中针状铁粉的表面相继具有(1)一磷酸铝的包覆层,(2)一稀土元素·氮扩散层或一稀土元素·硼·氮扩散层,以及(3)一磷酸铝的包覆层,该方法包括以下步骤:
(a)用磷酸铝混合并覆盖一种针状针铁矿(FeOOH)晶体,
(b)在300-500℃和氢气氛下还原覆盖有磷酸铝的针状针铁矿(FeOOH)晶体以制备包覆有磷酸铝层的针状铁粉,
(c)在有稀土元素或稀土元素和B存在情况下,通过在氩气氛和650-1000℃下加热包覆有磷酸铝层的针状铁粉使稀土元素或稀土元素和B扩散到磷酸铝的表面层中,
(d)通过在氮气氛和500-300℃条件下,加热稀土元素扩散或稀土元素和硼扩散粉末,将氮扩散到稀土元素扩散或稀土元素和硼扩散表面层中,
(e)用磷酸铝混合并覆盖稀土元素和氮扩散粉末或稀土元素、硼和氮扩散粉末,以及
(f)在氩气氛和300-500℃条件下加热覆盖有磷酸铝的稀土元素扩散粉末或稀土元素、硼和氮扩散粉末,使稀土元素和氮扩散粉末或稀土元素、硼和氮扩散粉末外包覆有一层磷酸铝。
11、按照权利要求10的生产永磁体材料的方法,其中在有稀土元素或稀土元素和硼存在情况下,通过在氩气氛和650-1000℃下加热包覆有磷酸铝层的针状铁粉,使稀土元素或稀土元素和硼扩散到磷酸铝的表面层中的步骤,是在与稀土元素或稀土元素和硼的蒸气相接触条件下加热包覆有磷酸铝层的针状铁粉的步骤。
12、按照权利要求10或11的生产永磁体材料的方法,其组分比例为:1-12mol%磷酸铝分子,0.5-20mol%稀土元素原子,0-12mol%硼原子,0.1-10mol%氮分子,剩余为铁原子。
13、按照权利要求12的生产永磁体材料的方法,其组分比例为:1-10mol%磷酸铝分子,0.5-7mol%稀土元素原子,0-12mol%硼原子,0.1-10mol%氮分子,剩余为铁原子。
14、按照权利要求10、11、12或13的生产永磁体材料的方法,其中在制取包覆有磷酸铝层的针状铁粉步骤前将针状针铁矿(FeOOH)晶体与钴粉末或钴·铁粉末混合。
15、通过对针状铁粉压模以及对所得的压实体在磁场下烧结而制得的烧结永磁体,其中针状铁粉表面上相继具有一磷酸铝的包覆层,一稀土元素扩散层或一稀土元素·硼扩散层或稀土元素·硼·氮扩散层以及一磷酸铝的包覆层。
16、按照权利要求15的烧结永磁体,其中组分比例为:1-12mol%磷酸铝分子,0.5-20mol%稀土元素原子,0-12mol%硼原子,0-10mol%氮分子,以及剩余的为铁原子。
17、按照权利要求16的烧结永磁体,其中组分比例为:1-10mol%磷酸铝分子,0.5-7mol%稀土元素原子,0-12mol%硼原子,0-10mol%氮分子,以及剩余的为铁原子。
18、按照权利要求15、16或17的烧结永磁体,其中的针状铁粉含有钴。
19、通过在磁场下对一针状铁粉和粘合剂的混合物进行热压模制得的粘结永磁体,其中针状铁粉表面上相继具有一磷酸铝的包覆层,一稀土元素扩散层或一稀土元素·硼扩散层或一稀土元素·硼·氮扩散层以及一磷酸铝的包覆层。
20、按照权利要求19的粘结永磁体,其中组分比例为:1-12mol%磷酸铝分子,0.5-20mol%稀土元素原子,0-12mol%硼原子,0-10mol%氮分子,以及余下的为铁原子。
21、按照权利要求19的粘结永磁体,其中组分比例为:1-10mol%磷酸铝分子,0.5-7mol%稀土元素原子,0-12mol%硼原子,0-10mol%氮分子,以及余下的铁原子。
22、按照权利要求19、20或21的粘结永磁体,其中针状铁粉含钴。
23、按照权利要求19、20、21或22的粘结永磁体,其中粘合剂为一环氧树脂或一玻璃化试剂。
CN95103595A 1994-03-30 1995-03-27 永磁材料、其制造方法和永磁体 Pending CN1111800A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP82668/94 1994-03-30
JP6082668A JPH07272913A (ja) 1994-03-30 1994-03-30 永久磁石原料、その製造法及び永久磁石

Publications (1)

Publication Number Publication Date
CN1111800A true CN1111800A (zh) 1995-11-15

Family

ID=13780817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95103595A Pending CN1111800A (zh) 1994-03-30 1995-03-27 永磁材料、其制造方法和永磁体

Country Status (9)

Country Link
US (4) US5453137A (zh)
EP (1) EP0675511B1 (zh)
JP (1) JPH07272913A (zh)
KR (1) KR100390308B1 (zh)
CN (1) CN1111800A (zh)
AT (1) ATE152853T1 (zh)
CA (1) CA2133824A1 (zh)
DE (1) DE69403059T2 (zh)
TW (1) TW244390B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085954C (zh) * 1996-01-10 2002-06-05 川崎定德株式会社 用于成形性良好的永久磁铁原料粉末的制造方法
CN107946012A (zh) * 2017-11-20 2018-04-20 苏州科茂电子材料科技有限公司 一种复合型磁性材料及其制备方法
CN109360703A (zh) * 2018-11-29 2019-02-19 钢铁研究总院 一种热压低温扩散热变形纳米晶磁体及其制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203715A (ja) * 1995-01-30 1996-08-09 Takahashi Yoshiaki 永久磁石原料及びその製造法
KR100366860B1 (ko) * 1996-02-15 2003-03-15 다카하시 요시아키 영구자석원료및그제조법
TW434589B (en) * 1996-07-17 2001-05-16 Sanei Kasei Co Ltd Raw material powder for modified permanent magnets and production method of the same
JP3647995B2 (ja) * 1996-11-06 2005-05-18 株式会社三徳 永久磁石用粉末並びにその製造方法および該粉末を用いた異方性永久磁石
JP3801418B2 (ja) * 1999-05-14 2006-07-26 株式会社Neomax 表面処理方法
JP3882545B2 (ja) * 2000-11-13 2007-02-21 住友金属鉱山株式会社 高耐候性磁石粉及びこれを用いた磁石
US20040007063A1 (en) * 2002-05-29 2004-01-15 California Institute Of Technology Micro machined polymer beam structure method and resulting device for spring applications
GB0300771D0 (en) * 2003-01-14 2003-02-12 Rolls Royce Plc Rare earth-transmission metal alloy articles
WO2005040047A1 (ja) * 2003-10-27 2005-05-06 Y.T.Magnet Co., Ltd. 還元水素水の製造方法とその製造装置
US7285329B2 (en) 2004-02-18 2007-10-23 Hitachi Metals, Ltd. Fine composite metal particles and their production method, micro-bodies, and magnetic beads
JP4583048B2 (ja) * 2004-02-26 2010-11-17 信越化学工業株式会社 希土類磁石密封体およびipmモータの製造方法
US8911663B2 (en) * 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications
DE102012204083A1 (de) * 2012-03-15 2013-09-19 Siemens Aktiengesellschaft Nanopartikel, Permanentmagnet, Motor und Generator
CN103849831B (zh) * 2014-03-29 2016-05-11 蚌埠铁路五金建材总厂 一种铁路工务配件复合防蚀处理工艺
CN110890190A (zh) * 2019-11-06 2020-03-17 有研稀土新材料股份有限公司 一种异方性粘结磁粉及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2625106C2 (de) * 1976-06-04 1982-03-11 Bayer Ag, 5090 Leverkusen Eisenoxidschwarz-Pigmente mit verbesserter Oxidationsbeständigkeit und Verfahren zu ihrer Herstellung
JPS5919964B2 (ja) * 1981-03-30 1984-05-10 大日本インキ化学工業株式会社 強磁性金属粉末の製造方法
JPS59227730A (ja) * 1983-06-06 1984-12-21 Ube Ind Ltd 磁性粉末の製造法
US4668283A (en) * 1984-06-25 1987-05-26 Mitsui Toatsu Chemicals, Incorporated Magnetic powder and production process thereof
JPS6134242A (ja) * 1984-07-23 1986-02-18 帝人株式会社 無撚無糊織物の製織方法
EP0248665B1 (en) * 1986-06-06 1994-05-18 Seiko Instruments Inc. Rare earth-iron magnet and method of making same
JPS6367705A (ja) * 1986-09-09 1988-03-26 Nissan Chem Ind Ltd 磁性鉄粉の製造方法
JPS63109105A (ja) * 1986-10-25 1988-05-13 Chisso Corp 強磁性金属微粒子の製造方法
US4942098A (en) * 1987-03-26 1990-07-17 Sumitomo Special Metals, Co., Ltd. Corrosion resistant permanent magnet
JPH0666176B2 (ja) * 1987-06-03 1994-08-24 鐘淵化学工業株式会社 樹脂結合型磁石の製造方法
JPS6411304A (en) * 1987-07-06 1989-01-13 Kanegafuchi Chemical Ind Permanent plastic magnet
US4970124A (en) * 1988-05-11 1990-11-13 Eastman Kodak Company New magnetic metallic particles using rare-earth elements
JPH0327502A (ja) * 1989-03-07 1991-02-05 Seiko Instr Inc 希土類磁石微粉末の作製法
WO1991001548A1 (en) * 1989-07-21 1991-02-07 Tdk Corporation Magnetic recording medium
JPH0372124A (ja) * 1989-08-11 1991-03-27 Hiroaki Hino 水洗便器内用水飛散防止剤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085954C (zh) * 1996-01-10 2002-06-05 川崎定德株式会社 用于成形性良好的永久磁铁原料粉末的制造方法
CN107946012A (zh) * 2017-11-20 2018-04-20 苏州科茂电子材料科技有限公司 一种复合型磁性材料及其制备方法
CN109360703A (zh) * 2018-11-29 2019-02-19 钢铁研究总院 一种热压低温扩散热变形纳米晶磁体及其制备方法

Also Published As

Publication number Publication date
DE69403059T2 (de) 1997-08-28
US5569333A (en) 1996-10-29
DE69403059D1 (de) 1997-06-12
US5453137A (en) 1995-09-26
KR100390308B1 (ko) 2003-09-06
ATE152853T1 (de) 1997-05-15
EP0675511B1 (en) 1997-05-07
US5569336A (en) 1996-10-29
TW244390B (en) 1995-04-01
US5569335A (en) 1996-10-29
CA2133824A1 (en) 1995-10-01
KR950027854A (ko) 1995-10-18
EP0675511A1 (en) 1995-10-04
JPH07272913A (ja) 1995-10-20

Similar Documents

Publication Publication Date Title
CN1111800A (zh) 永磁材料、其制造方法和永磁体
CN1169165C (zh) R-t-b系烧结型永磁体
KR100452787B1 (ko) 이방성 자석 분말의 제조방법, 이방성 자석 분말의 원료분말 및 본드 자석
JP6595542B2 (ja) R‐Fe‐B系焼結磁石を製造する方法
EP2477199B1 (en) Rare-earth magnet molding and method for manufacturing the same
EP2508279B1 (en) Powder for magnet
CN1196144C (zh) 各向同性粉末磁体材料,其制备方法及树脂粘结磁体
CN102665970B (zh) 磁性部件用粉末、粉末成形体及磁性部件
CN1144240C (zh) 磁性材料
CN101030467A (zh) 功能梯度稀土永磁体
CN104752049A (zh) 用于制备稀土磁体的方法
CN1637962A (zh) 复合烧结磁性材料及其制法、及使用该材料的磁性元件
CN1261717A (zh) 矩形比提高的r-t-b系稀土烧结磁体及其制造方法
CN1910706A (zh) 软磁材料和压粉磁芯及其制备方法
CN1700369A (zh) 高频磁芯和使用该高频磁芯的电感元件
CN1293435A (zh) 各向异性稀土类磁粉的制造方法
EP2779179A2 (en) R-T-B-based rare earth magnet particles, process for producing the R-T-B-based rare earth magnet particles, and bonded magnet
CN1460270A (zh) 稀土类磁体及其制造方法
CN107492429A (zh) 一种耐高温钕铁硼磁体及其制备方法
CN1735947A (zh) 纳米晶态和纳米复合稀土永磁体材料及其制造方法
CN1873058A (zh) 镀敷液、导电性材料和导电性材料的表面处理方法
CN1195868A (zh) 永久磁铁材料及粘合磁铁
JP2012199423A (ja) 異方性磁粉の製造方法及び異方性ボンド磁石
JP7123469B2 (ja) 焼結磁石の製造方法および焼結磁石
CN1177821A (zh) 硬磁性材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication