CN1111597A - 烃的催化部分氧化的方法 - Google Patents

烃的催化部分氧化的方法 Download PDF

Info

Publication number
CN1111597A
CN1111597A CN94119816A CN94119816A CN1111597A CN 1111597 A CN1111597 A CN 1111597A CN 94119816 A CN94119816 A CN 94119816A CN 94119816 A CN94119816 A CN 94119816A CN 1111597 A CN1111597 A CN 1111597A
Authority
CN
China
Prior art keywords
catalyzer
aforementioned
oxygen
gas
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN94119816A
Other languages
English (en)
Other versions
CN1036987C (zh
Inventor
L·L·G·雅各布斯
P·W·莱德诺
A·G·G·利马赫鲁
R·J·什尼比克
K·A·冯克曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1111597A publication Critical patent/CN1111597A/zh
Application granted granted Critical
Publication of CN1036987C publication Critical patent/CN1036987C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1029Catalysts in the form of a foam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种烃原料的催化部分氧化的方法,该方法包括 将一种含烃原料和含氧气体的原料与一种催化剂在 反应区接触,所述催化剂以沟路曲折率至少为1.1和 每平方厘米至少有750个孔的固定排列方式设置在 反应区。

Description

本发明涉及烃的催化部分氧化的方法,特别涉及由甲烷,天然气,伴生气或其它轻烃源制备一氧化碳和氢气混合物的方法。
烃例如甲烷或天然气在催化剂存在下的部分氧化是一个有吸引力的制备一氧化碳和氢气混合物(本领域称为合成气)的方法。烃的部分氧化是一个高度放热反应,当烃为甲烷时,按下列反应进行。
大量方法被建议用于催化部分氧化反应。一种最适合工业应用的方法是将原料与以固定排列方式例如颗粒的固定床或整材结构设置的催化剂接触。大量文献公开了使用各种固定床催化剂进行烃特别是甲烷的催化部分氧化实验。
欧洲专利申请公告第0303438号(EP-A-0303438)公开了一种烃原料催化部分氧化的方法,其中烃原料,氧气或含氧气体和任选的水蒸汽的混合物被加到催化部分氧化区以与其中的催化剂接触。用于该方法中的催化剂包括各种催化活性组分例如钯,铂、铑、铱、锇,钌,镍,铬,钴,铈,镧和它们的混合物。此外,在EP-A-0303438中指出通常认为不具有催化活性的物质也可以用作催化剂例如难熔氧化物如堇青石,富铝红柱石,富铝红柱石钛酸铝(mullite alu-minium titanate),氧化锆尖晶石和氧化铝。催化剂可以是各种形状,例如波纹形金属叠合板以形成延长的通道或丝网。然而在EP-A030438中,优选使用挤出的蜂窝状整材形状催化剂,这些整材包括大量平行通道,这些平行通道沿原料和产品气体流动方向延伸并穿过该整材。
European patent No.0262 947(EP-B-0262947)公开了一种部分氧化烃以生产氢气的方法,其中烃和氧气的混合物被喷入到催化剂中。公开在EP-B-0262947中的催化剂包括承载在难熔固体上的铂和氧化铬。描述在EP-B-0262947中的载体结构是用于纯化机动车或化工厂废气的蜂窝状整材载体和颗粒载体,优选包括最大颗粒尺寸为1到4mm例如1.5mm的颗粒。
D.A.Hickman和L.D.Schmidt“synthesis Gas Formation by Direct oxidation of methane over pt Monoliths”,Journal of Catalysts 138,267-282,1992)对在含铂或铑的催化剂存在下和在600到15000K(337到1237℃)的温度下甲烷的部分氧化进行了实验。所用催化剂是金属网形,涂金属发泡整材形和涂金属挤出整材形。金属网催化剂包括1到10层40目或80目的网。发泡整材是α-氧化铝并被描述为有敞开孔的海绵状结构。所用试样正常孔率为30到50孔/英寸(PPS)。挤出整材是堇青石挤出整材,它有400方孔/英寸2且有直线平行通道,在所研究的气体流速下这些通道使流过其中的气体为层流流动。
J.K.Hockmath(“catalytic partial oxidation of Methane over monolith supported Catalyst”,Applied Catalysis B:Environmen-tal,1(1992)89-100)报导了使用铂和钯混合承载在堇青石整材体上的催化剂的甲烷的催化部分氧化。
大量文献报导了使用催化剂颗粒固定床形式的催化剂的学术实验。
A.T.Ashcroft等人(“selective oxidation of methane to syn-thesis gas using transition metal Catalysts",Natcue,Vol,344,No.6264,page319 to 321,22nd March,1990)公开了在各种含钌催化剂存在下部分氧化甲烷成合成气的方法。实验的目的是确定部分氧化过程能在温和的条件和低温下进行。为此,实验中使用了40,000/hr的低气时空速,常压和约775℃的温度。所用催化剂包括少量固体粉末的催化剂。
P.D.F.Vernon等人(“partial oxidation of methane to syn-thesis Gas",Catalysts letlers  6(1990)181-186)公开了各种实验,其中使用含或者承载在氧化铝或者与氧化物前体混合的镍,钌、铑,钯,铱或铂的催化剂。而且所报导的实验限于仅使用温和的操作条件和使用少量设置在固定床的丸片形催化剂的催化部分氧化过程。作者们在“partial oxidation of Methane to synthesis gas,and Carbon Dioxide as an oxidising Agent for Methane Comersion”,Catalysis Today,13(1992)417-426中报导了相同的实验。
R.H.Jones等人(“Catalytic Conversion of Methane to Syn-thesis gas over Europium Iridate,Eu2Ir2O7”,Catalysis Letters 8(1991)169-174)报导了使用铱酸铕Eu2Ir2O7的甲烷的选择性部分氧化。在缓和的条件即1个大气压和873K(600℃)下研究了反应。催化剂通过研磨和随后的压片以形成丸片来制备。压片后的催化剂添充到多孔二氧化硅玻璃料上并直接用于实验中。
美国专利5149464(US-A-5,149,464)涉及一种通过在约650℃到900℃下将反应物气体混合物与一种固体催化剂接触以选择性地氧化甲烷成一氧化碳和氢气的方法,所述催化剂被描述为:
(a)式MxM yOz所示的催化剂,其中M是至少一种选自Mg,B,Al,Ln,Ga,Si,Ti,Zr和Hf的元素;Ln是至少一种选自镧和镧系元素的元素;
(b)M′是d-区(d-block)过渡金属氧化物;或
(c)在难熔载体上的d-区过渡金属;或
(d)一种通过在反应条件或非氧化条件下加热a)或b)形成的催化剂。
在US-A-5,149,464所述的d-区过渡金属选自原子序数21到29,40到47和72到79的金属元素,金属钪、钛、钒、铬、锰、铁、钴、镍、锆、铜、铷、钼、锝、钌、铑,钯、银,铪、钽、钨、铼、锇、铱、铂和金,在US-A-5,149,464中优选的金属是元素周期表中Ⅷ族元素即铁,锇,钴,铼、铱、钯、铂、镍和钌。
US-A-5,149,464所述方法在650℃到900℃下,优选700℃到800℃下操作,在US-A-5,149,464中描述了各种实验,其中对含Ⅷ族金属的各种催化剂进行了实验,包括氧化钌,praesidi-um/钌的氧化物,pyrochlores,在氧化铝上的钌,在氧化铝上的铑,在氧化铝上的钯,在氧化铝上的铂,镍/铝的氧化物,钙铁矿和氧化物。
类似的对用于催化部分氧化过程的催化剂公开在WO92/1199中。WO92/11199具体地公开了使用含承载在氧化铝上的铱,钯,钌,铑,镍和铂的催化剂的实验。所有实验都在温和的过程条件下进行,典型条件是压力为1个大气压,温度为1050K(770℃)和气时空速约为20,000/hr。
在US-A-5,149,464和WO  92/11199中所述的实验使用以固定床设置的固体颗粒形催化剂,这可通过将催化剂颗粒填充到在两端带有氧化硅绒毛塞的反应管中来完成。
为了在工业上成功地操作,催化部分氧化过程必须能在高气时空速下完成高的烃原料的转化。此外,对所需产品一氧化碳和氢气的选择性必须很高。为使用制造和操作皆经济的工艺设备,必须满足这些因素。在这方面,用固定床催化剂目前存在的主要问题是压力降妨碍了工业上所要求的高气时空速。欧洲专利申请第92201879.1(EP  92201879.1)(至今仍未公告)公开了烃的催化部分氧化法其中催化剂以固定床形式被设放置,固定床有着高沟路曲折率即至少为1.1。以这种方式,发现完成工业上可接受的转化率和产率仅需要很薄的催化剂固定床床层。因为固定床层很薄,因而经过该床层的压力降很低,这最终使得可使用很高的气时空速。
EP  92201879.1公开了使用固定床排列方式其中催化剂为颗粒形或为整材结构如陶瓷发泡体。适宜的陶瓷发泡体被描述为每英寸有30到150个孔(每厘米有12-60个孔)。
现在惊奇地发现如果使用以满足一套很具体标准的固定床排列方式放置的催化剂,则在EP  92201879.1中公开的催化部分氧化法的操作效率可大大地改进。现在发现如果固定床具有高沟路曲折率和多孔数则发现过程的选择性大大改进。具体地说,现在发现如果固定床的沟路曲折率大于1.1且每平方厘米有至少750个孔则选择性可大大改进。此外,现在发现使用满足这两个标准的固定床排列方式能使催化剂中催化活性金属用量降低,同时仍维持高活性和高选择性。
因此本发明提供一种烃原料的催化部分氧化的方法,该方法包括将一种含烃原料和含氧气体的原料与一种催化剂在反应区接触,所述催化剂以沟路曲折率至少为1.1和每平方厘米至少有750个孔的固定排列方式设置在反应区。
本发明的方法可用来由任何气态烃或低沸点的烃原料来制备一氧化碳和氢气混合物。与催化剂接触的烃原料为气态。该方法特别适合用于甲烷,天燃气,伴生气或其它轻烃源的部分氧化。用于本文的术语“轻烃”是指有1到5个碳原子的烃。该方法最好用于转化来自天然存在的甲烷源的气体,这种气体含大量的二氧化碳。原料优选含至少50%(体积),优选至少75%(体积),特别优选至少80%(体积)的甲烷。
烃原料以与含氧气体混合物的形式与催化剂接触。空气适合用作含氧气体。但可优选使用基本纯的氧气作为含氧气体。这样可省去使用空气作为含氧气体时处置大量惰性气体的麻烦。原料可任选地含水蒸汽。
含甲烷的原料和含氧气体以使得氧碳比为0.3到0.8,优选0.45到0.75的量混合。所述的氧碳比是是指以分子(O2)形式的氧与含甲烷原料中的碳原子的比。优选氧碳比为0.45到0.7,具有化学计量比(0.5)的氧碳比即0.45-0.65是特别优选的,如果原料中有水蒸汽,水蒸汽与碳之比优选从大于0到3.0;更优选0到2.0。含甲烷原料,含氧气体和水蒸汽(如果有的话)最好在与催化剂接触前分分混合。
本发明的方法可在任何适宜的压力下操作。但,该方法优选在高压下操作,即压力远高于大气压。该方法可在高达150巴的压力下操作。更优选该方法在2到125巴,特别是2到100巴压力下操作。
该方法可以在任何适宜的温度下进行。然而,在优选高压用于该方法的条件下,原料优选与催化剂在高温下接触以获得所希望的转化率。因此,烃原料和含氧气体混合物优选在大于950℃下,更优选在950到1300℃,特别是在1000到1200下与催化剂接触。烃原料和含氧气体优选在与催化剂接触前被预热。
烃原料和含氧气体可以任何适宜的空速下加到工艺中。本发明的优点在于能达到很高的气时空速。这样用于本方法的典型的空速(表示为标准升气体/kg 催化剂/hr)为20,000到100,000,000Nl/kg/hr,优选50,000到50,000,000Nl/kg/hr。500,000到30,000,000Nl/kg/hr的空速是特别优选的。
用于烃的催化部分氧化的催化剂组成是本领域公知的。用于本发明方法中的优选的催化剂包括选自元素周期表Ⅷ族的金属作为催化活性组分。本说明书中所述元素周期表是指发表在CRC  Handbook of Chemistry and Physics(第68版)中CAS版本。用于本方法的优选的催化剂包括选自钌、铑、钯、锇、铱和铂的金属。包括作为催化活性金属的钌、铑或铱的催化剂特别优选用于本方法中。
催化活化金属最适合承载在载体上。适合的载体材料是本领域公知的且包括难熔氧化物如氧化硅、氧化铝、二氧化钛、氧化锆或它们的混合物。混合难熔氧化物即含至少两个阳离子的难熔氧化物也可用作催化剂载体材料。
催化活性金属可用本领域公知的方法承载在难熔氧化物载体上。
用于沉积金属到载体上的最适宜的方法是浸渍,该方法通常包括用一种催化活性金属化合物的溶液接触载体材料,随后干燥和煅烧所得材料。
在使用本发明方法时,以固定排列方式放置催化剂。固定排列方式可包括催化剂颗粒固定床。另外,固定排列方式也可包括整材结构形式的催化剂。固定排列方式可由单个整材结构组成或也可包括多个独立的整材结构合并形成的固定排列方式。最优选的整材结构包括陶瓷发泡体。用于本方法的适宜的陶瓷发泡体可商购。
如上所述,固定排列方式的催化剂有一个高沟路曲折率是本发明方法的一个必要特征。术语“沟路曲折率”是本领域普通术语,当针对固定催化剂床时,该术语能被定义为气体流经该床的路径长度与经过该床最短直线路径的长度之比。这样,在先有技术中描述的包括大量沿气体流动方向穿过该结构的直平行通道的蜂窝式整材结构的沟路曲折率为1.0。催化剂颗粒固定床通常有1.5的沟路曲折率,陶瓷发泡体可制成沟路曲折率在1.5到4.0甚或更高。通常,用于本发明方法的催化剂固定床排列方式的沟路曲折率在1.1到10.0,更优选到5.0。最适宜的沟路曲折率范围为从1.3到4.0。
此外,固定排列的催化剂包括大量的孔是本发明方法必要的特征。用于本文的术语“孔”是指固定排列中催化剂两个相邻部分的空间或孔隙。这样,对于固定床催化剂颗粒,术语“孔”指两个相邻颗粒间的空间。对于整材结构,例如陶瓷发泡体,术语“孔”是指陶瓷体结构相邻部分或地区的开口或空间。这样可以认为本发明的孔有0.1mm量级的标准直径。这与催化剂载体材料本身具有孔(例如当使用由多孔难熔氧化物制得的陶瓷发泡体或颗粒的情况)不同。
固定排列方式包括每平方厘米至少750个孔。优选,固定排列方式每平方厘米有约1000到约15000个孔,更优选每平方厘米有约1250到约10000个孔,最优选每平方厘米有从大于3600到约10000个孔。
很清楚本发明方法中固定排列的催化剂是多孔结构。固定排列方式典型的空隙分数为0.6到0.9。
烃原料和含氧气体的气体混合物最好在绝热条件下与催化剂接触。对于本说明书而言,术语“绝热的”是指这样的反应条件其中基本上消除所有热量的损失和来自反应区的热辐射损失,除了离开反应器气体流带走的热量外。
另一方面,本发明涉及由上述方法制得的一氧化碳或氢气。
用本发明方法制备的一氧化碳和氢气混合物特别适合用于烃合成中,例如用费-托合成法,或用于合成氧化烃如甲醇中。转化一氧化碳和氢气混合物成这类产品的方法是本领域公知的。
借助下列说明性实施例进一步描述本发明的方法,其中实施例1和2是本发明方法的实施例,实施例3和4仅用于比较。
实施例1
商购的氧化锆陶瓷发泡体(ZrO2,每平方厘米1550个孔)用常规的浸渍技术用铑浸渍以使最终的铑含量为5%(重量)
制造一个反应器,它包括同心安装在透明聚碳酸酯管外部的透明蓝玉石管。上述制备的含铑催化剂放置到蓝宝石管中以形成沟路曲折率为1.5到2.5和每平方厘米有1550个孔的催化剂固定床。甲烷和氧气在引入到反应器与固定床催化剂接触前充分混合。甲烷和氧气的量足以使氧碳比为0.62。加到反应器中的气体原料混合物的气时空速(GHSV)为500,000Nl/kg/hr和压力为3.3巴。
催化剂床层的操作温度用光学高温测定法测量。离开反应器的气体混合物组成用气相色谱法测量。确定转化率和对一氧化碳和氢气的选择性(基于被转化的甲烷)。反应器操作条件和实验结果综述在下表中。
实施例2
重复实施例1的方法以制备和试验承载在氧化锆发泡体上铑催化剂,该催化剂含0.5%(重量)的铑。
操作条件和实验结果给出在下表中。
实施例3
为比较,重复实施例1的方法以制备和测试承载在氧化锆陶瓷发泡体上的铑含量为5%(重量)的催化剂。商购的氧化锆陶瓷发泡体用作原料,所得的固定排列方式的沟路曲折率为1.5到2.5和每平方厘米有390个孔。
操作条件和试验结果给出在下表。
实施例4
为比较,重复实施例1的方法以制备和测试承载在氧化锆陶瓷发泡体上的铑含量为1%(重量)的催化剂。商购的氧化锆陶瓷发泡体用作原料,所得的固定排列方式的沟路曲折率为1.5到2.5和每平方厘米有390个孔。
操作条件和试验结果给出在下表。
从下表可看出,示例在实施例1和2的本发明方法在操作效率和成本方面有显著的进步。具体地说,与实施例3和4比较,实施例1和2的转化率相当高。此外,本发明的方法较对比方法氢气的选择性有相当大的改进。另外,当本发明使用固定排列方式,用于催化剂中催化活性组分的量例如铑可大大降低而不会对过程的转化率和产率有不利影响。而对比例3和4,当铑含量降低时,甲烷的转化率和氢气的选择性皆明显下降。
实施例 1 2 3 4
固定催化剂排列方式沟路曲折率孔数/平方厘米铑  (%wt) 1.5-2.515505 1.5-2.515500.5 1.5-2.53905 1.5-2.53901
操作条件温度(℃)压力(巴)GHSV (1000 Nl/kg/hr)氧/碳比 11553.35000.62 10703.35000.62 11083.34000.62 11503.34000.62
CH4转化率(%)CO选择性(%)1H2选择性(%)2 96.790.990.0 97.591.890.1 87.392.281.8 83.692.278.3
1 基于CH4转化率的CO选择性
2 基于CH4转化率的H2选择性

Claims (14)

1、一种烃原料的催化部分氧化的方法,该方法包括将一种含烃原料和含氧气体的原料与一种催化剂在反应区接触,所述催化剂以沟路曲折率至少为1.1和每平方厘米至少有750个孔的固定排列方式设置在反应区。
2、按照权利要求1的方法,其特征在于烃原料包括甲烷,天然气,伴生气或轻烃源。
3、按照权利要求1或2的方法,其特征在于含氧气体是基本纯的氧气。
4、按照任一个前述权利要求的方法,其特征在于原料含烃原料和含氧气体的量使氧与碳之比为0.3到0.8,优选0.45到0.75,更优选从0.45到0.65。
5、按照任一个前述权利要求的方法,其特征在于原料与催化剂在压力最高为150巴,优选从2到125巴,更优选从2到100巴下接触。
6、按照任一个前述权利要求的方法,其特征在于原料与催化剂在温度为950到1300℃,优选1000到1200℃下接触。
7、按照任一个前述权利要求的方法,其特征在于原料与催化剂在气时空速为20,000到100,000,000Nl/kg/hr,优选从50,000到50,000,000Nl/kg/hr,更优选从500,000到30,000,000Nl/kg/hr。
8、按照任一个前述权利要求的方法,其特征在于催化剂包括选自铑,铱或钌的金属。
9、按照任一个前述权利要求的方法,其特征在于催化剂以催化剂颗粒的固床层形式或以陶瓷发泡体形式,更优选以陶瓷发泡体形式的固定排列方式设置。
10、按照任一个前述权利要求的方法,其特征在于催化剂的固定排列方式的沟路曲折率为1.1到约10.0,优选为1.1到约5.0,更优选1.3到约4.0。
11、按照任一个前述权利要求的方法,其特征在于催化剂的固定排列方式每平方厘米有约1000到约15000个孔,优选每平方厘米有约1250到约10000个孔,更优选每平方厘米有大于3600到10000个孔。
12、按照任一个前述权利要求的方法,其特征在于固定排列方式的空隙分数为约0.6到约0.9。
13、按照任一个前述权利要求的方法,其特征在于原料与催化剂在基本绝热的条件下进行接触。
14、按照权利要求1到13任一项的方法所制得的一氧化碳或氢气。
CN94119816A 1993-11-29 1994-11-25 烃的催化部分氧化的方法 Expired - Fee Related CN1036987C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP93203331.9 1993-11-29
EP93203331 1993-11-29

Publications (2)

Publication Number Publication Date
CN1111597A true CN1111597A (zh) 1995-11-15
CN1036987C CN1036987C (zh) 1998-01-14

Family

ID=8214193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94119816A Expired - Fee Related CN1036987C (zh) 1993-11-29 1994-11-25 烃的催化部分氧化的方法

Country Status (16)

Country Link
US (1) US5510056A (zh)
EP (1) EP0656317A1 (zh)
JP (1) JPH07196301A (zh)
KR (1) KR950014272A (zh)
CN (1) CN1036987C (zh)
AU (1) AU679128B2 (zh)
BR (1) BR9404754A (zh)
CA (1) CA2136682A1 (zh)
CO (1) CO4370053A1 (zh)
DZ (1) DZ1828A1 (zh)
NO (1) NO944550L (zh)
NZ (1) NZ264970A (zh)
RU (1) RU94042244A (zh)
SG (1) SG89228A1 (zh)
TW (1) TW299307B (zh)
ZA (1) ZA949424B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298615C (zh) * 2004-11-02 2007-02-07 中国石油化工集团公司 一种烃类制氢催化剂及其制备方法
CN110966065A (zh) * 2018-10-01 2020-04-07 株式会社电装 废气净化过滤器及其制造方法

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042100C (zh) * 1993-04-22 1999-02-17 曼内斯曼股份公司 催化剂用于制备合成气的用途
US5441581A (en) * 1994-06-06 1995-08-15 Praxair Technology, Inc. Process and apparatus for producing heat treatment atmospheres
PE51997A1 (es) * 1995-11-27 1997-12-29 Shell Int Research Procedimiento para la preparacion de un catalizador o precursor catalitico
EP0951345B1 (en) * 1997-01-07 2003-03-26 Shell Internationale Researchmaatschappij B.V. Fluid mixer and process using the same
US5980596A (en) * 1997-04-25 1999-11-09 Exxon Research And Engineering Co. Multi-injector autothermal reforming process and apparatus for producing synthesis gas (law 565).
US6267912B1 (en) 1997-04-25 2001-07-31 Exxon Research And Engineering Co. Distributed injection catalytic partial oxidation process and apparatus for producing synthesis gas
US5980782A (en) * 1997-04-25 1999-11-09 Exxon Research And Engineering Co. Face-mixing fluid bed process and apparatus for producing synthesis gas
US5886056A (en) * 1997-04-25 1999-03-23 Exxon Research And Engineering Company Rapid injection process and apparatus for producing synthesis gas (law 560)
US5935489A (en) * 1997-04-25 1999-08-10 Exxon Research And Engineering Co. Distributed injection process and apparatus for producing synthesis gas
AR017317A1 (es) * 1997-10-14 2001-09-05 Shell Int Research Proceso de oxidacion parcial catalitica, un metodo y disposicion para generar energia electrica por medio de dicho proceso, y medio de transporteprovisto con dicha disposicion
EP1063010B1 (en) * 1998-03-09 2008-07-02 Osaka Gas Company Limited Method for removing methane from exhaust gas
GB9806199D0 (en) * 1998-03-24 1998-05-20 Johnson Matthey Plc Catalytic generation of hydrogen
KR100600218B1 (ko) 1998-06-09 2006-07-13 이데미쓰 고산 가부시키가이샤 탄화수소 개질용 촉매 및 탄화수소의 개질방법
US6475960B1 (en) 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6080301A (en) 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6221280B1 (en) 1998-10-19 2001-04-24 Alliedsignal Inc. Catalytic partial oxidation of hydrocarbon fuels to hydrogen and carbon monoxide
US6203587B1 (en) * 1999-01-19 2001-03-20 International Fuel Cells Llc Compact fuel gas reformer assemblage
US6641625B1 (en) 1999-05-03 2003-11-04 Nuvera Fuel Cells, Inc. Integrated hydrocarbon reforming system and controls
US6402989B1 (en) 1999-07-30 2002-06-11 Conoco Inc. Catalytic partial oxidation process and promoted nickel based catalysts supported on magnesium oxide
US6488907B1 (en) * 1999-07-30 2002-12-03 Conoco Inc. Catalytic partial oxidation processes and catalysts with diffusion barrier coating
ATE298623T1 (de) * 1999-08-17 2005-07-15 Battelle Memorial Institute Chemischer reaktor und verfahren zur katalytischen gasphasenreaktionen
US6409940B1 (en) 1999-10-18 2002-06-25 Conoco Inc. Nickel-rhodium based catalysts and process for preparing synthesis gas
WO2001034517A1 (en) * 1999-11-05 2001-05-17 Conoco, Inc. Chromium-based catalysts and process for converting hydrocarbons to synthesis gas
WO2001036323A2 (en) * 1999-11-17 2001-05-25 Conoco Inc. Cobalt-based catalysts and process for producing synthesis gas
US6726850B1 (en) * 2000-01-14 2004-04-27 Sebastian C. Reyes Catalytic partial oxidation using staged oxygen addition
EP1257497A2 (en) * 2000-02-18 2002-11-20 Conoco Inc. Chromium-based catalysts and processes for converting hydrocarbons to synthesis gas
US6458334B1 (en) 2000-03-02 2002-10-01 The Boc Group, Inc. Catalytic partial oxidation of hydrocarbons
US20030007926A1 (en) * 2000-03-02 2003-01-09 Weibin Jiang Metal catalyst and method of preparation and use
JP2001279276A (ja) * 2000-03-29 2001-10-10 Idemitsu Kosan Co Ltd 燃料電池用燃料油及び燃料電池用水素の製造方法
US6733692B2 (en) 2000-04-20 2004-05-11 Conocophillips Company Rhodium foam catalyst for the partial oxidation of hydrocarbons
US6746658B2 (en) 2000-04-20 2004-06-08 Conocophillips Company Rhodium cloth catalyst for partial oxidation of hydrocarbons
EP1156026A1 (en) 2000-05-19 2001-11-21 Shell Internationale Researchmaatschappij B.V. Process for the production of liquid hydrocarbons
US6635191B2 (en) 2000-06-13 2003-10-21 Conocophillips Company Supported nickel-magnesium oxide catalysts and processes for the production of syngas
US6497856B1 (en) 2000-08-21 2002-12-24 H2Gen Innovations, Inc. System for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
AU9061701A (en) * 2000-09-05 2002-03-22 Conoco Inc Lanthanide-promoted rhodium catalysts and process for producing synthesis gas
US7097786B2 (en) * 2001-02-16 2006-08-29 Conocophillips Company Supported rhodium-spinel catalysts and process for producing synthesis gas
US6855272B2 (en) * 2001-07-18 2005-02-15 Kellogg Brown & Root, Inc. Low pressure drop reforming exchanger
US6887456B2 (en) * 2001-10-05 2005-05-03 Conocophillips Company Catalyst system for enhanced flow syngas production
US6881394B2 (en) * 2001-10-09 2005-04-19 Conocophillips Company Steam reformer for methane with internal hydrogen separation and combustion
US20030103892A1 (en) * 2001-10-17 2003-06-05 Conoco Inc. Promoted cobalt-chromium oxide catalysts on lanthanide-modified supports and process for producing synthesis gas
US6890878B2 (en) 2001-12-28 2005-05-10 United Refining Company Catalyst formulation comprising ceramic foam material
US7303606B2 (en) * 2002-01-08 2007-12-04 The Boc Group, Inc. Oxy-fuel combustion process
US7223354B2 (en) * 2002-02-22 2007-05-29 Conocophillips Company Promoted nickel-magnesium oxide catalysts and process for producing synthesis gas
US6746657B2 (en) 2002-03-12 2004-06-08 Precision Combustion, Inc. Method for reduced methanation
EP1487740A1 (en) * 2002-03-13 2004-12-22 Conocophillips Company Controlled-pore catalyst structures and process for producing synthesis gas
US6783749B2 (en) * 2002-05-13 2004-08-31 The Boc Group, Inc. Gas recovery process
US20040052725A1 (en) * 2002-06-28 2004-03-18 Conocophillips Company Oxidized metal catalysts and process for producing synthesis gas
US7090826B2 (en) * 2002-12-23 2006-08-15 The Boc Group, Inc. Monolith based catalytic partial oxidation process for syngas production
US7230035B2 (en) * 2002-12-30 2007-06-12 Conocophillips Company Catalysts for the conversion of methane to synthesis gas
US20040179999A1 (en) * 2003-03-14 2004-09-16 Conocophillips Company Submicron particle enhanced catalysts and process for producing synthesis gas
US7722832B2 (en) 2003-03-25 2010-05-25 Crystaphase International, Inc. Separation method and assembly for process streams in component separation units
GB0310281D0 (en) * 2003-05-03 2003-06-11 Univ Robert Gordon A membrane apparatus and method of preparing a membrane and a method of producing synthetic gas
US7208136B2 (en) * 2003-05-16 2007-04-24 Battelle Memorial Institute Alcohol steam reforming catalysts and methods of alcohol steam reforming
US20040266615A1 (en) * 2003-06-25 2004-12-30 Watson Junko M. Catalyst support and steam reforming catalyst
US7066984B2 (en) * 2003-09-25 2006-06-27 The Boc Group, Inc. High recovery carbon monoxide production process
US7214331B2 (en) * 2004-02-26 2007-05-08 The Boc Group, Inc. Catalyst configuration and methods for syngas production
US7261751B2 (en) * 2004-08-06 2007-08-28 Conocophillips Company Synthesis gas process comprising partial oxidation using controlled and optimized temperature profile
US7544342B2 (en) 2004-08-25 2009-06-09 The Boc Group, Inc. Hydrogen production process
US7585810B2 (en) * 2004-09-01 2009-09-08 Umicore Ag & Co. Kg Method for partial oxidation of hydrocarbons, catalyst member therefor and method of manufacture
MY139252A (en) * 2004-10-04 2009-09-30 Shell Int Research Catalyst structure
US7351275B2 (en) * 2004-12-21 2008-04-01 The Boc Group, Inc. Carbon monoxide production process
ITMI20072209A1 (it) * 2007-11-21 2009-05-22 Eni Spa Procedimento migliorato per la produzione di gas di sintesi a partire da idrocarburi ossigenati ricavati da biomasse
AU2009261244B2 (en) * 2008-06-16 2012-08-23 Osaka Gas Co., Ltd. Method of operating ruthenium catalyst reactor
WO2011016030A1 (en) * 2009-08-03 2011-02-10 Technion Research & Development Foundation Ltd. Hydrogen production by an autothermal heat exchanger packed-bed membrane gas reformer
CN103384681B (zh) 2010-12-23 2018-05-18 霍夫曼-拉罗奇有限公司 结合剂
JP6096402B2 (ja) * 2011-05-19 2017-03-15 本田技研工業株式会社 燃料電池システム
MX2017015503A (es) * 2015-06-02 2018-05-23 Scient Design Co Cuerpos porosos con arquitectura de poro mejorada.
US10744426B2 (en) 2015-12-31 2020-08-18 Crystaphase Products, Inc. Structured elements and methods of use
US10054140B2 (en) 2016-02-12 2018-08-21 Crystaphase Products, Inc. Use of treating elements to facilitate flow in vessels
WO2021127644A1 (en) 2019-12-20 2021-06-24 Crystaphase Products, Inc. Resaturation of gas into a liquid feedstream
EP4210865A1 (en) 2020-09-09 2023-07-19 Crystaphase Products Inc. Process vessel entry zones

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303438A3 (en) * 1987-08-14 1989-12-27 DAVY McKEE CORPORATION Production of synthesis gas from hydrocarbonaceous feedstock
CA2020151C (en) * 1989-06-30 1997-12-09 Malcolm Leslie Hodder Green Catalytic conversion of methane
GB2249555A (en) * 1990-11-09 1992-05-13 Shell Int Research Partial oxidation of a hydrocarbon-containing fuel using entrained catalyst
US5152976A (en) * 1990-11-16 1992-10-06 Texaco Inc. Process for producing high purity hydrogen
GB9028034D0 (en) * 1990-12-24 1991-02-13 Isis Innovation Improved processes for the conversion of methane to synthesis gas
EP0576096B1 (en) * 1992-06-24 1998-11-18 Shell Internationale Research Maatschappij B.V. Process for the catalytic partial oxidation of hydrocarbons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298615C (zh) * 2004-11-02 2007-02-07 中国石油化工集团公司 一种烃类制氢催化剂及其制备方法
CN110966065A (zh) * 2018-10-01 2020-04-07 株式会社电装 废气净化过滤器及其制造方法
CN110966065B (zh) * 2018-10-01 2024-01-16 株式会社电装 废气净化过滤器及其制造方法

Also Published As

Publication number Publication date
DZ1828A1 (fr) 2002-02-17
AU679128B2 (en) 1997-06-19
TW299307B (zh) 1997-03-01
ZA949424B (en) 1995-07-04
EP0656317A1 (en) 1995-06-07
NO944550D0 (no) 1994-11-28
JPH07196301A (ja) 1995-08-01
CN1036987C (zh) 1998-01-14
CO4370053A1 (es) 1996-10-07
AU7903494A (en) 1995-06-08
BR9404754A (pt) 1995-07-18
KR950014272A (ko) 1995-06-15
NO944550L (no) 1995-05-30
RU94042244A (ru) 1996-09-20
SG89228A1 (en) 2002-06-18
US5510056A (en) 1996-04-23
CA2136682A1 (en) 1995-05-30
NZ264970A (en) 1997-02-24

Similar Documents

Publication Publication Date Title
CN1036987C (zh) 烃的催化部分氧化的方法
CN1056585C (zh) 烃类催化部分氧化方法
CN1044354C (zh) 烃类催化部分氧化工艺方法
CN1036913C (zh) 烃类的部分催化氧化方法
US7214331B2 (en) Catalyst configuration and methods for syngas production
US4743576A (en) Catalyst for the production of synthesis gas or hydrogen and process for the production of the catalyst
AU2001290617C1 (en) Lanthanide-promoted rhodium catalysts and process for producing synthesis gas
EP1222024B1 (en) Process for preparing synthesis gas employing a nickel-rhodium based catalysts
US7592290B2 (en) Supported catalyst for stream methane reforming and autothermal reforming reactions
US4863707A (en) Method of ammonia production
RU2123471C1 (ru) Способ каталитического частичного окисления углеводородов
AU737644B2 (en) Process for the production of synthesis gas
CN1139417A (zh) 制备一氧化碳和/或氢气的工艺方法
CN1307538A (zh) 使用铑一铱合金催化剂的催化部分氧化
AU2001290617A1 (en) Lanthanide-promoted rhodium catalysts and process for producing synthesis gas
EP1903001A2 (en) Method and Apparatus for Syngas Production
JP2004506583A (ja) 接触酸化方法
CN1684771A (zh) 用于烃自热水蒸气转化的多层催化剂和使用所述催化剂的方法
EP1314688B1 (en) Process for catalytic autothermal steam reforming of mixtures of higher alcohols, in particular ethanol, with hydrocarbons
US20030045423A1 (en) Supported rhodium-lanthanide based catalysts and process for producing synthesis gas
CN1104173A (zh) 制备一氧化碳和氢气的方法
CN1059318A (zh) 一种通过烃转化和燃烧反应来生产合成气的催化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee